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Abstract: In recent years, inkjet technology has played an important role in industrial materials
printing and various sensors fabrication, but the mechanisms of the inkjet print head should be
researched more elaborately. The steady state deformation analysis of a tubular piezoelectric print
head, which can be classified as a plane strain problem because the radii of the tubes are considerably
smaller than the lengths, is discussed in this paper. The geometric structure and the boundary
conditions are all axisymmetric, so a one-dimensional mathematical model is constructed. By solving
the model, the deformation field and stress field, as well as the electric potential distribution of
the piezoelectric tube and glass tube, are obtained. The results show that the deformations are on
the nanometer scale, the hoop stress is larger than the radial stress on the whole, and the potential
is not linearly distributed along the radial direction. An experiment is designed to validate these
computations. A discussion of the effect of the tubes’ thicknesses on the system deformation status
is provided.

Keywords: tubular piezoelectric print head; piezoelectric tube; glass tube; wall thickness

1. Introduction

Ink jet technology has been widely used in the fabrication of integrated circuits (ICs) [1], polymer
light emitting displays [2], sample preparation [3], microelectromechanical systems (MEMS) [4], cell
printing [5,6], and the fabrication of different sensors [7–9]. Numerous excellent published papers have
accounted for various applications of ink jet technology, but few of these papers are related to the action
mechanism. To fully understand this physical phenomenon, and to obtain some useful instructions in
print head design, it is very necessary to determine the mechanism for ink jet technology. This paper
studies the action mechanism of a tubular piezoelectric print head, which is typically represented by
the mechanical device designed by Zoltan [10].

Dijksman [11] firstly constructed an important model for the dynamic analysis of the tubular
print head. Starting at the vibration amplitude and frequency of the inner glass tube, he successfully
obtained the speed of the meniscus at the nozzle outlet in the time and frequency domain. The tubular
print head was divided into nine segments of different radii or constraints, and the motion of the inner
glass tube was decomposed into 250 terms of sinusoidal vibration through Fourier decomposition.
Shin [12] analyzed the velocity and stress distribution. The analytical axial velocity history was used as
the initial condition when doing his numerical simulation of the jetting and droplet formation process.
Fabrication effects, such as the eccentricity alignment and the configuration of the electrode layer on
the calculation results based on the model proposed, was also discussed. However, the stress and
deformation distributions in piezoelectric tube and glass tube, as well as the influence of the relative
thickness of these two tubes on the deformation status, were not provided in their work. Wijshoff [13]
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presented the actuator design of a piezoelectric print head and conducted the deformation analysis
of the channels bonded to the piezoelectric element. However, the analysis was mainly about the
piezoelectric print heads of bump or bend modes.

Kim [14] analyzed the pressure waves in a silicon MEMS-fabricated printhead under the excitation
of a trapezoid voltage waveform. Numerical simulations and lumped element modeling were
conducted, and results show that the Helmholtz mode is the dominant resonance mode acting on
the flow oscillations at the nozzle. Bugdayci [15] discussed the quasi-static motion of a piezoelectric
tube filled with liquid but did not consider the effect of the glass tube. Moreover, when considering
the resulting fluid pressure in the glass tube, it was assumed that both ends of the glass tube were
completely sealed. However, the actual situation was that one end was connected to a plastic hose,
and the other end was connected to an aperture plate, which made the pressure caused by fluid
compression considerably smaller. Larbi [16] developed a model that accounted for for the free
vibration of a simply-supported arbitrarily thick laminated piezoceramic cylinder completely filled
with fluid. The piezoelectric layers of the laminated cylinder are polarized in the radial direction.
Chen [17] investigated the dynamic process of a hollow cylinder filled with compressible fluid based on
three-dimensional state space formulations. The free vibration of a multi-layered piezoelectric hollow
cylinder and the wave propagation in an infinite homogeneous cylinder were therefore obtained.

Under the excitation of a step voltage, the piezoelectric tube causes the coupling glass tube to
deform and squeezes the internal fluid out of the nozzle aperture. Aimed at the above process, this
paper analyzes the deformation and stress statuses of piezoelectric and glass tubes after the input of
electric voltage. The obtained results could help us understand the action mechanism of the liquid jet
process, determine the deformation and stress statuses when an electric voltage is input, and guide us
to design a proper piezoelectric print head.

A tubular piezoelectric print head, as shown in Figure 1, is used to validate these calculations.
The mechanical size parameters are also shown in Figure 1. This kind of single nozzle piezoelectric
print head is made and sold by the Microdrop and MicroFab companies. About the model, some
simplifications and uncertainties are stated as follows. The epoxy layer is omitted in this model
because this layer often measures 10–25 µm in thickness (refer to [18] for details about the fabrication
process) and is relatively thin. Furthermore, in steady state analysis, this layer only transmits forces,
so it does not have much effect on the ultimate deformation and stress statuses. Another aspect
needing consideration is that part of the piezoelectric tube is wrapped by a thin electrode layer, and
the wrapped segment of the piezoelectric tube (about 2 mm in length) will not generate an electric
field and will not have a driving effect. The shear deformation and shear stress are also neglected in
the constructed model.
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2. Mathematical Model Construction

The cross section of the tubular piezoelectric print head is shown in Figure 2. Owing to its
geometric shape, a cylindrical coordinate system is adopted. The deformation and stress statuses of a
radially polarized piezoelectric ceramic tube under the excitation of step voltage are studied in this
paper. When performing the steady state deformation and stress analysis, the axisymmetric conditions
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enable uθ “ 0, uz “ uzpr, z, tq, ur “ urpr, z, tq, and ϕ “ ϕpr, z, tq. Moreover, because the length of
the piezoelectric tube is relatively larger than the radius, it is suitable to classify it as a plane strain
problem, so that uθ “ uz “ 0, ur “ urpr, tq and ϕ “ ϕpr, tq are obtained. Then, the strain relationship
is simplified as

γrr “ Bur{Br, γθθ “ ur{r (1)
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Piezoelectric constitutive equations become

σrr “ c33ur,r ` c13
ur

r
` e33ϕ,r (2)

σθθ “ c13ur,r ` c11
ur

r
` e31ϕ,r (3)

Dr “ e33ur,r ` e31
ur

r
´ ε33ϕ,r (4)

The stress equation is shown as

σrr,r `
1
r
pσrr ´ σθθq “ ρ

B2ur

Bt2 (5)

The steady state response is only studied in this paper, so the inertial term is discarded.

σrr,r `
1
r
pσrr ´ σθθq “ 0 (6)

Since there is no free charge inside the piezoelectric tube, the Gauss equation becomes

1
r
B

Br
prDrq “ 0 (7)

From Equation (7), it can be inferred that

Dr “ A{r, pA is a constantq (8)

From Equation (4), the following equations are deduced

ϕ,r “
e33

ε33
ur,r `

e31

ε33

ur

r
´

A
ε33r

(9)

ε33ϕ “ e33ur ` e31

ż

ur

r
dr´ Alnr` k1 (10)

where k1 is an undetermined constant.
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By substituting Equations (2) and (3) into Equation (6),

c33

ˆ

ur,rr `
1
r

ur,r

˙

´ c11
1
r2 ur ` e33ϕ,rr ` pe33 ´ e31q

1
r
ϕ,r “ 0 (11)

After substituting Equation (9) into Equation (11),

ur,rr `
1
r

ur,r ´
ν2

r2 ur “
k4

r2 (12)

where ν2 “ c11{c33; k4 “ ´pe31{c33ε33q A; c11 “ c11 `
`

e2
31{ε33

˘

; c33 “ c33 `
`

e2
33{ε33

˘

.
The solution of Equation (12) is

ur “ k2rν ` k3r´ν ´
k4

ν2 (13)

It is assumed that the electrical potential of the inner electrode for the piezoelectric tube is zero,
and the electrical potential of the outer electrode is Vin. The thickness of the electrodes is neglected.
Substituting Equation (13) into Equation (10), the electrical potential of the inner electrode is given in
Equation (14).

k1 ` e33r2
νk2 ` e33r2

´νk3 `

ˆ

c33ε33

e31
lnr2 ´

e33

ν2

˙

k4 “ 0 (14)

In addition, the electrical potential at r “ r3 is given by

e33

ˆ

k2r3
ν ` k3r3

´ν ´
k4

ν2

˙

` e31

˜

k2
rν3
ν
´ k3

r´ν3
ν
´

k4

ν2 lnr3 ´ k2
rν2
ν
` k3

r´ν2
ν
`

k4

ν2 lnr2

¸

´Alnr3 ` k1 “ ε33Vin

(15)

From Equations (2) and (9), Equation (16) is derived

σrr “ c33ur,r ` c13
ur

r
´

e33 A
ε33r

(16)

where c13 “ c13 `
e31e33

ε33
.

The free boundary condition of the outer surface of the piezoelectric tube makes the stress
become zero.

σrrpr3q “
´

c33νrν´1
3 ` c13rν´1

3

¯

¨ k2`
”

c13r´pν`1q
3 ´ c33νr´pν`1q

3

ı

¨ k3`

ˆ

c33e33

e31r3
´

c13

ν2r3

˙

¨ k4 “ 0 (17)

The stress on the inner surface of the piezoelectric tube, represented as P2, is outward because of
the deformation resistance from the glass tube. Then,

σrrpr2q “
´

c33νrν´1
2 ` c13rν´1

2

¯

¨ k2`
”

c13r´pν`1q
2 ´ c33νr´pν`1q

2

ı

¨ k3`

ˆ

c33e33

e31r2
´

c13

ν2r2

˙

¨ k4 “ P1 (18)

To simplify the analysis, the glass tube is viewed as an isotropic material. This is suitable in
deformation analysis. Timoshenko described the steady state force equation of an isotropic thick-wall
hollow cylinder in Reference [19], and the force diagram is depicted in Figure 3. The following analysis
quotes the equations in Reference [19] directly.

The radial displacement function of the glass tube is

u1r “ k5r`
k6

r
(19)
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The stress on the outer surface of the glass tube is negative for it behaves similar to a compressive
stress and equals the normal stress on the inner surface of the piezoelectric tube in magnitude. Therefore

σ1rrpr2q “
E

1´ µ2

«

k5p1` µq ´ k6
1´ µ

r2
2

ff

“ ´P1 (20)
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Figure 3. Force diagram of the glass tube. 

From Equations (18) and (20), it can be deduced that 

 1 1 ( 1) ( 1)
33 2 13 2 2 13 2 33 2 3

33 33 13
4 5 62 2 2

31 2 2 2

1(1 ) 0
1

c r c r k c r c r k

c e c E
k k k

e r r r

             
   

             

 (21) 

As for the inner surface of the glass tube, although fluid inside it would resist the deformation 
of the glass tube, the fluid pressure would eventually go to zero because the ends of the glass tube 
are not sealed. Therefore, the radial stress on the inner surface of the glass tube is zero. 

5 62 2
1

1(1 ) 0
1
E

k k
r

 
     

 (22) 

The hoop stress of the glass tube is shown as 

5 62 2
2

1( ) (1 )
1
E

r k k
r

 
      

 (23) 

The displacement of the outer surface of the glass tube is 

6
2 5 2

2
r

k
u k r

r
    (24) 

Considering the bonding condition between the outer surface of the glass tube and the inner 
surface of the piezoelectric tube, Equation (25) is consequently obtained. 

64
2 2 3 2 5 22

2

0
kk

k r k r k r
r

   
     

  
 (25) 

3. Solving Method and Results 

Next, by combining Equations (14), (15), (17), (21), (22) and (25), the following equation is 
obtained 

H K Y   (26) 

where 

Figure 3. Force diagram of the glass tube.

From Equations (18) and (20), it can be deduced that

´
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As for the inner surface of the glass tube, although fluid inside it would resist the deformation of
the glass tube, the fluid pressure would eventually go to zero because the ends of the glass tube are
not sealed. Therefore, the radial stress on the inner surface of the glass tube is zero.

E
1´ µ2

«

k5p1` µq ´ k6
1´ µ

r2
1

ff

“ 0 (22)

The hoop stress of the glass tube is shown as

σ1θθprq “
E

1´ µ2

«

k5p1` µq ` k6
1´ µ

r2
2

ff

(23)

The displacement of the outer surface of the glass tube is

u1r2 “ k5r2 `
k6

r2
(24)

Considering the bonding condition between the outer surface of the glass tube and the inner
surface of the piezoelectric tube, Equation (25) is consequently obtained.

k2r2
ν ` k3r2

´ν ´
k4

ν2 ´

ˆ

k5r2 `
k6

r2

˙

“ 0 (25)

3. Solving Method and Results

Next, by combining Equations (14), (15), (17), (21), (22) and (25), the following equation is obtained

H ¨ K “ Y (26)
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where

H “

»

—

—

—

—

—

—

—

—

—

—

–

1 e33rν2 e33r´ν
2

c33ε33

e31
lnr2 ´

e33

ν2 0 0

1 e33rν3 `
e31

ν
prν3 ´ rν2 q e33r´ν

3 `
e31

ν
pr´ν

2 ´ r´ν
3 q

1
ν2 pe31lnr2 ´ e31lnr3 ´ e33q`

c33ε33

e31
lnr3 0 0

0 pc33ν` c13q rν´1
3 pc13 ´ c33νq r´pν`1q

3

ˆ

c33e33

e31
´

c13

ν2

˙

1
r3

0 0

0 pc33ν` c13q rν´1
2 pc13 ´ c33νq r´pν`1q

2

ˆ

c33e33

e31
´

c13

ν2

˙

1
r2

E
1´µ

´
E

p1`µqr2
2

0 rν2 r´ν
2 ´

1
ν2 ´r2 ´

1
r2

0 0 0 0
E

1´µ
´

E
p1`µqr2

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

K “
”

k1 k2 k3 k4 k5 k6

ıT
, Y “

”

0 ε33Vin 0 0 0 0
ıT

The material parameters for piezoelectric material PZT-5H are shown in the appendix of
Reference [20]. The elastic modulus and Poisson’s ratio of the Pyrex heat-resistant glass tube is 61.67
GPa (see Reference [21]) and 0.2, respectively. Additionally, the radii of the tubes are: r1 “ 2.5ˆ 10´4 m,
r2 “ 4.0ˆ 10´4 m, and r3 “ 6.5ˆ 10´4 m. Simultaneous Equation (26) is calculated and rewritten as

»

—

—

—

–

1.0 1.9396ˆ 10´2 2.7846ˆ 104 2.559ˆ 103 0 0
1.0 2.7ˆ 10´2 1.5005ˆ 104 2.404ˆ 103 0 0
0 4.344ˆ 1011 ´8.31ˆ 1016 ´1.048ˆ 1015 0 0
0 4.534ˆ 1011 ´2.096ˆ 1017 ´1.703ˆ 1015 7.71ˆ 1010 ´3.212ˆ 1017

0 8.346ˆ 10´4 1.1982ˆ 103 ´1.22 ´4.0ˆ 10´4 ´2.5ˆ 103

0 0 0 0 7.71ˆ 1010 ´8.224ˆ 1017

fi

ffi

ffi

ffi

fl

»

—

—

—

–

k1

k2

k3

k4

k5

k6

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0
1.3ˆ 10´8Vin

0
0
0
0

fi

ffi

ffi

ffi

fl

(27)

The solution is not correct if the above equation is typed into the calculation software directly
because of the effective numeral problem. Therefore, it is essential to do the following transformation.

x1 “ 108k1, x2 “ 106k2, x3 “ 1012k3, x4 “ 1010k4, x5 “ 105k5, x6 “ 1012k6 (28)

Suppose the input voltage is 1.0 V, i.e., Vin “ 1.0. Eventually, the following equation can be
obtained such that

k1 “ ´1.643ˆ 10´7, k2 “ ´2.079ˆ 10´7, k3 “ ´2.222ˆ 10´12,
k4 “ 8.997ˆ 10´11, k5 “ ´4.642ˆ 10´6, k6 “ ´4.352ˆ 10´13 (29)

Substituting these obtained coefficients into the aforementioned equations, some meaningful
results occur. Utilizing Equations (13) and (19), the displacement function along the thickness direction
is obtained, as plotted in Figure 4. It can be found that the displacement of the inner surface of the
piezoelectric tube equals the displacement at the outer surface of the glass tube, which shows the
correctness of the results. The values are all negative, which means that the tubes are all displaced
toward the central axis when the input voltage is positive. As shown in Figure 4, the outer surface of
the piezoelectric tube has a minimum displacement of 2.1 nm, and the displacement at the location
where the piezoelectric and glass tubes adhere together has a maximum displacement of 2.94 nm.
These displacement results seem larger than the usually known values. We cautiously believe that this
is because the step voltage signal is different from a train of trapezoid pulses from the perspective of
the Rayleigh’s energy.

Exploiting Equations (18) and (20), the radial stress distribution along the thickness direction is
obtained and is shown in Figure 5. The radial stresses in the glass and piezoelectric tubes are negative
and positive, respectively, which means that the radial stresses in the glass tube point inward. For the
piezoelectric tube, the radial stresses point outward. The radial stresses at the inner surface of the glass
tube and the outer surface of the piezoelectric tube are all zero. The stress at the outer surface of the
glass tube equals the stress at the inner surface of the piezoelectric tube, but with an opposite direction.
These results all conform to the known conditions and show the correctness of the obtained results.
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Utilizing Equations (3) and (23), the hoop stress distribution along the thickness direction is
obtained and is shown in Figure 6. The hoop stresses in the glass and piezoelectric tubes are all
negative. This means that the particles in the tubes in the circumferential direction are all compressed.
The hoop stress increases as the radius decreases and reaches the maximum at the inner surface of the
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glass tube. The hoop stress is not continuous at the place where the two tubes adhere together, which
conforms to physical truth. In Figure 6 it can be found that the hoop stress is generally larger than the
radial stress.

Making use of Equation (10), the electric potential distribution along the radial direction
is obtained. As shown in Figure 7, the electric potential is not linearly distributed along the
thickness direction.
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4. Experimental Validation

Since the displacements of the surfaces of the tubes are on nanometer scales, these deformations
are structurally inside the print head. It seems impossible to measure these quantities directly.
An experiment was designed to validate the above computations indirectly. When the glass tube is
deformed, it will squeeze a small amount of water out of the nozzle aperture, which could be imaged
by a camera with the appropriate magnification. The volume information was calculated by using
image processing technology, and the volume was correlated to the deformation of the inner surface of
the glass tube.

First, the print head was filled with water by using a syringe. Then, the tip part of the print head
was placed into a cap that was full of water. The cap would nearly seal the front part of the print head.
Afterwards, the syringe was removed from the top part of the print head and a cap was used that was
prefilled with water to seal the top part of the print head firmly. Finally, the print head was installed
on the experimental platform.

The platform is shown in Figure 8. A step voltage signal was generated by a signal generator
(Agilent 33220A, Santa Clara, CA, USA) and was amplified by a voltage amplifier. Then, it was fed to
the print head. Together with a high-speed voltage output device (PCIE 6711, National Instrument,
Austin, TX, USA), the computer can generate a signal with a sampling frequency of up to 1 MHz.
The generated pulses were used to trigger a CCD camera (scA780-54fm/fc, Basler, Ahrensburg,
Germany). A LED controller (S4000, Advanced Illumination, Rochester, MN, USA) was used to set
the LED at continuous illuminating mode because the drop adhering to the nozzle is static. A lens
(Moritex-ML-Z07545, Saitama, Japan) was used to properly magnify the image. The acquired image
was transported to the computer for analysis through an image acquisition device (PCI-1405, National
Instrument, Austin, TX, USA).

Next, the bottom cap of the print head was unsealed. Through the imaging system, the print head
tip was wetted with a small amount of water, as shown in Figure 9a. After the feed of voltages of 20 V,
40 V, 60 V, 80 V, 100 V, respectively, and owing to the deformation of the tubes in the print head, small
amounts of water were squeezed out of the print head and imaged by the imaging system as shown in
Figure 9b–f, respectively. These images were taken two seconds apart in time.
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To calculate the volume of the droplet, the droplet adhered to the nozzle end face was assumed to
be axisymmetric and was sliced into many layers along the vertical direction. The volume of these
droplets was obtained through an image processing algorithm.

At the same time, the deformation of the glass tube was assumed to be consistent along the
section that was surrounded by a piezoelectric tube, and the other segment was assumed to be without
deformation. The deformation amount of the glass tube was calculated as

Vde f “ 2πr1ur1
Vinp

Vre f
lpie (30)

where Vinp is the input voltage, Vre f is the reference voltage, ur1 is the deformation of the inner surface
of the glass tube under the excitation of a reference voltage Vre f where in this paper the reference
voltage is 1.0 V (as is shown in Figure 4), and lpie is the length of the piezoelectric tube.

Each time a higher voltage was fed into the print head, an additional amount of water was
obtained by subtracting the volume of the droplet at the higher voltage by the volume of the previous
droplet. These data are compared with the result obtained by Equation (30), which is shown in
Figure 10.

In Figure 10, it can be seen that the data obtained by theoretical computation and image processing
agree reasonably well. The data obtained experimentally is smaller than the theoretical computation at
large, which may be attributed to the bulk-modulus effect of the internal fluid and the evaporation
effect of the meniscus due to its small size.
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5. Further Discussion

To study the influence of tube wall thickness on the deformation and stress statuses, it is essential
to investigate the displacement field when the radius of each tube is changed. As shown in Figure 11,
when only the inner radius of the glass tube is changed, the wall displacements would change
significantly. The symbols ur1, ur2, and ur3 in Figure 11 refer to the displacements at the surfaces with
a radius of r “ r1, r “ r2, and r “ r3 respectively. In addition, it is necessary to note that ur1 refers to
the displacement after the value of the inner radius of the glass tube is changed. When the value of r1

is small, which means the thickness of the glass tube is relatively large, the displacements of the tube
walls are all small. The displacements of the inner and outer surfaces of the piezoelectric tube share
nearly the same displacement, and they are all larger than the displacement of the inner surface of
the glass tube. When the value of r1 increases above 0.25 mm, the glass tube becomes thinner and the
system rigidity decreases. In addition, the displacement of each tube increases significantly. Moreover,
the displacements of the inner surface of the glass tube and the outer surface of the piezoelectric tube
are nearly the same, while the displacement of the inner surface of the piezoelectric tube is different
and is the smallest.
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When only the value of the outer radius of piezoelectric tube is changed, the displacements of
the tube surfaces are shown in Figure 12. Note that ur3 is the displacement of the outer surface of the
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piezoelectric tube after the value of r3 is changed. It could be found that the displacements of the inner
and outer surfaces of the glass tube are nearly the same. The displacement difference between the inner
and outer surfaces of the piezoelectric tube increases as r3 increases, and the inward displacement of
the inner surface of the piezoelectric tube is larger than the outer surface, which means the piezoelectric
tube is under a “radially elongated” state. From Figure 12, we can conclude that the drive effect is
strengthened as the thickness of the piezoelectric tube is increased.
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Figure 13 shows the results of the displacements for the tube surfaces when only the value of r2 is
changed, that is, the inner radius of the piezoelectric tube and the outer radius of the glass tube are
changed simultaneously. When r2 is relatively small, in other words, when the glass tube becomes
thinner and the piezoelectric tube becomes thicker, all tube walls have a larger displacement. Likely,
when r2 becomes larger, due to insufficient drive and excessive rigidity, the displacements of the tube
surfaces become considerably smaller.
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6. Conclusions

The steady state response of a tubular piezoelectric print head under the excitation of electric
voltage, together with the effect of the tubes’ wall thicknesses on their deformation and stress statuses,
were studied in detail in this paper. The following conclusions were obtained.
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(1) When the piezoelectric tube is under the excitation of a positive step voltage, the displacements
of the glass tube and the piezoelectric tube are inward towards the central axis. However, their
radial stress directions are opposite. The glass tube is compressed and has an inward radial stress,
while the radial stress of the piezoelectric tube is outwardly oriented.

(2) For the special tubular piezoelectric print head discussed above, the displacements of the tube
walls are obtained at the several or dozens of nanometers level, which depend on the input voltage.

(3) The hoop stress is larger than the radial stress on the whole, and the potential is not linearly
distributed along the radial direction.

(4) When the glass tube becomes thinner, the system has a smaller rigidity so that a larger deformation
field of the tubes is obtained. Similarly, when the piezoelectric tube becomes thicker, the system’s
drive effect becomes more significant so that a larger deformation field of the tubes is acquired.
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Nomenclature

c11,c13,c33 elastic moduli at constant electric field; ur1 deformation of the inner surface of glass tube;
Dr electric displacement vector; Vde f deformation volume of glass tube;
e31,e33 piezoelectric constants; Vin input voltage;
E elastic modulus; ε33 permittivity component at constant strain;
lpie length of the piezoelectric tube; θ circumferential coordinate;

P1
radial stress of the inner surface
piezoelectric tube;

γrr,γθθ strain;
∆V amount of volume compression;

r radial coordinate; ϕ electrical potential;
r1,r2,r3 radii of glass and piezoelectric tubes; µ Poisson’s ratio.
σrr,σθθ stresses; ur radial displacement;

Appendix A

The property parameters of PZT-5H used in the work is shown as below.
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