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Abstract: Silicon microneedle arrays (MNAs) have been widely studied due to their potential in
various transdermal applications. However, discrete MNAs, as a preferred choice to fabricate flexible
penetrating devices that could adapt curved and elastic tissue, are rarely reported. Furthermore, the
reported discrete MNAs have disadvantages lying in uniformity and height-pitch ratio. Therefore,
an improved technique is developed to manufacture discrete MNA with tunable height-pitch ratio,
which involves KOH-dicing-KOH process. The detailed process is sketched and simulated to illustrate
the formation of microneedles. Furthermore, the undercutting of convex mask in two KOH etching
steps are mathematically analyzed, in order to reveal the relationship between etching depth and
mask dimension. Subsequently, fabrication results demonstrate KOH-dicing-KOH process. {321}
facet is figured out as the surface of octagonal pyramid microneedle. MNAs with diverse height
and pitch are also presented to identify the versatility of this approach. At last, the metallization is
realized via successive electroplating.
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1. Introduction

Recently, microneedle arrays (MNAs) draw more and more attention due to their great prospective
in various applications such as transdermal electroporation [1], transdermal drug delivery [2],
dry biopotential electrodes [3] and penetrating neural electrodes [4]. Flexible penetrating electrodes
are preferred to adapt to curved and elastic tissue [4]. The contradiction is that penetration requires
rigid microneedles whereas flexible substrates are also needed. Hence, discrete MNAs, which means
the microneedles are different from the substrate in terms of their materials, are needed to fabricate
this kind of flexible penetrating electrode via a transferring method. Diverse MNAs utilizing versatile
processes, materials and shapes have been proposed, as shown in Table 1. Biodegradable materials
such as polylactic acid (PLA) [5], poly-lactic-co-glycolic acid (PLGA) [6], polycaprolactone (PCL) [7],
interferon α and polyvinyl alcohol (PVA) [8], sugar glass [9] and non-biodegradable polymer SU-8 [10]
have been applied in molding-based fabrication of MNAs. The substrate and microneedles are usually
made of the same material used in the molding process, otherwise the adherence between substrate
and microneedle is too weak to maintain the MNA. Ren developed PLGA-based and Ti/Au-coated
hill-like MNAs fabricated by thermal drawing for bio-signal monitoring [3].
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The backside inadequate exposure technique was introduced to form SU-8 MNAs [11].
The electron discharge machining (EDM) method is presented to manufacture stainless steel MNAs [12].
These approaches could be considered as reductive manufacturing of the substrate. Hence, these
MNAs have poor/fair discreteness, meaning that the microneedles could not be separated with
the substrate in terms of material. Electrochemical etching titanium and microneedle insertion are
performed to assemble titanium MNAs [13], which possess discrete microneedles but offer poor mass
production possibilities.

On the other hand, silicon is widely used in fabricating MNAs due to its versatile tailoring process
and high tensile strength, compared with other microneedle materials [14]. HNA (a mixture of HNO3,
HF and HOAc) etching could be applied on silicon pillars via deep reactive ion etching (DRIE) or
dicing in order to sharpen pillars until microneedles are formed [2,15,16]. However, HNA solution is
so corrosive that heterogeneous substrates would be dramatically etched. Consequently, homogeneous
silicon substrates are commonly adopted. Self-stabilized diamond-shaped microneedle formation via 2
stage etching was demonstrated [17]. Its base is very narrow and might be not strong enough to stand
alone on a non-rigid heterogeneous substrate. A kind of discrete nipple-shaped microneedle prepared
via dry etching was proposed, yet its uniformity is fair [4]. An octagonal pyramid silicon MNA was
obtained via one stage KOH etching, which provided discrete and uniform microneedles. However,
the ratio of height to pitch is very low (only 0.25), which is equivalent to density as the height is certain.
As a matter of fact, it would reach a ceiling limit of about 0.46 according to the analysis of Section 3
(Equation (5)). Therefore, an alternate method is proposed in order to fabricate discrete MNA with
tunable height-pitch ratios, which involves a KOH-dicing-KOH process.
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Table 1. Diverse microneedle arrays.

Source Process Material Shape Uniformity a Discreteness b Ratio of Height to Pitch

Kim [5] Replication and curved deformation Biodegradable polylactic acid (PLA) Cone fair poor 350/950 = 0.37

Tu [6] CO2 laser ablation and polymer molding poly-lactic-co-glycolic acid (PLGA) Cone fair poor 1179/500 = 2.36

Keum [7] Polymer molding Polycarprolactone (PCL) Cone fair poor 700/900 = 0.78

Kusamori [8] Micro-molding Interferon α, polyvinyl alcohol (PVA) Cone fair poor 800/900 = 0.89

Martin [9] Low temperature vacuum deposition micromoulding biodegradable sugar glass Octagonal pyramid good poor 250/1000 = 0.25

Arai [10] Replica molding SU-8 candle-shaped good poor 1000/830 = 1.20

Ren [3] Thermal drawing PLGA Hill-like good fair 500/1000 = 0.5

Stavrinidis [11] Backside inadequate exposure SU-8 Cone poor fair 500/650 = 0.77

Vinayakumar [12] Electron discharge machining (EDM) stainless steel Hollow truncated Cone fair poor 300/500 = 0.6

Tezuka [13] Electrochemical etching and insertion Titanium Cone fair good 800/2500 = 0.32

Yoon [15] DRIE + HNA Silicon Cone good fair 380/340 = 1.12

Li [16] DRIE + HNA silicon Cone good fair 150/200 = 0.75

Deng [2] Dicing + HNA silicon rectangular pyramid good fair 200/90 = 2.22

Lin [17] 2 Stage etch Silicon self-stabilized diamond-shaped good fair 250/200 = 1.25

Wang [4] Dry etch Silicon nipple-shaped fair good 80/450 = 0.18

O’Mahony [18] One stage KOH Silicon Octagonal pyramid good good 300/1200 = 0.25

This work KOH-dicing-KOH Silicon Octagonal pyramid good good Bigger than 0.56, up to 2.65
a The uniformity degree is judged from the reported figures, which is divided into three ranks. Higher rank means the profile and height of microneedles are more identical. b The
discreteness degree is judged from the fabrication process. The more possible the microneedle and substrate are made of different material, the higher rank it would be.
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2. Fabrication Process

N(100) silicon wafer with resistivity of 2~4 Ω·cm is adopted as target object and a KOH etching
process is kept in the condition of 30% concentration and 80◦C temperature when mechanical agitation
is applied. The fabrication process mainly consists of three steps: first KOH etching, dicing and second
KOH etching. Specifically, the process is started from bonding a silicon wafer to glass, with patterned
Si3N4 as KOH mask composing of square and strip. Then, first KOH etching is performed to thin
down the bulk silicon. The wafer is diced along the middle line of two adjacent square masks.

Dicing depth is well designed to make sure silicon with a certain thickness is retained. Silicon
pillars with cross-like mask are formed. Eventually, second KOH etching is brought about. Owing to
KOH undercutting of the convex mask corner, the silicon pillar would be etched along the facet with
fast etching rate and finally silicon needles come into being after the cross-like mask is thoroughly
undercut. It should be pointed out that the retained silicon during the dicing process is also etched just
right, to obtain discrete silicon MNAs.

Here, KOH-dicing-KOH process is simulated via Anisotropic Crystalline Etching Software (ACES).
It should be noted that there is no model for the dicing process in ACES. The simulation of dicing
is replaced with that of deep reactive ion etching (DRIE). The simulation results are illustrated in
Figure 1: (a) silicon pillars are formed after first KOH etching and dicing; (b) Second KOH etching is
started and the strips disappeared; (c) as the etching process goes on, the square mask begins to be
undercut; (d) finally, the mask is thoroughly undercut and the octagonal pyramid-shaped microneedle
comes out.
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Figure 1. Simulation of second KOH etching.

3. Mathematical Model

Two KOH etching processes are mathematically concerned. Generally, undercutting happens
beneath convex corner mask and along the inclining facet with fast etching rate. For KOH etching with
30% concentration and 80 ◦C temperature, the inclining facets are the cluster of {411} facets. As the
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mask undercutting is prominently concerned, the evolution of <410> crystal orientation is illustrated,
which is the intersection line of {411} facet and {100} facet. The analyses could be divided into two parts.

3.1. First KOH Etching

First KOH etching starting from concentration strip mask is analyzed, as in Figure 2. Width of
strip is w, angle of <410> and <110> is α = 31.0◦, the distance from starting point to <410> is dC, the
interception of inclining facet is d. It could be deduced that:

dc = 0.5wsin α + dcos α−0.5wtan α ≤ d ≤ 0.5w (1)

dc = 0.5wcos α + dsin αd ≥ 0.5w (2)
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Figure 2. Sketch illustration of successive lateral etching beneath compensation strip. (First KOH etching).

The angle of {411} and {100} is β = 76.4◦. V{411}/V{100} = 1.46, where V{100} and V{411} are etching
rates of {100} and {411} respectively. The evolution rate of dC is Vdc = V{411}/sin β. Hence, the etching
depth of H could be figured out:

H =
dC
Vdc

V{100} = dCsin β
V{100}

V{411}
(3)

For concentration strip mask with width of Wc and length of L (L ≥ 0.5WC), its maximum etching
depth Hcmax could be derived from Equations (2) and (3):

HCmax = (0.5WCcos α + Lsin α)sin β
V{100}

V{411}
= 0.3WC + 0.36L (4)

Similarly, square mask could be considered as two concentration strip mask, where etching starts
from both side. For square mask with width of WS, it would disappear when dmax = 0.5WS. Maximum
etching depth HSmax could be derived from Equations (1) and (3):

HSmax = (0.5WSsin α + dmaxcos α)sin β
V{100}
V{411}

= 0.46WS (5)
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3.2. Second KOH Etching

As for second KOH etching, the situation is different, as shown in Figure 3. The mask consists of
square mask with width of Wq and concentration strip with L length and Wq width. The beginning
facet for strip undercutting is {110} created by dicing rather than {100}.
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Figure 3. Sketch illustration of successive lateral etching beneath compensation strip. (After dicing,
second KOH etching).

Considering V{110}:V{411} = 1, the etchings of {110} and {411} simultaneously proceed. When {411}
facet arrives point C, square mask starts to be undercut. The undercutting of strip goes on until {411}
facet arrives point R. The overall etching depth along {100} is Hj. Hct is the etching depth during the
period when strip is undercut, Hsq is the depth related to square mask, Hd is the depth during the time
from point C to R:

Hj = Hct + Hsq − Hd = [0.5Wtcos α + Lsin α + 0.5Wq(sin α + cos α)− 0.5Wtsin α]sin β
V{100}
V{411}

= 0.13Wt + 0.36L + 0.46Wq (6)

Considering V{110}:V{411} = 1, the etchings of {110} and {411} simultaneously proceed. When {411}
facet arrives point C, square mask starts to be undercut. The undercutting of strip goes on until {411}
facet arrives point R. The overall etching depth along {100} is Hj. Hct is the etching depth during the
period when strip is undercut, Hsq is the depth related to square mask, Hd is the depth during the time
from point C to R:

Hj = Hct + Hsq − Hd = [0.5Wtcos α + Lsin α + 0.5Wq(sin α + cos α)− 0.5Wtsin α]sin β
V{100}
V{411}

= 0.13Wt + 0.36L + 0.46Wq (7)

4. Results and Discussions

4.1. Fabrication Results

Three kinds of MNAs with different height are demonstrated, which are 190 µm, 270 µm, and
900 µm respectively. Here, MNA with 190 µm is taken as example to exhibit fabrication process.
Figure 4 is obtained via scanning electron microscopy (SEM). Figure 4a demonstrates the silicon profile
after 325 µm-thick silicon is firstly etched via KOH process. It could be noted that 75 µm-thick silicon is
left in the margin region without Si3N4 mask. The inset shows the compensation strip is about 200 µm
left, meaning that 900 µm-long strip is undercut. And {411} facet could be observed beneath the strip,
as well as other step-shaped facets.
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Then first KOH undercutting of the strip with width of 30 µm and length of 900 µm is considered.
According to Equation (4), the corresponding etching depth Hc = 333 µm, which is in accordance
with practical value 325 µm. Figure 4b shows silicon pillar array with cross-like mask after dicing.
The dimension of dicing groove is 40 µm-wide and 325 µm-deep, and the pitch is 340 µm. In order to
form 9 × 9 array, 10 horizontal dicing and 10 vertical dicing are applied.

Figure 4c indicates discrete silicon MNA with height of 190 µm is fabricated after second KOH
etching. Here, the pitch of microneedle is 340 um. The inset demonstrates that the microneedle is
an octagonal pyramid comprising of eight inclining facet. As a matter of fact, similar MNA could be
manufactured via once KOH undercutting of square mask. However, to manufacture 190 µm-height
MNA, 500 µm-wide square mask is required, which means the pitch of microneedle would be more
than 500 µm. Hence, it could be noted that KOH-dicing-KOH process is favorable to manufacture
discrete silicon MNA with higher height-pitch ratio. According to Equation (6), when the dimension
of cross-like mask is measured as: Wq = 92 µm, L = 92 µm, Wt = 22 µm, Hj is figured out as 78 µm.
In contrast, the etching depth in practice is 66 µm, which is smaller than theoretic value. The possible
reasons may be the etching to SiO2 layer and inaccurate V{411}:V{100}.

4.2. Facet of Octagonal Pyramid

As mentioned before, the etching could be divided into three parts: the upper inclining facet
under mask is {411}, the middle one is mainly along {110} and lower one determines the final shape
of microneedle, which is diverse in different condition. I. Silicon microneedles with {311} facets are
fabricated under conditions of 80 ◦C and 40% KOH [19] as well as under conditions of 70 ◦C and
34% KOH [20]. Dizon proposed a fabrication method to form {411}-facet microneedles in condition
of 83 ◦C and 33% KOH [21]. Wilke reported {321}-facet microneedles were realized under conditions
of 79 ◦C and 29% KOH [22], which is very close to the conditions used in this paper. The angles
measured from a top view (Figure 5a) and lateral view (Figure 5b,c) are compared with those of a
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theoretical {321}-facet pyramid, as shown in Table 2. Ultimately, the {321} facet is verified as the surface
of octagonal pyramid microneedle.
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Table 2. Angles from different view.

Top View Lateral View

Internal Angle 1 a Internal Angle 2 a γ<110>
b γ<100>

b

Calculated {321}-facet pyramid 143.1◦ 126.9◦ 37.2◦ 36.7◦

Measure from SEM 136.8◦ ± 5.4◦ 133.8◦ ± 3.8◦ 39.4◦ 37.8◦

a The internal angles could be measured directly from top view SEM. b The cone angles of pyramid observed
from <110> and <100> are γ<110> and γ<100>, respectively, which could be calculated from lateral view SEM.
The angle between SEM probe and the wafer is ψ (here is 45◦), and the measured cone angles in SEM is θ. Hence,
γ<110> and γ<100> are determined by tan γ

2 = cos ψ× tan θ
2 .

4.3. MNAs with Diverse Height and Pitch

Discrete MNAs with diverse height and pitch are also fabricated, as Figure 6 shows. MNAs with
270 µm-high and 420 µm-pitch are illustrated in Figure 6a, which accords with the aforementioned
octagonal pyramid profile. After first KOH etching, Wc = 40 µm, L = 880 µm, according to Equation (4),
the corresponding etching depth Hc = 329 µm, which is in accordance with the practical value of 320 µm.
According to Equation (6), when the dimension of cross-like mask is measured as: Wq = 143 µm,
L = 106 µm, Wt = 24 µm, Hj is figured out as 107 µm. In contrast, the etching depth in practice is 96 µm,
meaning that the estimation error is about 10%. The possible reasons may be the etching to SiO2 layer
and inaccurate V{411}:V{100}, as mentioned before.
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Figure 6b shows a MNA with 900 µm-high and 340 µm-pitch, which consists of slender tips,
straight pillars and pyramid bases. As a matter of fact, the evolution of this microneedle could
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be observed in simulation, as Figure 3 showed. The upper inclining facets under mask constitute
slender tips, the middle ones along {110} compose the straight pillars and the lower ones form the
pyramidal base. It is obvious that this kind of high microneedle could not undergo the penetration
force. Nevertheless, it could have potential in non-contact applications such as field emission.

4.4. Metallization on MNAs

‘Metallization’ means to deposit and pattern a metal on the MNA, which makes it possible for
electrical applications. It should be noted that there is a gap between discrete silicon microneedles and
glass substrates, as in Figure 7. The gap in the range of several micrometers is inevitably caused due to
KOH etching of the glass. However, the gap is fatal for the metallization because the thickness of
routine metal sputtering is about several hundred nanometers and too small to cover the gap. Hence,
a probable solution via successive electroplating is proposed. Specially, 150 nm Cr/Au is sputtered
and patterned on the wafer. The metals on microneedle and glass are separated (Figure 7a).
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Figure 7. SEMs of microneedle arrays with (a) metal sputtering; (b) successive electroplating.

Subsequently, electroplating starts from one side. The No.1 microneedle would be electroplated
when the thickness of the metal line reaches up to the edge of microneedle and fills the gap. Then,
the metal on microneedle is thickened, leading to connecting with adjacent metal line. Therefore,
electroplating goes on in sequence and finally all the microneedles on this line are electroplated
(Figure 7b). In fact, the metal is apt to be electroplated thicker on the edge. As a consequence, the gap
could be quickly filled.

5. Conclusions

In this paper, an improved KOH-dicing-KOH process is proposed in order to fabricate discrete
silicon MNAs with tunable height-pitch ratio. Compared with previously reported MNAs, their
advantage lies in the discreteness and height-pitch ratio. Many efforts are made to demonstrate
the formation of MNAs, including simulation, mathematical calculations and SEM experiments.
In addition, the observed octagonal pyramids are confirmed to be composed of {321} facets. Further
experiments indicate it has potential to produce diverse MNAs for versatile applications. The problem
existing in metallization is solved via successive electroplating, which makes it feasible for microneedle
electrode applications. In conclusion, the fabrication and analysis of these MNAs are demonstrated.
Further research on the applications of these MNAs will be carried out.
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