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Abstract: The development of an error compensation model for coordinate measuring machines
(CMMs) and its integration into feature measurement is presented. CMMs are widespread and
dependable instruments in industry and laboratories for dimensional measurement. From the tip
probe sensor to the machine display, there is a complex transformation of probed point coordinates
through the geometrical feature model that makes the assessment of accuracy and uncertainty
measurement results difficult. Therefore, error compensation is not standardized, conversely to other
simpler instruments. Detailed coordinate error compensation models are generally based on CMM
as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model
type of error compensation is proposed. It evaluates the error from the vectorial composition of
length error by axis and its integration into the geometrical measurement model. The non-explained
variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed
and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding
measurement models of flatness, angle, and roundness are developed. The proposed models are
useful for measurement improvement with easy integration into CMM signal processing, in particular
in industrial environments where built-in solutions are sought. A battery of implementation tests are
presented in Part II, where the experimental endorsement of the model is included.

Keywords: CMM uncertainty; CMM error mapping; CMM verification; flatness measurement;
angle measurement; roundness measurement

1. Introduction

CMM flexibility to cope with the measurement of complex geometries is based on point coordinate
determination and the geometry reconstruction through computer algorithms. The basic measurement
process is the coordinate of the physical point on a coordinate reference system by contact (touch
probe sensor) or contactless (optical sensor) means. The CMM’s raw measurand is, directly, the point
coordinates. In an ordinary direct measurement, the methodology includes sampling the measurand,
estimating the best expected value (statistical mean of the sample) and the associated uncertainty to
this estimation. The ISO guide to the expression of uncertainty (GUM) is a globally-adopted standard.
It includes two main methodologies. For most of the direct measurements, a first basic frequentist
approach is to consider the uncertainty as the standard deviation of the mean through the standard
deviation of the sample. Nevertheless, many measurements are not direct. Indirect measurement of
simple dimensional measurands or tolerance of the form needs a conversion of the input values through
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a measurement model. For complex measurement models, and based on the coordinate uncertainty
as input, the Monte Carlo method allows uncertainty estimation through intensive calculation. Thus,
an ulterior verification of the assumed uncertainty model of the coordinates against a known standard
is necessary to provide likelihood to the model [1].

In the case of a CMM as a measuring instrument, the complexity of the measurement chain
increases by the dynamical process of signal acquisition and the movement of the measuring head.
Next, the indicated coordinates are processed through algorithms of geometry substitution to propose
a measurement result.

CMMs do not meet the Abbé principle of measuring practice because the direction of measurement
is not the extension of the scale that offers the coordinate [2]. Ordinary CMMs have three mutually
orthogonal scales. In addition to the static small deviations from the machine construction, the
dynamics of the carriages’ displacement creates deviation of the probe from the theoretical positions.
Therefore, it seems to be a major task to account for a full traceability of any deviation through
the complete and complex chain of measurement of a CMM. Even when the formal expression of
measurement requires its best value and its uncertainty, enforcing a rigorous treatment of measurement
output can be useless and of little productivity in industrial environments. Therefore, an overall CMM
error bounding is a standard approach to complement the best value of measurement (see Figure 1)
by ISO 10360-2 [3]. CMM’s acceptance or verification seems to be at the borders of the ordinary
metrology chain of calibration by introducing overall error estimations. Nonetheless, international
standards require the estimation of uncertainty in the expression of any measurement, in particular
to comply with ISO/IEC 17025 [4]. In addition, the development of ISO 15530-3 [5] deals with CMM
uncertainty estimation.
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Figure 1. Sketch of a CMM verification process by ISO 10360-2.

This work is presented in two parts. In Part I a model of error is developed following some
standard CMM verification techniques. In Section 2 basic considerations of CMM measurement are
introduced to approach the proposed CMM error model. In Section 3 the proposed basic error model
of length is developed. Sections 4–6 include the models for flatness, angle, and dihedral angle, and
roundness measurement with the interpretation analysis of the CMM model in Section 7. In Part II
the experimental implementation is carried out and discussed. In its Section 2 the experimental error
mapping from a standard verification test of a moving bridge CMM is included. Then, in Section 3,
the experimental results and remarks of the model interpretation are presented. In Section 4 the
experimental trials with calibrated artefacts are analysed. Parts I and II both include overall
concluding remarks.
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2. Approaches to CMM Errors

The ISO 10360 series offer a consolidated framework to CMM manufacturers and the machine
owners to accept and verify CMMs. They do not provide further insights to improve measurement
results. In practical terms, it allows the expression of machine indication plus or minus the overall
estimated error bound, which becomes an interval of uncertainty. The efforts to obtain a more precise
expression of CMM’s measurements should deal with a more detailed error description to correct
CMM indication. Error compensation (in the volume of work) is based on sampling calibrated artefacts.
The repeatability of the results from a series of measurements of the same physical position (point) is
a direct demonstration of the uncertainty associated with the measurement capability of the CMM.

In addition to a good measurement practice in a stable environment (particularly temperature
control), the attempts to model the expected deviations of a CMM under repeatability conditions in the
literature are mostly through vectorial composition. They include the mechanics of deviations from
combined translations and rotations of the point coordinates and a kinematic rigid body model [6–8].
Once those deviations are known, a more precise position of the point coordinates can be obtained,
so a more precise determination of the measurand is expected.

The violation of the Abbé principle by CMMs limits the capability of improving the precision
of CMMs via hardware [9]. Alternatively, error compensation via signal processing or measurement
post-processing can be a convenient improvement method to reach the precise point coordinate in
both CMMs and computer numerical control (CNC) devices [10,11]. It is important to note that the
former initiatives, and many others pursuing error compensation of point coordinates, are based on
the correction of the coordinate position and a kinematic error model [12–15]. The present work has
the advantages of considering the distance between points to correct average errors. Some previous
initiatives that consider the differences of coordinates between points for error evaluation involve
the classic reversal techniques [16], in the early attempts to deal with error [16], and obviously in
the standard verification tests by the ISO 10360-2 series, or the similar ASME B89.4.10360.2 [3–18].
In these former cases the measurand verification is the length of calibrated gage blocks, not the point
coordinates themselves.

As is known, the Euclidean distance L2 is the metric of the distance between two points.
Any measurement on a CMM is initially based on the relative position in space between the
point coordinates. This relative position can be equated through the distance between the points.
The absolute position of points (the conventional assigned coordinate value in the space with respect
to the CMM, in metrological terms) has a relative importance as long as it provides the correct distance
between the points on the specimen under measurement. This relative position importance is also
present in the measurement origin in the CMM scales that could be arbitrarily zeroed. Either way,
the relative position of the origin is present in the scales in computer numerical control (CNC) systems
without the theoretical impact on final measurement or machining results. The ordinary CMM model
of coordinate points corresponds to the Euclidean space. The proposed error model lays mainly on the
difference of coordinates, which define a vector with modulus and direction. Regardless of the origin
of the reference system, this structure corresponds with the concept of affine space.

3. CMM Error Model of Length

CMM performance verification by ISO 10360-2 and -5 [19] includes the estimation of three basic
magnitudes: a maximum permissible error of length EL,MPE, a maximum permissible error of the probe
EP,MPE, and a repeatability estimation R. Those are probabilistic intervals evaluated ordinarily at a 95%
confidence level, while R is evaluated from its maximum. In length measurement, the ISO model
applies the overall EL,MPE over the value of the machine provided that all known biases (systematic
errors) are previously corrected, Lunbiased. In the CMM verification process the deviation of every length
indicated by the machine is checked to ensure that they do not surpass ±EL,MPE, with respect to the
assigned values of the gage blocks. Next, in the ordinary CMM process of measurement, EL,MPE can be
incorporated into the uncertainty budget (other effects could be aggregated by the law of uncertainty
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propagation). The best value of the length of measurement Lm can be expressed from the indication
and an uncertainty estimation by Equation (1):

Lm = Lunbiased ± EL,MPE(L) (1)

A new model of error aggregation is proposed. It considers a linear relationship of the error by
each of the three main axes with the indication of the CMM, while independently measuring by every
axis direction. The gage blocks also have an uncertainty (type B) that typically grows linearly with
their nominal length and the grade. In addition, related with the CMM construction itself, the error
associated with the CMM scales has an amplification effect on the error associated directly with the
total length under measurement [1,13,20,21]; see, also, a case example in Figure 2. Therefore, this
linear relationship is a priori alike and it will be verified experimentally for a common CMM machine
in Part II of this work. Denoted by Lmx, the best value for the measurand length aligned with the X
axis is meant, for Lx, the CMM indication, and for Lnx, the former indicated length after mean error
correction. The mean error E in the formulae is defined as the assigned value of the length standard
(calibrated gage) minus the measured value, unlike the standard International Vocabulary of Metrology
(VIM) definition (difference between the measured quantity value minus the conventional value of
reference) [22]. This notation is adopted just for convenience of signs and clearer formulae, but with no
effect in the overall results. Finally, ±Ûx(Lx) indicates an interval of prediction (at a level of confidence)
of the maximum error when measuring under repeatability conditions by the X axis, where ±Ûx is
an upper overall estimation for the full field of measurement. The same notation for Y and Z axes,
mutatis mutandis, allows expressing the best value for the length of the measurand aligned by each
axis, after Equation (2):

Lmx = Lx + Ex ± Ûx (Lx) = Lx + (Ax + Bx · Lx)± Ûx = Lnx ± Ûx

Lmy = Ly + Ey ± Ûy
(

Ly
)
= Ly + (Ay + By · Ly)± Ûy = Lny ± Ûy

Lmz = Lz + Ez ± Ûz (Lz) = Lz + (Az + Bz · Lz)± Ûz = Lnz ± Ûz

(2)

The Û resembles uncertainty notation, as in fact it is an estimation from the measurement sampling,
in addition to other uncertainty contributions of temperature, operator, etc. The prediction bounds
at 95% confidence level of the spread around the mean value of the model will be identified as the
non-explained variability of the regression model of error by axis. The overall EL,MPE can be considered
an estimation of the expanded uncertainty (k = 2) of the CMM [6]. The expected original verification of
the maximum permissible error specified by ISO 10360-2 [3] aims at testing that errors are contained
between the limits of the performance specification. Nevertheless, the verification test techniques
of ISO 10360-2 with calibrated artefacts under repeatability conditions could be used for assigning
values to the errors in those conditions. For the proposed model those conditions are not any rated
operating conditions allowed by ISO 10360-2, but the reference operating conditions [23] that will
allow the use of the model results under similar measurement conditions for feature measurement
correction. In this task of assigning values to the errors of the CMM to improve measuring results,
all other sources of measurement uncertainty to the CMM uncertainty in the test conditions Û [6]
should be added. In the case of a verification test, the machine compliance in any direction is sought.
The direction of measurement is part of the uncontrolled factor, and the uncertainty of the CMM is
an overall estimation regardless the direction of measurement and in the range of operative conditions
of the machine. Note that fixing the EL,MPE at 95% confidence for the standard verification test
ISO 10360-2 departs from a regression of errors at each length in any direction, even when, in general,
a measurement is taken in a vectorial way, just in a predefined direction by the normal to the physical
surface. The overall error by the ISO 10360-2 model does not discriminate the direction of measurement.
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As a result, the errors sampled through this verification model are useful for conformance of machine
performance limits, but EL,MPE can overestimate CMM behaviour in particular directions.Sensors 2016, 16, 1610 5 of 21 
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In the proposed model, the contribution of measuring in the direction of measurement is
considered by axis, separated and independent from each other, but under the same reference operating
conditions. The direction of the measurement normal to the surface of the specimen appears in
the feature measurement model and incorporates the scalar components by the axis of the model.
The experimental results of Part II will support a stronger functional relationship of errors by axis.
Nevertheless, no covariance or mutual influence between axis errors is considered by the proposed
model. This will be discussed in Section 5 to support the proposed approach.

The Euclidean distance between two points is, in fact, the brick of a measurement model
construction that puts in relationship the point coordinates with the measurement length Lm of
a dimension, in an arbitrary direction of the volume of measurement CMM, by Equation (3), where
bold symbols denote vectors:

L2
m = L2

mx + L2
my + L2

mz =
[
Lnx ± Ûx

]2
+
[
Lny ± Ûy

]2
+
[
Lnz ± Ûz

]2
= Lnx

2 + Lny
2 + Lnz

2 ± 2LnxÛx ± 2LnyÛy ± 2LnzÛz + O(Û)

≈ Ln
2 ± 2LnxÛx ± 2LnyÛy ± 2LnzÛz = Ln

2 ± 2Û · Ln

as providing ordinary measuring capability Ûx, Ûy, Ûz, Û << Lx, Ly, Lz, L

where, Û =
(
Ûx, Ûy, Ûz

)
; Ln =

(
Lnx, Lny, Lnz

)
; Û =

√
Û2

x + Û2
y + Û2

z ;

Ln
2 = Ln · Ln = L2

nx + L2
ny + L2

nz = (Ax + (Bx + 1) · Lx)
2 + (Ay + (By + 1) · Ly)

2 + (Az + (Bz + 1) · Lz)
2

(3)

This allows identifying the uncertainty estimated by the maximum permissible error of
Equation (1) in a first-order approach by Equation (4). Therefore, EL,MPE could be expressed through
the proposed model as the projection of a vectorial uncertainty U on the measurement direction.
Of note, this direction is determined by the corrected coordinates of the points, (Ax + (Bx + 1))Lx, see
Equation (6), which is applicable instead of the length from CMM indication Lx.
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L2
m =

[
Ln ± Û

]2 ≈ Ln
2 ± 2Ln · Û

as providing Ûx, Ûy, Ûz, Û << Lx, Ly, Lz, L, the Taylor series development allows expressing

Lm ≈
√

L2n ± 2Û · Ln· = Ln

√
1± 2Û·Ln

L2n
≈ Ln

[
1± 1

2

(
2Û·Ln

L2n

)]
= Ln ± Û·Ln

Ln
; i f Û · Ln << L2

n

(4)

The error correction and uncertainty, from CMM indication, in an arbitrary direction can be
expressed by Equation (5):

Lm = L + E± Ûm = Ln ± Ûm;

Ûm = Û·Ln
Ln

; E = Ln − L; Û =
∣∣Û∣∣ = √Û2

x + Û2
y + Û2

z
(5)

Finally, term identification between Equation (4) and the first statement of Equation (5) gives the
mean error correction E and Ûm expression function of the contributions by each axis of the CMM,
Equation (6). Of note, the uncertainty estimation from sampling the measurement Lm is Ûm and it
appears as the vectorial projection of the vector of uncertainty (non-explained variability) by each axis
Û in the direction of distance measurement (by the normal direction to the surface) given by the vector
of the corrected length Ln. The expression of the uncertainty scalar Û resembles the law of uncertainty
propagation for the independent contributions by each axis, following GUM. In fact, both the proposed
model in Equation (3) and the derivation of the uncertainty (in a first-order approach) use the Taylor
series to derive the expression. The proposed measurement model comes directly from the Euclidean
distance from the point coordinates and a Taylor series expansion of the expression. The GUM law of
uncertainty propagation uses the Euclidean distance to define the spread of a measurement by the
Taylor expansion of its variance. This is given by the sum of squares of the distance of the measurement
result to the average result [24]. A comparison of the uncertainty by the law of uncertainty propagation
and this model will be carried out in Section 7.

Ûm = Û·Ln
Ln

=

∣∣∣∣∣ Ûx(Ax+(Bx+1)·Lx)+Ûy(Ay+(By+1)·Ly)+Ûz(Az+(Bz+1)·Lz)√
(Ax+(Bx+1)·Lx)

2+(Ay+(By+1)·Ly)
2+(Az+(Bz+1)·Lz)

2

∣∣∣∣∣ = ||Û · n||
Û =

(
Ûx, Ûy, Ûz

)
; U =

√
Û2

x + Û2
y + Û2

z

n = Ln/||Ln||; Ln =
(

Ax + (Bx + 1) · Lx, Ay + (By + 1) · Ly, Az + (Bz + 1) · Lz
)

E = Ln − L = Ln −
√

L2x + L2y + L2z; Lm = Ln ± Ûm =
√

L2x + L2y + L2z + E± Ûm

(6)

The proposed length model (Equations (5) and (6)) expresses the measurement result as the
nominal calculation from the CMM indication, plus a correction with confidence bounds in an interval
determined by the projection of the vector of estimated uncertainty by axis Û by the direction of the
measurement after correction, defined by Ln.

Formally, the use of this disaggregated model allows considering the limit case of L → 0.
The interpretation of Ûm corresponds to an estimation of the point uncertainty, whose value is the
uncertainty by the law of uncertainty propagation for independent contributions, but projected by
the direction of the measurement after correction, by Equation (7). In this limit case, this direction is
determined by the direction of the vector E0,MPE, the vectorial composition of the contributions by
each axis direction:
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L→ 0 ⇒ Ûm ≈
Ûx Ax+Ûy Ay+Ûz Az√

A2x+A2y+Az
2

= Û · n =
√

Û2
x + Û2

y + Û2
z · cos(Û · n)

Û =
(
Ûx, Ûy, Ûz

)
; n = Ln/||Ln|| =

(Ax ,Ay ,Az)√
A2x+A2y+Az

2
;

where E0,MPE =
(

Ax, Ay, Az
)

and E0,MPE = |E0,MPE| =
√

A2x + A2y + Az
2

L→ 0 ⇒ E = Ln − L; E→
√

A2x + A2y + Az
2

(7)

In the proposed model this residual uncertainty of the point is the irreducible reproducibility
of the point coordinates regardless of the length under measurement. This could allow a possible
interpretation as an estimation of the error of the true position of the point. The coordinate errors in
CMM lay in the error of indication with respect to the true value with the origin in up to 21 types of
error components affecting the coordinate determination [14]. Successive measurement repetitions
on the same physical point in a unilateral measuring E0,MPE shows the spread of CMM repeatability.
The mean value could be biased with respect to the true value, and it could be the origin of a net bias
(systematic error) in the determination of the length of a calibrated standard by the CMM, even when
using a significant sample size under repeatability conditions. In the case of a complete correction of
the CMM coordinate indication by the manufacturer, of any bias in any point and in any direction,
this bias would not exist, and the repeatability would become simply the uncertainty of the CMM
indication of null correction. Nonetheless, the proposed model takes into consideration the direction
of measurement; therefore, a better allocation of the original source of errors at every point is expected
with the purpose of error assignation, which certainly can depend on the direction of measurement.

An important theoretical question arises from the concept of error as a quantity. The CMM
model in ISO 10360-2 considers the error as a quantity value from the difference of two values:
the CMM indication and a reference value (the conventional assigned value of the length gage block
length). Therefore, once all known bias (systematic errors) in the indication are compensated by
the manufacturer, the maximum permissible error is a quantity value that bounds an interval of
confidence or uncertainty. The errors found in the verification test are samples in the range of operative
conditions of the machine. That is, in fact, the nature of uncertainty in ordinary direct, unbiased
measurements, so after all systematic error correction the error appreciated in the sample is random
around a null mean. The bias or systematic error is a quantity value under GUM, and it does not have
a probability density function to support it as a quantity [25]. The difference of quantity and quantity
value is also analysed in [26], so in the CMM verification approach by ISO 10360-2, the overall estimation
of error by the maximum permissible error is also considered a quantity value. The differences with
respect to the standard are considered for multiple directions of measurement or the rated operating
conditions, so that there is no spatiotemporal address [25] in such an average of values bounded by EL,MPE.
Only three repetitions of every measurement are taken, without the objective of evaluating a mean error.
It is just a quantity value adopted to define a confidence interval, and not a magnitude subject to possible
measurement itself. ISO 23165 [27] develops test uncertainty for a CMM as an indicating instrument,
complementary of the error bounds estimated by ISO 10360-2, in accordance with ISO 14253-1 [28]. It is
focused on the uncertainty in the verification test by ISO 10360-2. Both ISO standards establish the
framework for CMM acceptance and performance verification between the specified limits.

In the proposed model, CMM error is disaggregated into the quantity error of mean error by axis
and a quantity value from the spread around the mean error that will contribute to the uncertainty
of the feature measurement by the CMM. It follows the evolving considerations of error in [25,26];
therefore, in the proposed model the error by axis is treated as a quantity based on experimental
evidence of machine behaviour by axis in concrete conditions of testing. As a consequence, it is
possible to consider the uncertainty of error by axis and its contribution to the uncertainty budget
under the reference operating conditions. The error is treated as a quantity: in fact, it is determined by
vectorial composition from each contribution of error by axis based on the regression of a distribution
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of values measured by axis. Next, the error and its uncertainty will be incorporated into the model of
the feature measurement simultaneously through vectorial calculus. The linear regression model is the
simplest and more desired model to deal with the machine behaviour, but this conceptual approach
could be also valid for other machine responses. In order to be a useful model, the measurement
reference operating conditions of the tests for error assignation should be similar enough to those
used later in the measurement of the feature in the specimen. This requirement approximates those
imposed in the non-substitution estimation of uncertainty by ISO 15530-3 [5] from calibrated artefacts.
The uncertainty of the proposed model of length can be identified with the standard uncertainty due
to the measurement process in a non-substitution procedure in the operating conditions of reference.
Furthermore, the basic proposed model of error and uncertainty for length can be incorporated into
the measurement of other features, so it allows integrating the results from calibrated blocks into more
complex measurands.

4. CMM Error Model of Flatness

The form tolerance of flatness is determined by four non-coplanar points for any finite set of
points, regardless of its size [29]. By each pair, two non-colinear directions are determined, and the
flatness is measured by their common normal direction and minimum distance between both planes,
Figure 3. Obviously, when three of them are coplanar, the distance of the fourth to the plane becomes
the flatness measure. The algorithm for accurate calculation of flatness from a set of point coordinates
can be found in [29].
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Figure 3. Flatness under minimum zone tolerance criteria. (a) configuration (2–2); (b) configuration (3–1).

Starting from the CMM indication, the vectorial calculation of the minimum zone flatness (MZF)
from the three vectors u(p1,p2), v(p3,p4), and t(p1,p3) is given by Equation (8), where the mix product
can be developed from the determinant of the matrix built by the difference of coordinates.

MZFuvt,indication =
∣∣∣ (u×v)·t
||u×v||

∣∣∣ =
∣∣∣∣∣∣∣ 1
||u×v|| · det

 x3 − x1 y3 − y1 z3 − z1

x2 − x1 y2 − y1 z2 − z1

x4 − x3 y4 − y3 z4 − z3


∣∣∣∣∣∣∣

u = (x2 − x1, y2 − y1, z2 − z1); v = (x4 − x3, y4 − y3, z4 − z3); t = (x3 − x1, y3 − y1, z3 − z1)

(8)

In Equation (8) the coordinates are directly the indication of the CMM. The error of a length is the
error of the absolute value of the difference of coordinates or the distance between points, for the x axis,
Ex = Ex(Lx) and Lx = |xi − xj|. Considering a proper resolution and measurement capability, errors
and uncertainty are expected to be much smaller than the distance between points. The expression of
the measured minimum zone flatness (MZFm) to the leading order can be developed with Equation (9).
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This error model can be applied for the flatness results of both the least-squares and the minimum
zone tolerance criteria, but the critical points in the envelope planes will be four in the case of
the minimum zone and, in general, two different ones in the case of least-squares. Therefore, the
quantitative results will be also different depending on the flatness criteria. It is significant in the model
that the error of flatness is a direct consequence of the absolute value of coordinate difference (distance
between points) errors, where the primitive source of error and uncertainty can be found. Equation (9)
is applied just for a measurement. Like the measurement of length, a reliable measurement of flatness
should be based in the most probable results obtained from several samples. Considering that
the expression of the minimum zone tolerance can be obtained from four points, at least one on
each envelope plane, four different combinations of points are possible to define u,v,t from them
(see Figure 2) in the configuration (2–2), and up to six possible estimations can be derived for error
and uncertainty estimation in the configuration (3–1) from the four critical points. The best value of
flatness from the indication, MZFuvt in Equation (9), will be the same in a first-order approach but, in
general, the error and the uncertainty of every configuration will be different.

MZFm,uvt =
∣∣∣ um×vm
||um×vm || · tm

∣∣∣ ≈ ∣∣∣ (u×v)·(t+Et)+[(u×Ev)·(t+Et)+(Eu×v)·(t+Et)]
||(u+Eu)×(v+Ev)||

∣∣∣
±
∣∣∣∣ [((u+Eu)×Ûv)·(t+Et)+(Ûu×(v+Ev))·(t+Et)+((u+Eu)×(v+Ev))·Ût]

||(u+Eu)×(v+Ev)||

∣∣∣∣ = MZFuvt + Euvt ± Ûuvt

um = u + Eu ± Ûu = (x2 − x1 + Ex12 ± Ûx12, y2 − y1 + Ey12 ± Ûy12, z2 − z1 + Ez12 ± Ûz12);

vm = v + Ev ± Ûv = (x4 − x3 + Ex34 ± Ûx34, y4 − y3 + Ey34 ± Ûy34, z4 − z3 + Ez34 ± Ûz34);

tm = t + Et ± Ût = (x3 − x1 + Ex13 ± Ûx13, y3 − y1 + Ey13 ± Ûy13, z3 − z1 + Ez13 ± Ûz13);

MZFuvt =
∣∣∣ (u×v)·t
||u+Eu ||·||v+Ev||

∣∣∣ ≈ ∣∣∣ (u×v)·t
||u×v||

∣∣∣ ;

Euvt =
(u×Ev)·(t+Et)+(Eu×v)·(t+Et)+(u×v)·Et

||(u+Eu)×(v+Ev)|| ;

Ûuvt =

∣∣∣∣ ((u+Eu)×Ûv)·(t+Et)+(Ûu×(v+Ev))·(t+Et)+((u+Eu)×(v+Ev))·Ût
||(u+Eu)×(v+Ev)||

∣∣∣∣

(9)

Of note, the calculation of uncertainty by GUM from the measurement function directly in the
least-squares method also presents the issue of evaluating the sensitivity coefficients at the solution.
Since, in general, no point belongs to the least-squares solution, an approximation using near-by points
is used instead [29].

The proposed model considers error as a quantity, which is why the mean value of the error
can be proposed as its best estimation. In addition, uncertainty estimation could be estimated by
the mean uncertainty, giving the treatment of a random variable. A conservative alternative for
uncertainty estimation as a quantity value is just to give the maximum value reached through the
different configurations. Nevertheless, having at least four configurations, the uncertainty from the
variability of the error as a quantity in Equation (10) is proposed accordingly, already discussed in the
previous section, for small samples at least of a size of four, and based on the t-distribution with n−1
degrees of freedom. In the experimental Part II of this work, a comparison of the quantification of
those options will be presented.

MZFm = MZF + 1
c

c
∑
ii

Ei ± 2
√

c−1
c−3

s√
c = MZF + E± Ûk=2;

where s =

√
(Ei−E)2

c−1 ; E = 1
c

c
∑
ii

Ei

(10)
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The fact that under minimum zone criteria more than one solution to the evaluation of error is
generated can be considered an advantage instead of a drawback, because it allows the statistical
treatment of error as a quantity from just one sample (set of points) in one measurement.

5. CMM Error Model of Angle Measurement

Angle measurement is based geometrically on the orientation of the features (lines or surfaces)
that define the angle. The definition of angle in the affine space of points with a metric (Euclidean space)
is the cosine of two vectors that define the directions of reference. Therefore, the radiant is considered
a supplementary unit and the angle magnitude is indirectly measured from metric relationships.

Length standards are realized in gage blocks, where their opposite surfaces are reference surfaces
of measurement. In the same manner, angle standards are blocks that contain surfaces; therefore,
the realization of the angle will involve the determination of the orientation of the block surfaces as
a first step. Nevertheless, in the case of the projection of two reference planes onto a plane, their traces
become straight lines on it. Therefore, the reference features for angle measurement are two straight
lines, Figure 4. Additionally, in the case of contactless measurement on images, angles on a plane are
features of interest. Straight lines are ideally defined by two points. Real straight contours differ from
ideal ones in the form tolerance of straightness [29].
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αm = α + Eα ± Ûα = αn ± Û
cos αm = um·vm

||um ||·||vm || ≈
u·v

||un ||·||vn || +
u·Ev+Eu·v
||un ||·||vn || ±

u·Ûv+Ûu·v
||un ||·||vn ||

um = u + Eu ± Ûu = (x2 − x1 + Ex12 ± Ûx12, y2 − y1 + Ey12 ± Ûy12);

vm = v + Ev ± Ûv = (x4 − x3 + Ex34 ± Ûx34, y4 − y3 + Ey34 ± Ûy34);

as providing U << 1, and in a first order approach to the leading order

cosαm = cos(αn ±Uα) = cos(αn)cos(Uα)∓ sin(αn)sin(Uα)

= [cos(αn)∓ sin(αn)tan(Uα)] cos(Uα) ≈ cos(αn)∓ sin(αn)Uα; so

αn = cos−1
[

u·v+u·Ev+Eu·v
||u+Eu||·||v+Ev||

]
; Eα = αn − α; Ûα =

∣∣∣ u·Ûv+Ûu·v
||u+Eu||·||v+Ev||·sinαn

∣∣∣

(11)
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In general, in the case of least-squares criteria, no point will belong to the regression line, and
the direction will be unique from a dataset. In addition, under the preferred minimum zone tolerance
criteria threes points determine the straight line of minimum zone, two of them are colinear in the same
direction of the solution (see Figure 3). Consequently, the measured angle by αm can be expressed,
the angle from the coordinates indication of the CMM by α, the corrected angle by αn, and the error
and uncertainty are noted by Eα and Ûα, respectively in Equation (11). Note that in the minimum
zone criteria each pair of colinear points in the direction that defines the straight lines is determined
univocally by u and v. In the case of least-squares criteria the associated uncertainty of the indication
could be approached by the root mean square residuals. It can be estimated more appropriated from
the measurement model and the law of uncertainty propagation for each reference line, see [29].
Nevertheless, when estimating directly from indication by least-squares criteria, no direct separation
of error from the whole variability of the CMM can be incorporated to the measurement.

The measurement of a dihedral angle involves two planes of reference definition, of normal
vectors u,v. They are determined previously from the vectorial product of the 2 vectors defined by the
four critical points of the minimum zone solution of each face plane of the block. From those normal
directions of each plane the angle by Equation (12) is calculated. In both cases of the angle and the
dihedral angle, it is presumed that measuring precisely very small angles close to zero from the former
Equations (11) and (12) can be difficult. Uncertainty Ûα increases as the αm decreases. In these cases
the resolution limit to discriminate an angle cannot go beyond the flatness tolerance of the faces that
defines it:

um = um1 × um2 = u + Eu ± Ûu ≈ u1 × u2 + u1 × E2u + Eu1 × u2 ±
(
u1 × Ûu2 + Ûu1 × u2

)
um1 = (x2 − x1 + Ex12 ± Ûx12, y2 − y1 + Ey12 ± Ûy12, z2 − z1 + Ez12 ± Ûz12)

um2 = (x4 − x3 + Ex34 ± Ûx34, y4 − y3 + Ey34 ± Ûy34, z4 − z3 + Ez34 ± Ûz34)

u1 = (x2 − x1, y2 − y1, z2 − z1); u2 = (x4 − x3, y4 − y3, z4 − z3)

u = u1 × u2 ; Eu = u1 × Eu2 + Eu1 × u2 ; Ûu =
∣∣u1 × Ûu2 + Ûu1 × u2

∣∣
vm = vm1 × vm2 = v + Ev ± Ûv ≈ v1 × v2 + v1 × Ev2 + Ev1 × v2 ±

(
v1 × Ûv2 + Ûv1 × v2

)
vm1 = (x6 − x5 + Ex56 ± Ûx56, y6 − y5 + Ey56 ± Ûy56, z6 − z5 + Ez56 ± Ûz56)

vm2 = (x8 − x7 + Ex78 ± Ûx78, y8 − y7 + Ey78 ± Ûy78, z8 − z7 + Ez78 ± Ûz78)

v1 = (x6 − x5, y6 − y5, z6 − z5); v2 = (x8 − x7, y8 − y7, z8 − z7)

v = v1 × v2; Ev = v1 × Ev2 + Ev1 × v2; Ûv =
∣∣v1 × Ûv2 + Ûv1 × v2

∣∣
cosαm = um·vm

||um ||·||vm || ≈
u·v

||unm ||·||vnm || +
u·Ev+Eu·v
||unm ||·||vnm || ±

u·Ûv+Ûu·v
||um ||·||vm || =

u·v+u·Ev+Eu·v
||unm ||·||vnm || ±

u·Ûv+Ûu·v
||um ||·||vm ||

cosαm = cos(αnm ±Uα) ≈ cos(αnm)∓ sin(αnm)Uα; so

αn = cos−1
[

u·v+u·Ev+Eu·v
||u+Eu||·||v+Ev ||

]
; Eα = αn − α; Ûα =

∣∣∣ u·Ûv+Ûu·v
||u+Eu||·||v+Ev ||·sinαn

∣∣∣
αm = α + Eα ± Ûα = αn ± Ûα

(12)

6. CMM Error Model of Roundness or Circularity

The maximum permissible length error or the probe EP,MPE is estimated through the standard
10360-5 by measuring the roundness defect of a calibrated artefact of known roundness. The roundness
criterion has been, ordinarily, the least-squares circle [30] but, according to ISO 1101 [31], the minimum
zone tolerance is a preferred criteria of form tolerance. The probe error must be considered in
form deviation measurements. In the same manner than a length measurement is aimed to be
expressed in terms of the best value and an interval of uncertainty, the roundness expression should
include its uncertainty. Roundness of circular shapes will usually be a small fraction of the diameter.
Applying the overall error bounds of the ISO CMM verification directly to the roundness error seems
to be useless, when not counterproductive. For instance, considering a CMM machine with a EL,MPE
of ±0.006 mm, and a repeatability of 0.003 mm, a 50 mm diameter circle with a indicated roundness
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of 0.005 mm is measured (output of the machine, or calculated from the best coordinate indication).
Giving a confidence interval to the roundness of 0.005 mm, which cannot obviously be based on the
EL,MPE, ±0.006 mm. This can lead to the conclusion that the most probable value is 0.005 mm and the
interval of estimated error is so large that the CMM can be hardly trustable about the results in any
way. A second approach to transmit the roundness measurement is to give the CMM indication after
bias correction, adding the repeatability of the machine as an estimation of the uncertainty (in addition
to other possible contributions from temperature, operator, etc.). At least, it would be possible to offer
the indicated value with some confidence based on a proper machine setup, CMM repeatability, and
the repeatability conditions of the measurement.

In accordance with ISO 1100, roundness of a feature is the minimum radii difference of
two concentric circles that confine the feature between them. The feature is the surface from which
the form tolerance is evaluated. In digital machines the feature is sampled in a continuous or discrete
probe touching. From this finite set of points, the minimum zone roundness problem is normally
determined by four points (see Figure 5) and contains at least one point in the outer and inner solution
circles that define the minimum zone [32]. By indicating p1(x1,y1) and p2(x2,y2) those two points, by
their respective CMM coordinates indication, the measured minimum zone roundness MZRm can be
expressed, whose solution centre is (a,b), by Equation (13). The error E fits the mean term of the error
(bias or systematic in average), as provided by an accurate roundness algorithm. The non-explained
error variability is contained in the uncertainty contribution Û. Finally, MZR indicates the direct
minimum zone calculation from the CMM coordinate indication.

MZRm = MZR + E± Û =

√
(x1 − a)2 + (y1 − b)2 −

√
(x2 − a)2 + (y2 − b)2 + E± Û (13)
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Note that the measurement model is also based on the distance or metric L2 between points of
the solution circles and the centre (a,b). Therefore, those distances with their respective estimations of
error in the model can be expressed and its effect on the complete model or the error propagation, by
Equation (14). In this case, the error Ex1a is not the realization of a physical length measured and aligned
along the X axis. The centre is a calculated point; therefore, the error Ex1a and the corresponding
uncertainty Ux estimation are applied with the same vectorial formalism, but without a physical
realization that was represented in the former length model of Section 3.
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MZR + E± Û

=

√[
(x1 − a) + Ex1a ±

_
Ux1a

]2
+

[
(y1 − b) + Ey1b ±

_
Uy1b

]2
−

√[
(x2 − a) + Ex2a ±

_
Ux2a

]2
+

[
(y2 − b) + Ey2b ±

_
Uy2b

]2

=

[
(x1 − a + Ex1a)

2 + (y1 − b + Ey1b)
2 ± 2(x1 − a + Ex1a)

_
Ux1a ± 2(y1 − b + Ey1b)

_
Uy1b ±

_
U

2
x1a ±

_
U

2

y1b

]1/2

−
[
(x2 − a + Ex2a)

2 + (y2 − b + Ey2b)
2 ± 2(x2 − a + Ex2a)

_
Ux2a ± 2(y2 − b + Ey2b)

_
Uy2b ±

_
U

2
x2a ±

_
U

2

y2b

]1/2

(14)
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√
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√
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√
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_
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√
(x− a + Exa) + (y− b + Eyb);⇒

[
(x− a + Exa)

2 + (y− b + Eyb)
2 ± 2

_
Uxa(x− a + Exa)± 2

_
Uya(y− b + Eyb)

]1/2
=

√
(x− a + Exa)

2 + (y− b + Eyb)
2

[
1± 2

_
Uxa(x−a+Exa)+2

_
Uyb(y−b+Eyb)[

(x−a+Exa)
2+(y−b+Eyb)

2
]
]1/2

≈
√
(x− a + Exa)

2 + (y− b + Eyb)
2

[
1± 2

_
Uxa(x−a+Exa)+2

_
Uya(y−b+Eyb)

2
[
(x−a+Exa)

2+(y−b+Eyb)
2
]
]

=
√
(x− a + Exa)

2 + (y− b + Eyb)
2 ±

_
Uxa(x−a+Exa)+

_
Uyb(y−b+Eyb)√

(x−a+Exa)
2+(y−b+Eyb)

2

=
√
(x− a + Exa)

2 + (y− b + Eyb)
2 ±

_
Upc · rpc

For a circle of center c = (a, b) and a point of the circle p = (x, y)

Where
_
Upc =

(
_
Uxa,

_
Uyb

)
; rpc =

(x−a+Exa , y−b+Eyb)√
(x−a+Exa)

2+(y−b+Eyb)
2

(16)

In addition, when the error E is much smaller than the radii Equation (17) is obtained:

E2 << E <<
√
(x− a) + (y− b)√

(x− a + Exa)
2 + (y− b + Eyb)

2 ≈
√
(x− a)2 + 2Exa(x− a)2 + (y− b)2 + 2Eyb(y− b)2

≈
√
(x− a + Exa)

2 + (y− b + Eyb)
2 +

2Exa(x−a)+2Eyb(y−b)

2
√
(x−a)2+(y−b)2

=
√
(x− a)2 + (y− b)2 + Epc ·Rpc

For a circle of center c = (a, b) and a point of the circle p = (x, y)

Where Epc =
(

Exa, Eyb

)
; Rpc =

(x−a, y−b)√
(x−a)2+(y−b)2

(17)

Note that the roundness calculation is based on two critical points, namely 1,2, in the inner and
outer circles respectively (see Figure 5). Finally, considering Equations (16) and (17) on Equation (14),
the MZR by Equation (18) can be expressed:
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MZRm12 = MZR12 + E12 ± Û12

=
[√

(x1 − a) + (y1 − b)−
√
(x2 − a) + (y2 − b)

]
+

(
E1c ·R1c − E2c ·R2c)± (

_
U1c · r1c −

_
U2c · r2c

)

In a first order approach

E12 = E1c ·R1c − E2c ·R2c by (17)
_
U12 =

∣∣∣∣_U1c · r1c −
_
U2c · r2c

∣∣∣∣ by (16)

(18)

The proposed roundness model expresses the measurement result by the nominal calculation
from the CMM indication, corrected by the difference of the radii length correction. This correction is
the vectorial projection of the length correction E in the direction of the indicated radii R. Finally, the
estimated confidence interval to the error is also the difference of the vectorial projection of the radii
length interval of confidence Û projected in the direction of the corrected radii r.

Just like the flatness model, two criteria can be used for the roundness results: the least-squares
and the minimum zone tolerance criteria, but the critical points in the envelope circles will also
be, in general, different, four in the minimum zone tolerance criteria, and two others in the case of
least-squares, with different expected results. From the fact that the expression of the minimum zone
tolerance can be obtained from four points, two in the outer envelope circle and two in the inner one,
four different possible estimations are available for error and uncertainty estimation from the original
dataset. As a direct consequence of a dataset, the better estimation of roundness by Equation (19)
can be proposed. The nominal MZR is the same value for all four samples, but not for the error and
uncertainty. Under the same previous considerations of the flatness model, the mean error from the
different configurations (c = 4) is proposed as the best estimation for the error, and derived from its
variability the best estimation of uncertainty.

MZRm = MZR + 1
c

c
∑
ii

Ei ± 2
√

c−1
c−3

s√
c = MZR + E± Ûk=2 where s =

√
(Ei−E)2

c−1
(19)

7. Interpretation of Error and Uncertainty in the Model

The error model by i-axis Ei = Ai + BiL admits a physical interpretation of its contributors.
Already mentioned in Section 2, the ordinate at the origin A in the ISO model of CMM verification,
±EL,MPE = ±(A + B·L), is the prediction bound or maximum expected error with (L→ 0); therefore, in
the limit it should be the error of the coordinate of a point in an hypothetical bilateral measurement.
Consequently, it should be of the same order of magnitude of the repeatability (measured in one-sided
or unilateral probing in this case). This will be shown in the experimental Part II. In the ISO 10360-2
approach of machine verification an average null correction to the indication of the CMM coordinates
is applied, after systematic error or bias correction by the machine maker’s. That should mean that
after correction of any known bias the coordinate determination in any direction of probing has
null error. As a result, in a first order approach the indication is accurate. This approach is valid
considering the null correction of a grand average of different samples measuring in all possible
directions. Unfortunately, a real measurand requires measuring just by a particular direction by the
normal to the surface.

In the proposed model by axis Ai is not the prediction bound, but the ordinate at the origin of
the linear model, or the mean error with L = 0 measuring in the i direction. Therefore, in addition
to the mean error by axis, it must be considered the prediction bounds of the error variability that
is a contribution to uncertainty, given by Ûi. The interpretation of Ai includes the effects of the
parallelism error of the gage blocks and the probe form error. The length realization of the gage block
is the distance from any point of a face to the opposite face. The parallelism error of the faces has limits
which are specified by ISO 3650, but the regression plane of reference can be biased when a small
sample of points is used, when they are not evenly spread around the assigned value of the calibrated
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standard. Another contribution to Ai is the form error of the probe. The probe correction considers the
centre offset, and in a bilateral measuring that error is practically cancelled in a very basic reversal
technique. Nevertheless, the imperfection of the probe contact surface in each direction with respect
to the perfect average sphere of the tip is just bounded, but not corrected, by the error of form of the
probe. As a consequence, it represents a direct bias depending on the direction of measurement.

Note that the careful alignment of the block with the physical axis should be corrected by the
normal to the reference surface, so that the measurement is done in accordance with the realization
of the length that the standard represents, following similar ISO 10360-2 techniques. In addition,
the mean value measuring from one face with respect to the other is averaged in a reverse method that
not only compensates the slight error of parallelism [33] of the gage block faces, but also cancels its
uncertainty [34].

The slope of the model by i-axis Bi admits the interpretation of an overall angle error due to
the misalignment of the scale and the carriage displacement. The volumetric error (up to 21 type
contributors) can be classified in linear terms, angular terms and squareness terms [35]. The angular
terms have a main origin in the Abbé error, due to the distance of the probe to the scale in its
displacement, which can be approached by a linear model [35]. The squareness errors between
axes also propagate linearly with the length of measurement [2]. The slope of the error versus the
length measured by the i-axis is Bi. The angular error grows linearly with the length of measurement.
A general expression of the angular error is given in [35]. This can be adapted to our formulation
by Equation (20), where θ denotes the angular pitch error by each axis, and D is the matrix of Abbé
distances of the measuring head to the axis scale:

B = D · θ;

 Bx · Lx

By · Ly

Bz · Lz

 =

 0 −Dy Dz

Dx 0 −Dz

−Dx Dy 0


 θx

θy

θz

 (20)

After considering the average explained variability of the linear model, the non-explained
variability in the regression model can be incorporated into the uncertainty through its variance. This is
the approach used when the overall estimation EL,MPE is taken as a first estimation of the machine
uncertainty [6], under repeatability conditions. In the case of the proposed model, the non-explained
uncertainty is sensibly lower because the mean error is incorporated into the measurement evaluation
model [25]. For a proper estimation of the uncertainty in other valid conditions of the CMM
operational range, all other factors that introduce variability should vary in the experimentation [6,36].
Considering the variability of the error a random variable, and due to the real interdependence
of CMM hardware and its potential effect in the error of the coordinates, covariance in the error
between axes can be expected. Consequently, four out of the seven positions of testing using the
ISO 10360-2 verification test are diagonal directions in the cube of the volume of measurement. For the
proposed model that only evaluates variances by axis, the issue is whether the variability of error
is infra-evaluated or not. In the experimental Part II of this work this issue will be addressed with
positive results supporting the proposed model.

Considering the uncertainty by axis estimated by the proposed model, the uncertainty by the
law of propagation of uncertainty can also be estimated under the initial hypothesis of independent
variables by Equation (21).

It is remarkable that the uncertainty model resulting from the error model of length U does not
depend on the length itself, but on the direction of measurement (Equation (22)). This means that the
uncertainty does not grow with length by axis in a first-order approach. This is well in accordance
with the homoscedastic behaviour of error that has been found in the experimental results of the
Part II, where the error variability by axis is approximately constant. Note that the independence of
x1, x2, y1, y2, z1, z2 could be alike when only one axis varies at a time. The independence of x1 and x2,
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for instance, is supported by following good practices of bilateral measurement, and it follows the
recommendations of ISO 10360-2.

u2 =
N
∑

i=1

N
∑

j=1

∂ f
∂xi

∂ f
∂xj

u(xi, xj) =
N
∑

i=1

(
∂ f
∂xi

)2
u2(xi) + 2

N
∑

i=1

N
∑

j=1+1

∂ f
∂xi

∂ f
∂xj

u(xi, xj)

for independent variables, null covariances and expression directly expanded uncertainties

U2 =
N
∑

i=1

N
∑

j=1

∂ f
∂xi

∂ f
∂xj

U(xi, xj) =
N
∑

i=1

(
∂ f
∂xi

)2
U2(xi)

With the vectorial expression of a length, ϕ elevation angle and θ azimuthal angle
→
L = Lcosϕcosθ ·

→
i + Lcosϕsinθ ·

→
j + Lsinϕ ·

→
k ;

and L2 = Lx
2 + Ly

2 + Lz
2 = (Lcosϕcosθ)2 + (Lcosϕsinθ)2 + (Lsinϕ·)2

= (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2;

(21)

(
∂L
∂x1

)2
=
(
− ∂L

∂x2

)2
= (cosϕcosθ)2 =

(
(x1−x2)√

(x1−x2)
2+(y1−y2)

2+(z1−z2)
2

)2

;

(
∂L
∂y1

)2
=
(
− ∂L

∂y2

)2
= (cosϕsinθ)2 =

(
(y1−y2)√

(x1−x2)
2+(y1−y2)

2+(z1−z2)
2

)2

;

(
∂L
∂z1

)2
=
(
− ∂L

∂z2

)2
= sin2 ϕ =

(
(z1−z2)√

(x1−x2)
2+(y1−y2)

2+(z1−z2)
2

)2

;

U2 = 2 (cosϕcosθ)2 ·U(x)2 + 2 (cosϕsinθ)2 ·U(y)2 + 2sin2 ϕ ·U(z)2

(22)

The uncertainty of a point location can be expressed under a GUM approach in a vectorial way
by the covariance matrix [37]. Under the hypothesis that the CMM axes show the main independent
variations, just as the CMM axis directions are the eigenvalues of the covariance matrix, the uncertainty
of a point by Equation (23) can be composed. The uncertainty measured through the three main i-axes,
U(i) is taken into account in Equation (23). Note that the hypothesis that the CMM axes are basically
eigenvectors of the covariance matrix is equivalent to inferring that the covariance between axes is
neglectable in a first-order approach, already discussed above, so that the aggregation of the variability
by axis explains most of the total variability. Once more, this will be verified experimentally in Part II.
This does not preclude that, when measuring a feature (plane, circle, etc.), there is a remarkable
contribution of uncertainty covariance coming from the geometric measurement model of the feature,
used as a substitution geometry (see for instance [29,32]).

U2 = 2 (cosϕcosθ)2 ·U(x)2 + 2 (cosϕsinθ)2 ·U(y)2 + 2sin2 ϕ ·U(z)2

= ||
(√

2U(x),
√

2U(y),
√

2U(z)
)

. (cosϕcosθ, cosϕsinθ, sinϕ)||
2
= ||U · n||2

(23)

The former expression can be compared with the uncertainty derived from the measurement of
the distance between two points by our proposed model (Equation (24)):

U = U · n =
Ûx(Ax+(Bx+1)·Lx)+Ûy(Ay+(By+1)·Ly)+Ûz(Az+(Bz+1)·Lz)√

(Ax+(Bx−1)·Lx)
2+(Ay+(By−1)·Ly)

2+(Az+(Bz−1)·Lz)
2

n = (cosϕcosθ, cosϕsinθ, sinϕ) =
(Ax+(Bx+1)·Lx , Ay+(By+1)·Ly , Az+(Bz+1)·Lz)√

(Ax+(Bx−1)·Lx)
2+(Ay+(By−1)·Ly)

2+(Az+(Bz−1)·Lz)
2

(24)
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In both cases the uncertainty is the contribution of the uncertainty U projected in the direction
of measurement n. The expanded standard uncertainty Ûi of the length by i direction can be directly
expressed from the expanded uncertainty of the point U(i) in the direction of i by Equation (25), also
evident by the sensitivity coefficients in Equation (22):

If Li = i2 − i1 with i2 > i1; Û2
i = (1)2U2(i) + (−1)2U2(i) = 2U2(i); i = {x, y, z}

Thus, Ûx =
√

2U(x); and Ûy =
√

2U(y); Ûz =
√

2U(z)
(25)

Therefore, the formulation of uncertainty of the proposed model by axis for the length is the same
than that obtained from the evaluation by GUM of the two points that define the length, provided
that the uncertainty by the three main directions that are the three main independent contributions
(eigenvalues of the covariance matrix) at each point. For this reason it can be assumed that the
unexplained variability of error in the regression model of Section 3 is the uncertainty. In Part II, the
experimental results of the implementation of the model will give evidence of the usefulness and
the degree of compliance of this approach in order to improve the expression of different features
measurement by a CMM.

8. Conclusions

A linear model of error by axis and its aggregation into a feature measurement model has been
developed. It extracts useful information from CMM tests by ordinary techniques of gage block
measuring. Probed point coordinates are the original measurand of the CMM that are transformed
through signal processing and the measurement model into the feature measurement. The proposed
model by axis considers the evaluation of the mean error, and a measurement uncertainty contribution
with origin in the non-explained error variability. Both are integrated into the feature measurement
model. This model provides the conceptual advantage of incorporating the uncertainty contribution of
error variability. Obviously, they should be aggregated with the rest of the uncertainty contributions,
such as the calibration gage block uncertainty, and other relevant contributions of the workpiece
under measurement but, in particular, it is the coefficient of thermal expansion (CTE) that remarkably
affects hardware. As already mentioned, a stream to approach the CMM uncertainty estimation is
based on a point uncertainty model and Monte Carlo simulation for uncertainty propagation through
the measurement model. This requires hard computation efforts and the subsequent verification of
the proposed point uncertainty model based on the real observed CMM behavior. Another way of
incorporating uncertainty into CMM feature measurement can be accomplished by ISO 15530, which
establishes very strict conditions to evaluate uncertainty based on calibrated artefacts in substitution
and non-substitution procedures.

In the proposed model, uncertainty estimation rises directly from the observed measurement
variability following the verification process techniques with calibrated artefacts for established
reference operating conditions. Uncertainty estimation comes from the verification of a calibrated
artefact in order to give an error value for correction to the indicating instrument (CMM). It approaches
the ordinary verification process of a simpler instrument, like a micrometer, for instance [23].

The expression of the fundamental measurement model of length, but also flatness, angle, and
roundness have been developed. The potential use of this methodology to other CMM measurement
models is advisable for future works, in particular for form tolerance. The simple, explicit methodology
of the Taylor series development around a value is a well-known approach in modeling and it is also
used in the approximate expression of the law of uncertainty propagation by GUM. In this work,
its direct application to a CMM linear 3D error measurement model and its integration in the feature
measurement is developed.

The modeling methodology with other non-linear functions of error could possibly be further
investigated. The model establishes a mean value of error from the regression of the machine response
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and the residual variability as uncertainty. This local approach is a priori valid as long as the error
and its variability are much smaller than the magnitude under measurement. Therefore, a local Taylor
series development could be possible. In particular, it can be applied in contactless measurement
where sensors translate coordinates into 2D images, which is widely used today in engineering and
bioengineering domains.

The proposed model of error compensation uses standard techniques of error verification based
on a first-order approach of length errors, valid in the testing zone of the volume of measurement
and under similar reference operating conditions of measurement. It is presented as an affordable
initial alternative to the detailed mapping of coordinate error. Even when the capability of improving
performance might be lower compared to coordinate error compensation from more detailed mapping
based on rigid body models, the effort is also lower, because it uses the data obtained from affordable
and similar well-established techniques applied in the ordinary periodical verification tests of
ISO 10360-2. In this sense, such a capability is viewed as a first step to improve CMM error measuring
in an industrial environment. This model can contribute to the inclusion of the compensation of errors
and a direct estimation of uncertainty of the CMM’s in the industrial environment. The possibility
of post-processing the CMM coordinate raw indications exists, out of the processing operated by the
closed CMM’s software. Nevertheless, for operative CMM improvement, the proposed model should
be incorporated into the machine software. It can be achieved easily just by fixing the parameters of
error by axis after periodical tests. The machine would offer an improved indication after mean error
correction and its uncertainty estimation as a part of the measurement result. Experimental evidence
of the model’s use and results are developed in Part II.
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