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Abstract: The precise mapping of vegetation covers in semi-arid areas is a complex task as this
type of environment consists of sparse vegetation mainly composed of small shrubs. The launch
of high resolution satellites, with additional spectral bands and the ability to alter the viewing
angle, offers a useful technology to focus on this objective. In this context, atmospheric correction
is a fundamental step in the pre-processing of such remote sensing imagery and, consequently,
different algorithms have been developed for this purpose over the years. They are commonly
categorized as imaged-based methods as well as in more advanced physical models based on the
radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering
several methods have been carried out using high resolution data or which are specifically applied
to vegetation covers. In this work, the performance of five representative atmospheric correction
algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution
Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal
of identifying the most appropriate techniques. The study also included a detailed analysis of the
parameterization influence on the final results of the correction, the aerosol model and its optical
thickness being important parameters to be properly adjusted. The effects of corrections were studied
in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and
coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular,
has been demonstrated, achieving reflectance estimations very close to the in-situ measurements
(RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in
the vegetation estimation in these natural areas is presented, allowing the robust mapping of species
and the analysis of multitemporal variations related to the human activity and climate change.

Keywords: atmospheric correction; ATCOR; FLAASH; 6S; semi-arid ecosystems; high resolution
WorldView-2 images

1. Introduction

Mapping vegetation in semi-arid areas is a challenging undertaking. These environments usually
contain sparse vegetation with small species having a reduced leaf area that limits the applicability of
certain vegetation indices. Furthermore, the important soil reflectance contribution makes it difficult
to obtain precise information about the types of vegetation [1].

The launch of new satellites, with improved capabilities, can assist in the generation of precise
vegetation maps in natural protected areas. In this context, Worldview-2 and 3 offer a very high spatial
resolution with additional bands not included in previous high resolution platforms (i.e., Ikonos,
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Quickbird, Geoeye, Quickbird, KOMPSAT, Pleiades, etc.) in the visible and near infrared spectrum.
However, the spectral data acquired by satellite sensors are influenced by atmospheric absorption
and scattering, which results in a distortion of the actual reflectance of the different covers and,
consequently, affects the precise extraction of information from the imagery. As previously mentioned,
the emergence of high-resolution satellites with new spectral channels and the ability to change their
viewing angle has highlighted the importance of properly modeling the atmospheric effects.

As indicated, the radiance recorded at the sensor is not fully representative of the Earth’s surface
as it is altered by the atmosphere through which electromagnetic energy has to pass. Therefore,
atmospheric correction is an important pre-processing step in many applications. It is critical in
the monitoring of littoral zones (i.e., water quality, bathymetry or seafloor mapping) due to the low
radiation reaching the sensor from water areas as a consequence of the low reflectivity of the water.
In these scenarios, the major contribution to the signal comes from the atmosphere. In land areas, it is
also important to obtain the real reflectance from the soil and vegetation if biophysical parameters
are going to be extracted (i.e., biomass, leaf area index, etc.) or to properly achieve precise Land Use
Land Cover or vegetation maps. A major benefit is when dealing with multitemporal remotely sensed
imagery to overcome change detection analysis or phenological studies [2].

To compensate for atmospheric effects, parameters such as the distribution of aerosols, amount of
water vapor and scene visibility must be known. Different strategies have been developed as direct
measurements of these atmospheric properties are rarely available. Commonly used image-based
atmospheric correction methods are Dark Object Subtraction (DOS) [3], that corrects for the additive
scattering effect; Cosine of the sun zenith angle COST [4], that also takes into account the multiplicative
transmittance effect; and QUick Atmospheric Correction (QUAC) [5], that is based on the empirical
finding that the average reflectance of diverse material spectra is not dependent on each scene.
The Simplified Method for Atmospheric Correction (SMAC) [6] is a semi-empirical method designed
for the atmospheric correction of the large series of data acquired by large field of view sensors.
The Empirical Line Calibration (ELC) [7] uses field-measured surface reflectance from a series of
invariant-in-time calibration targets to estimate the reflectance for each band. A regression equation
is then developed for each band of an image to carry out the atmospheric correction. Other more
complex approaches model the atmosphere which usually use an accurate radiative transfer code
(RTC) to correct the atmospheric effects, such as the MODerate resolution atmospheric TRANsmission
(MODTRAN) [8,9], the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) [10],
the ATmospheric CORrection (ATCOR) [11,12] and the Second Simulation of a Satellite Signal in the
Solar Spectrum (6S) [13,14] models.

There has been some research comparing different approaches to correct the atmospheric
effects [15–27]. In this context, Wu et al. (2005) [16] only addressed image-based algorithms using
QuickBird imagery. Mahiny and Turner (2007) [17] carried out a study of four atmospheric correction
methods on Landsat scenes, but two of the methods were relative approaches (PIF and RCS).
El Hajj et al. (2008) [18] presented an atmospheric correction method based on the 6S model and
applied it to SPOT 5 data. Martin et al. (2012) [22] considered three methods in the analysis (DOS,
COST and 6S). Pacifici (2013) [23] and Agrawal and Sarup (2011) [20] compared FLAASH and QUAC.
Vanonckelen et al. (2013) [24] analyzed the effect of atmospheric and topographic correction strategies
on the accuracy of land cover classification, however only two atmospheric techniques were compared.
Broszeit and Ashraf (2013) [25] compared COTS and ATCOR using Geoeye and Rapideye data.
More recently, Nguyen et al. (2015) [26] analyzed three models (DOS, FLAASH and 6S) using medium
resolution data. Pu et al. (2015) [27] evaluated two methods (ELC and FLAASH) and a combination of
both to identify urban tree species with WorldView-2 (WV-2) imagery.

After this review of the literature, we found that the studies were not extensive in the sense
that they mainly covered two or three methods, were usually not applied to 8-band high resolution
satellite data, did not analyze semi-arid regions, or did not assess the influence of the configuration
parameters in detail. This work presents a detailed study of five atmospheric correction algorithms
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(DOS, QUAC, FLAASH, ATCOR and 6S) applied to the eight bands of the high resolution Worldview-2
satellite. After reviewing the state-of-the-art in atmospheric correction methodologies, five algorithms
were selected as they are widely used in remote sensing and they are representative of each strategy.
The effects of the corrections were studied in two representative semi-arid natural protected areas
(mountain and coastal ecosystems). This study also includes a detailed analysis of the influence of
parameterization on the estimated surface reflectance of the atmospheric correction based on RTC
models. In-situ spectral data were collected simultaneously to the satellite overflight to evaluate
the results. Finally, the atmospheric correction influence in the vegetation estimation and mapping
is presented.

Section 2 includes the areas of interest, the available field data and the satellite imagery used in
the analysis. Next, the atmospheric correction algorithms and the methodology applied are described.
Section 3 presents and discusses the results of the study and provides some insights into the mapping
of vegetation. Finally, the conclusions are summarized in the Section 4.

2. Materials and Methods

2.1. Semi-Arid Ecosystems Analyzed

Two protected areas located in the Canary Islands (Spain) have been selected as representative
semi-arid ecosystems (see Figure 1), considerably threatened by human presence due to the intense
touristic activity: the Teide National Park (Tenerife Island) and the Maspalomas Special Natural
Reserve (Gran Canaria Island).
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Figure 1. Natural protected areas: (a) Location of the Canary Islands; (b) Teide National Park; (c) 
Maspalomas Special Natural Reserve.  

The Teide National Park was created in 1954 to protect this remarkable landscape of great 
ecological importance which lies at the base of the colossal volcano (3718 m high), covering an area 
of 18,990 ha. It includes plant species that are unique and adapted to the rough environmental 
conditions such as high altitude, intense sunlight and extreme temperature variations. Specifically, a 
total of 222 plants grow there. Plants respond to thermic and hydric stress with a shrub physiognomy. 
The Teide broom (Spartocytisus supranubius) is one of the most important plant species, as are Rosalillo 
de cumbre (Pterophalus lasiospermus) and Hierba pajonera (Descurania bourgaeana) [28]. Another 
important species is the Canary pine (Pinus canariensis) that appears in the northern area of the Park, 
being the only native pine on the archipelago [29]. 

The Maspalomas area was protected in 1987 and it covers 403.9 ha of sand dunes, endemic 
vegetation and a lagoon of great ecological value. This reserve is very complex as it presents a great 
variety of natural systems (marine, eolic, lake and fluvial). Moreover, the tourism and urbanization 
development has conditioned the natural evolution of the system, interfering with the sand 
dynamics. Thus, the sedimentary deposition has had a deficit since the 1960’s. It is important to 
protect this ecosystem due to the presence of threatened habitats, its enormous ornithological interest, 
the threatened species of flora and fauna and to preserve the geomorphological structures. Vegetation 
can be described as xerocanaria from a deserted habitat with halophilic (salt excess) and 
psammophilic (sand sediment) species. However, some hydrophilic species can be found next to the 
lagoon. Some representative plants living in the dune system include Tamarix canariensis, Juncus 
acutus, Launeaea Arborecens, Traganum moquinii or Cyperus laevigatus [30]. 

2.2. Field Data 

In-situ field data in the Maspalomas natural area were acquired simultaneously to the 
Worldview-2 imagery on 4 June 2015. In addition, a campaign in the Teide National Park was 
conducted on 5 June 2015. A total of 28 sites were monitored covering different types of soils and 
vegetation species. In order to describe the different land cover classes, the following information 
was collected at each site to provide ground reference data for the analysis: the ground reflectivity at 
different wavelengths was recorded using the ADS Fieldspec 3 spectroradiometer; the precise 
location coordinates and time were collected using a GPS receiver; the solar azimuth and zenithal 
angles were recorded and the ozone column, the total water vapor and the aerosol optical thickness 
was measured using the handheld MICROTOPS II sun-photometer. 

In order to obtain measurements comparable to those from the satellite, at each site, several 
radiance measurements were acquired at different angles, apart from the nadir, to better characterize 
the plant canopy and soil spectral response. In addition, to better account for the spectral variability 
of the vegetation, sampling was carried out by selecting plants, for each species, and, when possible, 
at different phenological stages. Examples of some species monitored during the field campaign at 
the Teide Park and Maspalomas Reserve are shown in Figure 2. 

Figure 1. Natural protected areas: (a) Location of the Canary Islands; (b) Teide National Park;
(c) Maspalomas Special Natural Reserve.

The Teide National Park was created in 1954 to protect this remarkable landscape of great
ecological importance which lies at the base of the colossal volcano (3718 m high), covering an area of
18,990 ha. It includes plant species that are unique and adapted to the rough environmental conditions
such as high altitude, intense sunlight and extreme temperature variations. Specifically, a total of
222 plants grow there. Plants respond to thermic and hydric stress with a shrub physiognomy. The Teide
broom (Spartocytisus supranubius) is one of the most important plant species, as are Rosalillo de cumbre
(Pterophalus lasiospermus) and Hierba pajonera (Descurania bourgaeana) [28]. Another important species
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is the Canary pine (Pinus canariensis) that appears in the northern area of the Park, being the only
native pine on the archipelago [29].

The Maspalomas area was protected in 1987 and it covers 403.9 ha of sand dunes,
endemic vegetation and a lagoon of great ecological value. This reserve is very complex as it presents
a great variety of natural systems (marine, eolic, lake and fluvial). Moreover, the tourism and
urbanization development has conditioned the natural evolution of the system, interfering with
the sand dynamics. Thus, the sedimentary deposition has had a deficit since the 1960’s. It is important
to protect this ecosystem due to the presence of threatened habitats, its enormous ornithological
interest, the threatened species of flora and fauna and to preserve the geomorphological structures.
Vegetation can be described as xerocanaria from a deserted habitat with halophilic (salt excess) and
psammophilic (sand sediment) species. However, some hydrophilic species can be found next to the
lagoon. Some representative plants living in the dune system include Tamarix canariensis, Juncus acutus,
Launeaea Arborecens, Traganum moquinii or Cyperus laevigatus [30].

2.2. Field Data

In-situ field data in the Maspalomas natural area were acquired simultaneously to the Worldview-2
imagery on 4 June 2015. In addition, a campaign in the Teide National Park was conducted on
5 June 2015. A total of 28 sites were monitored covering different types of soils and vegetation species.
In order to describe the different land cover classes, the following information was collected at each site
to provide ground reference data for the analysis: the ground reflectivity at different wavelengths was
recorded using the ADS Fieldspec 3 spectroradiometer; the precise location coordinates and time were
collected using a GPS receiver; the solar azimuth and zenithal angles were recorded and the ozone
column, the total water vapor and the aerosol optical thickness was measured using the handheld
MICROTOPS II sun-photometer.

In order to obtain measurements comparable to those from the satellite, at each site, several radiance
measurements were acquired at different angles, apart from the nadir, to better characterize the
plant canopy and soil spectral response. In addition, to better account for the spectral variability of
the vegetation, sampling was carried out by selecting plants, for each species, and, when possible,
at different phenological stages. Examples of some species monitored during the field campaign at the
Teide Park and Maspalomas Reserve are shown in Figure 2.

Reflectance measurements were recorded in the visible and near-infrared range of the spectrum
(350–2500 nm) and the field spectroscopy metadata was organized based on ISO and OGC
standards [31]. Reflectance measurements were carried out over homogeneous and flat areas.
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2.3. Remote Sensing Imagery

WorldView-2, manufactured by ITT Space Systems Division for DigitalGlobe (Westminster, CO,
USA), was declared operational on 4 January 2010. Its sensor has a spatial resolution of 0.46 m and 1.8 m
at the nadir for the panchromatic and multispectral (MS) bands, respectively. The eight MS bands are:
coastal (400–450 nm), blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red (630–690 nm),
red edge (705–745 nm), NIR1 (770–895 nm), and NIR2 (860–1040 nm). The spectral response of each
band is shown in Figure 3. Its nominal swath width is 16.4 km and the radiometric resolution is 11 bits.
WV-2 satellite provides finer spatial resolution and more spectral information in the visible spectrum
than previous high resolution satellites. However, producing validated products requires a number of
challenges in the pre-processing steps to be overcome.
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Figure 4 includes the Worldview-2 color composite imagery used in the analysis. In particular,
the Teide National Park image was acquired on 16 May 2011 and the Maspalomas Natural Reserve
image was sensed on 4 June 2015.
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2.4. Atmospheric Correction Models

There are a number of atmospheric correction methods and algorithms which can be categorized
as image-based and physical model-based. The following 5 representative algorithms have been
selected for the analysis: DOS, QUAC, FLAASH, ATCOR and 6S.

The DOS method [3] is a simple image-based technique to remove the additive scattering
component caused by path radiance. The basic assumption is that few targets on the Earth’s surface
are in complete shade and, consequently, their received radiances are due to atmospheric scattering.
Therefore, the equation to obtain the surface reflectivity is based on:

ρSUP =
d2π (LTOA − Lo)

(ETOAcosθi)
, (1)

where d is the Earth-Sun distance, LTOA is the spectral radiance at satellite’s sensor, Lo is the upwelling
atmospheric spectral radiance scattered (based on the minimum values of the histogram for the
separate spectral bands), ETOA is the solar spectral irradiance on a surface perpendicular to the Sun’s
rays outside the atmosphere and θi is the solar zenith angle.

The QUAC algorithm [5] determines atmospheric compensation parameters directly from the
information contained within the scene. The QUAC principle is essentially the determination of
an offset and a gain parameter, in order to retrieve the surface reflectance. It is expressed by:

ρSUP = Gain (LTOA −O f f set) , (2)

where Offset is the lowest reflectance value for each channel and defines the baseline spectrum and
Gain is the ratio between the average of the endmember spectra representing a reference library of
material reflectance spectra and the average of a collection of endmembers retrieved from the observed,
in-scene pixel spectra.

The FLAASH [10] atmospheric correction code derives its physics-based algorithm from the
MODTRAN-4 radiative transfer code. FLAASH is designed to eliminate atmospheric effects caused
by molecular and particulate scattering and absorption from the radiance at the sensor and to obtain
reflectance at the surface. It is determined by:

LTOA =

(
AρSUP
1− ρeS

)
+

(
Bρe

1− ρeS

)
+ Lo, (3)

where ρSUP is the pixel surface reflectance, ρe is an average surface reflectance for the pixel and the
surrounding region, S is the spherical albedo of the atmosphere, Lo is the radiance backscattered by
the atmosphere and A and B are coefficients that depend on atmospheric and geometric conditions.
The first term in Equation (3) corresponds to the radiance from the surface that travels directly into
the sensor, while the second term corresponds to the radiance from the surface that is scattered by the
atmosphere into the sensor. The distinction between ρSUP and ρe accounts for the “adjacency effect”
(spatial mixing of radiance among nearby pixels) caused by atmospheric scattering. The values of A, B,
S, and Lo can be determined empirically from the standard MODTRAN-4 simulations for a specified
atmosphere model (Rural, Urban, Maritime, Tropospheric). The viewing and solar angles of the
measurement and nominal values for the surface elevation, aerosol type and visible range for the scene
must be specified.

The ATCOR [12] algorithm is also based on the radiative transfer theory developed in
MODTRAN-4. The correction procedure in mainly divided into two steps: the first involves getting the
atmospheric effect assuming an isotropic or Lambertian reflectance law, without taking the adjacency
effect into account. Meanwhile, the second step models the reflected radiation from the neighborhood
considering the adjacency radiance.
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The surface reflectance disregarding the adjacency component is obtained by Equation (4).
To obtain the a0 and a1 coefficients, an accurate estimation of the main atmospheric parameters
(aerosol type, visibility or optical thickness and water vapor column) is necessary:

ρSUP =
1
a1

(
d2πLTOA
ETOAcosθi

− a0

)
. (4)

The average reflectivity over the target area ρSUPi is computed to correct the adjacency effect.
Thus, Equation (5) describes the relationship to get the surface reflectance free of the adjacency effect:

ρ′SUP = ρSUP +

(∫ λ2

λ1

τodi f

τodir

Rdλ

)(
ρSUP −

nR

∑
i=1

ρSUPiwi

)
, (5)

where, τodi f and τodir are the diffuse and direct transmittance respectively, R is the sensor-specific
spectral response curve and wi defines weighting coefficients as a distance-dependent function.

6S [13] is a radiative transfer code designed to predict the reflectance at the top of the atmosphere
simulating the atmospheric conditions. The model generates xa, xb and xc constants to estimate the
surface reflectance free of atmospheric effect, through Equations (6) and (7):

ρSUP =
y

1 + (xcy)
, (6)

y = (xaLTOA)− xb. (7)

To remove the adjacency effect, the following improvement was implemented:

ρ′SUP = ρSUP +
τodi f

τodir

[ρSUP − ρ] , (8)

where ρ′SUP is the surface reflectivity considering the adjacency effect, ρSUP is the corrected surface
reflectivity by the initial 6S model, τodi f and τodir are the diffuse and direct transmittances and ρ is the
average reflectivity contribution from the pixel background.

2.5. Comparison Methodology

In this study, two strategies have been used to compare the atmospheric correction methods:
relative and absolute evaluation.

The first one consists of a relative evaluation, changing the input factors (parameters and models)
in the configuration to identify how they affect in the estimation of the surface reflectivity. Obviously,
only model-based algorithms were considered. Specifically, 5 different inputs were adjusted in the
analysis: atmospheric model, aerosol model, aerosol optical thickness, adjacency effect and altitude.
The water vapor content was not assessed as it is accounted for in the atmospheric model and altitude.

The second strategy compares the reflectivity of the atmospherically corrected image pixels
with the field measurements recorded using the ADS Fieldspec 3 spectroradiometer. Representative
vegetation and soil sites included in the analysis are shown in Figure 5. Special care was taken into
account to generate the match-ups between field and satellite locations in order to guarantee that we
are comparing the same sites. Therefore, each specific plant measured was identified in the WV-2
image around the GPS location while, for the bare soil, large, flat and homogeneous areas were
sampled and, consequently, the comparison will be accurate even if errors of few meters between
satellite and ground measurements could be present (4.5 m CE90 is the expected location accuracy
for the WV-2 imagery used). The Root-Mean-Square Error (RMSE) was computed to quantify the
estimated reflectivity differences and the BIAS was used to determine the tendency to overestimate or
underestimate as regards field data.
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After the relative assessment (Section 3.1) and considering the information from the area
under analysis and the technical specifications of the correction models, the effect of each input
in the estimated reflectance obtained by each atmospheric correction algorithm was analyzed and,
consequently, the most appropriate factors were identified. Table 1 summarizes the corresponding
input settings used in the comparative analysis with the field data. A total of 4 scenarios (A, B, C and D)
have been considered. They fix the atmospheric model (the one selected is the most appropriate for
the region) but change the aerosol model, the aerosol optical thickness (AOT) (based on the measured
and satellite-derived values) and the consideration of the adjacency effect from neighboring pixels.
The altitude of the scene is also fixed and set to the mean value as this information is well-known and,
within the scenes considered, altitude changes are minimal.

Table 1. Scenarios considered for the comparison between satellite and field data.

Scenarios A B C D

Atmosphere model Mid-Latitude
Summer

Mid-Latitude
Summer

Mid-Latitude
Summer

Mid-Latitude
Summer

Aerosol model Maritime Maritime Maritime Rural

AOT 0.44 0.44 0.25 0.44

Adjacency Yes No Yes Yes

AOT: Aerosol Optical Thickness.
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2.6. Vegetation Mapping

An important application in protected areas is the analysis of vegetation. In particular, monitoring
the vegetal coverage is considered of great interest for the conservation authorities. In addition,
taking advantage of the high resolution, classification at the species level is another objective to
be pursued. In semi-arid ecosystems they are such challenging tasks, as the species are so small,
are considerably affected by a significant soil reflectivity, are sparsely distributed, usually mixed and
some of them have experienced phenological changes over time and space.

Vegetation has high absorption in the red and blue spectral regions and high reflectance in the
near-infrared. Thus, many vegetation indices have been developed involving combinations of such
solar-reflected spectral channels. Usually the red and near-infrared bands are considered in such a way
that they strengthen the spectral contribution of green vegetation, minimizing the disturbing influence
of soil background, irradiance, solar position, atmospheric attenuation, etc. [33,34].

In our analysis, the following 2 representative indices were assessed: Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). NDVI involves the reflectance of near
infrared (NIR) and red bands [35]:

NDVI =
ρNIR − ρred
ρNIR + ρred

. (9)

EVI directly adjusts the reflectance in the red band as a function of the reflectance in the blue
band [36]:

EVI = G
ρNIR − ρred

ρNIR + C1ρred − C2ρblue + L
(1 + L) , (10)

where L is the canopy background adjustment and C1, C2 are the coefficients of the aerosol resistance
term, which uses the blue band to correct for aerosol influences in the red band. The value of these
coefficients are empirically determined as L = 1, C1 = 6, C2 = 7.5, and the gain G = 2.5.

Unfortunately, any index varies depending on the solar position, atmospheric attenuation,
soil background season, hydric situation, etc. Thus, a fixed threshold cannot be set, even for the
same sensor or season, to properly segment vegetation areas if a precise preprocessing of the satellite
imagery has not been performed [37].

3. Results and Discussion

3.1. Variability of Model-Based Algorithms as Regards the Parametrization Setting

The effects of changing the parameter settings of the different physical models (FLAASH,
ATCOR and 6S) are briefly detailed next for both areas of study. As regards the atmosphere model,
the Mid-Latitude Summer seems the most suitable model for the climate of the Canary Islands.
However, the Tropical model has also been included in the analysis as some summer months may
be similar to this type of atmosphere. Water vapor was considered implicitly when selecting the
atmosphere model as it considers standard column water vapor amounts (from sea level to space).
For example, the Mid-Latitude Summer model accounts for an amount of 2.92 g/cm2 while the Tropical
model is 4.11 g/cm2. Figure 6a shows that differences in the corrected reflectance are not too relevant
for the three atmospheric algorithms (absolute average variation between 0.2% and 0.4% for Teide
and from 0.4% to 0.9% for Maspalomas). Lower variations for the Teide region are consistent with the
influence of the altitude in the water vapor column. ATCOR presents the highest variations while 6S
the lowest.
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around 0.5%). 

Figure 6. Absolute average reflectivity variation for Maspalomas (Masp) and Teide areas in soil (S) and
vegetation (V) sites: (a) Tropical model with respect to the Mid-Latitude Summer model; (b) altitude
of 2400 m with respect to 2250 m; (c) Rural aerosol model with respect to the Maritime model;
(d) No aerosol model with respect to the Maritime model; (e) Maximum AOT (0.44) with respect
the AOT of 0.25; (f) adjacency effect included with respect to the no inclusion of adjacency.

In this sense, applying different altitudes at the scene has demonstrated minor variations in the
estimated reflectance. In particular, for the Teide region, an average height of 2250 m with a range of
variation from 2100 to 2400 was assumed. The absolute mean changes in both limits were less than
0.12% for ATCOR, and 0.08% for FLAASH and 6S (Figure 6b).

The most acceptable aerosol model for the islands is the Maritime model, but it has also
been compared with the Rural model as well as the assumption of an atmosphere free of aerosols.
6S is more affected by the setting of this parameter. As regards to the Rural model (Figure 6c),
the maximum variation by 6S, FLAASH and ATCOR methods are 0.85%, 0.13% and 0.16% respectively.
When considering an atmosphere free of aerosols (Figure 6d), fluctuations are higher for 6S
(values between 2.7% and 3.3%) while FLAASH and ATCOR are less affected (reflectivity variations of
around 0.5%).
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The aerosol optical thickness (AOT) parameter must be properly adjusted using in-situ or satellite
information because major errors in their estimation can significantly affect the surface reflectivity
computed. Nowadays, such information is daily available from satellite sensors (i.e., MODIS at
550 nm). In our case, AOT was recorded during the field campaign and also, for the Teide scene,
precise data is available through the ground-based AERONET-CIAI-AEMET remote sensing aerosol
network. Therefore, AOT was only slightly changed for the test, considering two values (044 and 0.25).
In Maspalomas (Figure 6e), 6S is less affected with reflectivity variations among 0.15% to 0.35%,
whereas ATCOR and FLAASH showed slightly higher variations in the mean absolute percentage
values, but lower than 0.57%.

Finally, the inclusion of the adjacency effect (Figure 6f) does not generate considerable variations
for the Teide samples (below 0.2%) but affects Maspalomas more (maximum change of around 1.1%).
Specifically, FLAASH is more affected by this parameter while 6S has lower sensitivity. As presented,
this result is scene-dependent as the adjacency effect is more important when the surrounding surface
of a given pixel is different from the pixel itself.

In many applications, the appropriate setting is important for an accurate atmospheric correction.
In our case, the analysis of the different input factors setting in the estimated reflectance of soil and
vegetation sites led to slight changes as a consequence of the selection of the appropriate inputs for
each area and date.

3.2. Absolute Evaluation Using in-Situ Spectroradiometer Measurements

The objective was to compare the estimated ground reflectance values of the corrected WV-2
Maspalomas image with the real in situ measurements over twelve ground points, as set out in Figure 5.
The 5 atmospheric correction methods were considered in the analysis.

The most sensitive input factors used for FLAASH, ATCOR and 6S models have been derived
from the relative analysis described in Section 3.1. After this analysis of the influence induced by each
factor, and taking into account the typical available information, the four scenarios (A, B, C and D)
presented in the Table 1 have been used to find the most suitable configuration. Adjacency effect,
optical thickness and aerosol type are the parameters to be adjusted.

The overall results from the average measurements for all the vegetation and bare soil points
analyzed are included in Table 2, in which the RMSE and BIAS between measured and corrected
reflectance are presented. The results show that correction applying algorithms based on the physical
modelling is more precise. These strategies obtain good estimations with RMSE values of between
2% and 3%, whereas image-based methods can only reach values of around 5%. The A scenario is
more appropriate for the study area and, consequently, provides the best results.

Table 2. RMSE and BIAS between the in-situ measurements and satellite corrected reflectance for each
atmospheric algorithm.

Category Algorithm Scenario RMSE BIAS

No correction TOA reflectivity - 0.0690 0.0430

Image-based DOS - 0.0465 0.0327
QUAC - 0.0578 0.0466

Physical model-based

FLAASH

A 0.0333 0.0264
B 0.0442 0.0357
C 0.0399 0.0346
D 0.0398 0.0325

ATCOR

A 0.0290 0.0134
B 0.0362 0.0192
C 0.0347 0.0259
D 0.0406 0.0295

6S

A 0.0223 0.0021
B 0.0294 0.0056
C 0.0289 0.0151
D 0.0380 0.0281
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Results achieved by each model-based algorithm for the four scenarios, as well as the reference
signature measured with the spectroradiometer (black) and the reflectance at the top of the atmosphere
(orange) are plotted in Figure 7. The great impact of the reflectance corrections can be appreciated in
the VIS bands and, in general, in shorter wavelengths bands. Only the signature of one representative
vegetation and bare soil point are included on the left and right side, respectively, but similar
conclusions can be derived from the remaining points analyzed.
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Figure 7. Spectral reflectivity signatures applying different atmospheric inputs for the following
methods: (a) FLAASH at a vegetation point; (b) FLAASH at a bare soil point; (c) ATCOR at a vegetation
point; (d) ATCOR at a bare soil point; (e) 6S at a vegetation point; (f) 6S at a bare soil point.
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In general, the spectral signature estimated by the atmospheric correction algorithms matches
with the data from the in-situ measurements, except in the coastal blue channel where the reflectance
is typically underestimated. Differences between the corrected reflectance for the four scenarios are
relatively low, their being more significant when the adjacency effect is not included or the aerosol model
is set to rural. Furthermore, the estimated reflectance of bare solid points is generally overestimated
with the atmospheric correction based on FLAASH model in respect to the other methods.

As regards the results of the image-based algorithms, DOS and QUAC have a worse accuracy.
Thus, Figure 8 shows the spectral signatures of representative bare soil and vegetation points.
The results are compared with the in situ reflectance (black) and the TOA reflectivity (orange).
The results obtained from the 6S model with the optimum configuration (A scenario) have also
been included as a reference (blue). QUAC presents worse values for estimating the reflectivity.
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Figure 8. In situ, TOA and corrected spectral reflectivity signatures applying DOS, QUAC and
6S methods (A scenario): (a) vegetation point; (b) bare soil point.

In summary, after the analysis it is noted that for a good characterization of the reflectance values
with FLAASH, ATCOR and 6S models, the adjacency effect, the suitable aerosol model of the scene and
the appropriate AOT should be correctly included in their parametrization. The 6S algorithm provides
the best overall accuracy with an improvement in the RMSE reflectivity of 0.6% and 1.1% compared to
ATCOR and FLAASH respectively.

3.3. Vegetation Mapping

As previously mentioned, the atmospheric correction increases the discrimination potential of the
classification process and it is of capital importance when dealing with multitemporal data since the
viewing geometry, atmospheric conditions and plant phenology change from one date to another.

As an example, Figure 9 shows the Enhanced Vegetation Index before and after applying the
atmospheric correction for a multitemporal sequence of Maspalomas (to enhance the interpretation,
a colorbar has been applied where greener tones indicate higher values of the index and dark
reddish tones lower values). First, we can appreciate that vegetation is not properly discriminated
in the three images when the atmospheric correction is not applied (left-hand column of Figure 9);
while vegetation, soil and water covers are clearly identified after correction (right-hand column of
Figure 9). Second, we can also check that after a precise correction, the three images sensed under
different viewing and atmospheric conditions, look very similar having values for the EVI index in
accordance with the land cover type.
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Vector Machines (SVM) algorithm with the radial basis function kernel [38,39]. SVM have proven to 
be very effective in solving complex classification problems, mainly due to the fact that this technique 
does not require an estimation of the statistical distribution of classes and the ability to handle limited 
amount or quality of training samples. Figure 10 shows thematic maps for both semi-arid regions. 
Using a database of well-known test regions, the overall accuracy achieved values of around 90% in 
both areas. 

Figure 9. Enhanced Vegetation Index for three WV-2 subscenes of Maspalomas (17 January 2013,
11 August 2013 and 4 June 2015): (a) without atmospheric correction; (b) after the 6S correction.

As detailed in Equation (3), EVI uses the blue channel, thus vegetation detection requires
an accurate atmospheric correction. Other vegetation indices, such as the NDVI index, will improve
after the correction but not as significant as the EVI because the major impact of the reflectance
correction can be noticed in bands near the blue and green regions.

Using WV-2 multispectral bands after the 6S atmospheric correction and the derived vegetation
indices, the classification of vegetation cover was carried out by applying the supervised Support
Vector Machines (SVM) algorithm with the radial basis function kernel [38,39]. SVM have proven to be
very effective in solving complex classification problems, mainly due to the fact that this technique
does not require an estimation of the statistical distribution of classes and the ability to handle limited
amount or quality of training samples. Figure 10 shows thematic maps for both semi-arid regions.
Using a database of well-known test regions, the overall accuracy achieved values of around 90% in
both areas.
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4. Conclusions

Atmospheric correction is a crucial step in the pre-processing of remote sensing imagery for
many specific applications. The aim of this study was to assess the accuracy of atmospheric correction
methodologies when applied to the mapping of vegetation with high resolution data. Specifically,
this work carried out a comparison between five atmospheric correction algorithms (three model-based
and two image-based) applied to the eight bands of the WV-2 satellite. The effects of corrections were
studied in two types of protected semi-arid ecosystems (mountain and coastal). To evaluate the results,
spectroradiometer in-situ data were collected simultaneously to the satellite overflight.

Two different analyses were conducted to compare the atmospheric correction methods. The first
one addressed the study of the variations on the estimated reflectivity depending on the input
configuration set for the algorithms based on the physical modelling of the atmosphere. Next,
the second study consisted of a statistical assessment comparing the corrected spectral reflectivity of
each technique with respect to in-situ measures. In this case, the high spatial resolution was exploited
to compare the reflectance measured on the ground directly with the retrieved surface reflectance from
the remote sensing data. This procedure allows the full correction algorithm to be validated including
the combined effects of the aerosol optical thickness, water vapor, adjacency, etc.

In addition, examples of the improvement achieved by applying atmospheric correction
techniques in the generation of multispectral and multitemporal vegetation indices have been
presented. The use of these vegetation indices is important in protected areas to monitor the vegetation
distribution and variability.
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It was demonstrated that model-based algorithms achieve the best performance and, in particular,
6S reached the lowest value of the RMSE for both vegetation and bare soil areas. Consequently, it has
been applied to the successful generation of challenging thematic maps in these protected areas.

The excellent results provided by these studies have been successfully applied to the generation
of thematic maps in two challenging semi-arid ecosystems (the Teide and Maspalomas protected areas)
and they are currently being used in the management of such natural reserves.
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