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Abstract: In order to improve the speech acquisition ability of a non-contact method, a 94 GHz
millimeter wave (MMW) radar sensor was employed to detect speech signals. This novel non-contact
speech acquisition method was shown to have high directional sensitivity, and to be immune
to strong acoustical disturbance. However, MMW radar speech is often degraded by combined
sources of noise, which mainly include harmonic, electrical circuit and channel noise. In this paper,
an algorithm combining empirical mode decomposition (EMD) and mutual information entropy
(MIE) was proposed for enhancing the perceptibility and intelligibility of radar speech. Firstly, the
radar speech signal was adaptively decomposed into oscillatory components called intrinsic mode
functions (IMFs) by EMD. Secondly, MIE was used to determine the number of reconstructive
components, and then an adaptive threshold was employed to remove the noise from the radar
speech. The experimental results show that human speech can be effectively acquired by a 94 GHz
MMW radar sensor when the detection distance is 20 m. Moreover, the noise of the radar speech
is greatly suppressed and the speech sounds become more pleasant to human listeners after being
enhanced by the proposed algorithm, suggesting that this novel speech acquisition and enhancement
method will provide a promising alternative for various applications associated with speech detection.

Keywords: radar speech; 94 GHz MMW; speech enhancement; empirical mode decomposition;
mutual information entropy

1. Introduction

Speech is one of the most important and effective means for human communication, thus,
speech acquisition is particularly important. There are some methods which can be used to
acquire speech signals, such as traditional air-borne microphones and non-air-borne contact
detection. However, traditional microphones are easily disturbed by background noise and their
propagation distance is very short, while other methods using non-air-borne contact detection such as
electroglottography and the bone conduction microphone constrain people’s free movement and make
users feel uncomfortable.

Thus, non-contact speech detection methods have been studied and developed. Optical speech
detection technology, as one such approach, had been used to listen for messages. For example,
Avargel et al. presented a remote speech-measurement system that utilizes an auxiliary laser Doppler
vibrometer sensor, and proposed a speech enhancement algorithm to enhance speech quality [1].
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Recently, radar sensor speech detection technology has also been investigated by many researchers.
In 1998, Holzrichter’s group developed a micro-power impulse radar which was used to measure
the movement of the vocal organs [2]. In order to improve the performance synthetic speech and
speech pathology as well as allow silent speech recognition, Eid et al. explored a novel application of
Ultra Wide Band (UWB) radar speech sensing [3]. Chang’s group presented a Doppler radar system
and successfully extracted speech information from the vocal vibration signals of a human subject [4].
Although these results verified the effectiveness of the radar sensor in speech, they mainly concentrated
on measuring the vibration of the speech organs, instead of examining the performance of the radar
speech detection.

Millimeter wave (MMW) radars were developed in previous research for speech detection. Li’s
group used MMW radar to detect speech signals, which were successfully acquired with a 40 GHz
MMW radar. He also demonstrated that the 60 GHz or 90 GHz radars performed better than the 40
GHz one in this new application [5]. In addition, a MMW radar was examined in our laboratory [6,7].
Li et al. successfully used a 34 GHz MMW radar to acquire speech signals in free space [8,9], however,
the quality of the 34 GHz MMW radar speech was found to be unsatisfactory. In our previous
research, we found that the high operation frequency demonstrated excellent sensitivity for the
acquisition of speech signals [10–12]. Compared with the Ka-band range, MMW frequency in the
W-band range (75–110 GHz) provides a good tradeoff between range and sensitivity for the detection
of biosignals [12–14].

To further improve sensitivity and achieve high quality speech detection, in this paper a 94 GHz
microwave radar sensor with a superheterodyne receiver was employed to acquire speech signals.
In addition, in order to avoid the null point, in-phase and quadrature demodulation technology was
adopted in this radar. A superheterodyne receiver was employed to reduce the DC offsets and 1/f noise.
However, the combined sources of noise, which include ambient, harmonic and electrical circuit noise,
were combined in the acquired speech signals. These types of noise greatly degrade the quality of radar
speech, and seriously affect the applications of the MMW radar speech. Therefore, how to enhance the
quality of radar speech is an important question in radar speech acquisition. Many noise reduction
methods have been proposed for enhancing the quality of traditional microphone speech; these include
mainly the spectral subtraction, Wiener filtering and wavelet shrinkage methods. However, these
methods have several shortcomings which limit their further development. The spectral subtraction
method [15] can reduce global noise in speech, but introduces some musical noise. The Wiener filtering
method is a linear method which is easy to implement and design [16], but since speech signals are
always nonlinear, this results in severe speech distortion. The wavelet shrinkage method relies on the
threshold of the wavelet coefficient, and has been applied to denoise signals [17,18]. The application of
this method is limited because the basis functions of the algorithm are fixed, and it will not entirely fit
real signals. Therefore, it is important for the development of speech enhancement systems to find an
adaptive method aimed at improving intelligibility and reducing speech distortion.

Recently, empirical mode decomposition (EMD) has been proposed by Huang et al. for analyzing
signals from nonlinear and nonstationary processes [19]. Unlike other nonlinear methods, the basis
functions in this case are derived from the signal itself, so the major advantage of the EMD algorithm
is its adaptability. Several authors have studied EMD-based signal noise filtering and successfully
reduced the noise of signals [20–22]. Boudraa et al. introduced a new signal denoising approach based
on the EMD framework. The approach assumes that the noise of the signal is spread across the intrinsic
mode functions (IMFs), and it sets a threshold to remove the noise of the signal; the results show
that the EMD-soft method can effectively reduce the signal noise [23]. However, for radar speech,
the method should also ensure the intelligibility of the speech when reducing noise. If each IMF is
filtered, we find that the noise is suppressed, but the intelligibility of the radar speech is poor. In order
to find the best tradeoff between the intelligibility of radar speech and noise reduction, an algorithm
combining empirical mode decomposition (EMD) and mutual information entropy (MIE) is proposed
for enhancing the perceptibility and intelligibility of radar speech. Mutual information entropy (MIE)
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is a measure of independence between two variables, a theory proposed by Shannon [24]. In this paper,
MIE is used to determine the number of reconstructive components.

This paper demonstrates a potential radar sensor for acquiring high quality speech, and we find
that the quality of the acquired speech was enhanced by our proposed method. The radar sensor can
therefore be used for non-contact speech signal detection over long distances. This will provide a
promising alternative for various applications associated with speech detection.

2. The 94 GHz MMW Radar Sensor

2.1. Quadrature Doppler Radar Theory

The 94 GHz MMW radar system typically transmits a single-tone signal by the transmitting
antenna, and the signal can be described as below:

PTptq “ A cosp2π f0t` θ1q (1)

where A is the oscillation amplitude, and f 0 is the oscillation frequency of the transmitting signal. θ1 is
the initial phase of the oscillator. When the signal is reflected by the human throat with a distance
change x(t), the received signal may be expressed as [4]:

PRptq “ KA cosp2π f0t` θ2 ´
4πxptq

λ
q (2)

where λ0 is the carrier wavelength of the 94-GHz radar sensor, and x(t) is the time-varying displacement
by a target. K is the decay factor of the oscillation amplitude. θ2 is phase modulated by the nominal
distance. Then the received signal and local oscillator signal are mixed, and the mixer signal is filtered
by a low-pass filtering. Thus, the signal can be expressed as [25,26]:

PMptq “
KA2

2
cosp∆θ `

4πxptq
λ0

q ` Nptq (3)

where ∆θ is the constant phase shift dependent on the nominal distance to the target. N(t) is the phase
noise and ambient noise.

It is known that there is a null detection point problem for a single channel radar. This null
detection point occurs with a target distance every λ/4 from the radar. In order to avoid the null point
of the single-channel radar, a quadrature receiver with I/Q channel was designed [27]. The quadrature
receiver with local oscillator phases π/2 apart, insuring that there is always at least one output not in
the null point. The output of the radar quadrature mixer can be expressed as follows [25,27]:

WIptq “ AIcosp∆θ `
4πxptq

λ0
q ` NIptq (4)

and:
WQptq “ AQsinp

4πxptq
λ0

` ∆θq ` NQptq (5)

where, AI and AQ are the amplitudes of the quadrature channel I and channel Q, NI and NQ are
added sources of noise which include ambient noise and electrical-circuit noise for the I-branch and
Q-branch. Therefore, if AI = AQ, the associated phase ω(t) can be extracted by the following equation:

ωptq “ arctan
„

WQptq ´ NQptq
WIptq ´ NIptq



“
4πxptq

λ0
` ∆θ (6)
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2.2. The 94 GHz MMW Radar System

Figure 1 shows a schematic diagram of the 94 GHz MMW radar sensor system. The system is
composed of an oscillator, transmitter module and receiver module. The W-band double resonant
oscillator operates at a local frequency at 7.23 GHz and the power of the reference frequency is 20 mW.
The transmitting and receiving antennas of the radar sensor are both Cassegrain antennas, with a
diameter of 200 mm, a gain of 41.7 dBi, and a beam width of 1˝ at –3 dB levels. The output radio
frequency (RF) power of the transmitting antenna is 100 mW and the equivalent isotropic radiated
power (EIRP) is 61.7 dBm. To begin with, the Dielectric Resonator Oscillator (DRO) of 7.23 GHz emits
a continuous wave signal, and then the frequency of the signal is amplified and feeds into both the
transmitter module and receiver module. In the transmitter module, the local frequency is multiplied
13 times by the frequency multiplier, first it passes through a band-pass filter of 94 GHz, and then
generates a high-stability 94 GHz RF signal, with the beams radiated by the transmitting antenna.
In the receiver module, the noise figure is 7.6 dB. The total gain of RF-IF is 65 dB and the I/Q phase
balance is +/´1 deg. Firstly, the local frequency is multiplied 12 times by the frequency multiplier, and
passes through a band-pass filter of 86.7 GHz, and is then balance-mixed with received signal from
receiving antenna. Finally, a signal is amplified with a low-noise amplifier (LNA) and is then mixed
with two quadrature local signal for the in-phase and quadrature (I/Q) receiver chains. After I/Q
quadrature demodulation, the final signal is sampled by an A/D converter to be transferred to a
computer, and then the speech signal is recorded by the computer.

A superheterodyne receiver is employed to avoid the severe DC offsets and the associated 1/f
noise at the baseband. Moreover, the transmitting and receiving circuits employ two antennas, and
they are separated, which can increase the detection range and reduce interference. The distance
and the angle between the two antennas can be easily adjusted. Furthermore, the I/Q quadrature
demodulation technology can not only effectively avoid the null detection point problem, but also
enhance the signal-to-noise ratio (SNR) by 3 dB compared with the one-signal channel [28].
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2.3. Safety

To begin with, the safety issue regarding human exposure to radar electromagnetic fields should
be taken into account. Thus, the maximum allowed density which exposed to the human should
be computed. In this paper, the radiating power of the radar sensor is 100 mW, the antenna gain is
41.7 dBi. The maximum accepted density exposed S to the human can be computed as [29]:

S
ˆ

W
m2

˙

“
raiating powerˆ antenna gain

4πpdistanceq2
(7)

where the distance represents the minimum distance between the human subject and the radar.
Here, the distance is 1 m. Therefore, the maximum acceptable density S is about 0.3318 W/m2.

The maximum allowed density level accepted safe power density level of 10 W/m2 [30] for
human exposure at frequencies from 10 to 300 GHz. The maximum acceptable power density is much
lower than the maximum allowed density level accepted safe power density level. Therefore, the radar
sensor poses no risk to the human health.

3. Experimental Section

3.1. Subjects and the Experiment

Ten healthy volunteers (five males and five females) participated in the radar speech experiment.
Their ages varied from 20 to 35, and all of them were Chinese native speakers. In the experiment, one
of the volunteers sat in front of the radar sensor with his throat kept at the same height as the radar
sensor. The radar speech sensor was positioned ranging from 2 m to 20 m away from the subjects.
Although the speech signals can be detected at a distance of 20 m, to guarantee high quality speech
signals, a distance of 5 m was selected as a representative distance. The volunteers were asked to
speak one sentence of Mandarin Chinese “1-2-3-4-5-6”. All of the experimental procedures were in
accordance with the rules of the Declaration of Helsinki [31].

3.2. Evaluations

In order to test the performance of the proposed algorithm, both objective and subjective methods
were applied to assess the results. Signal-noise ratio (SNR), speech spectrogram and mean opinion score
(MOS) tests were conducted. In the experiments, three different kinds of background noise—white
noise, pink noise and babble noise—were added to the original radar speech. All the types of noise
were taken from the NOISEX-92 database, and the noisy radar speech with SNRin of –5, 0, 5 and 10 dB.
In addition, to further illustrate the effectiveness of the proposed algorithm, the results were compared
to the spectral subtraction and wavelet shrinkage algorithms.

The SNR is used as an objective measure to evaluate the proposed method’s performance, and
the SNRin of noisy speech is defined by:

SNRin “ 10log10

N
ř

n“1
s2pnq

N
ř

n“1
rxpnq ´ spnqs2

(8)

The SNRout of the enhanced speech is given by:

SNRout “ 10log10

N
ř

n“1
s2pnq

N
ř

n“1
rypnq ´ spnqs2

(9)
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where x(n) is the noisy speech, s(n) is the clean speech, y(n) is the enhanced speech, N indicates the
number of samples in speech, and n represents the sample index.

The speech spectrogram and MOS test are used as the subjective measures to evaluate the
proposed method’s performance. From the speech spectrogram, it can be observed that the signal
strength of different speech spectra over time, the abscissa of the speech spectrogram represents
time, and the ordinate of the speech spectrogram represents frequency. The color depth shows the
speech energy value; the deeper the color, the stronger the speech energy. For the MOS test, ten other
volunteers were instructed to evaluate the intelligibility of the speech based on the criteria of the
mean opinion score test, which is a five point scale (1: bad; 2: poor; 3: common; 4: good; 5: excellent).
All listeners were healthy with no reported history of hearing disease.

4. Methods

4.1. Empirical Mode Decomposition

As the core component of the Hilbert Huang transforms (HHT), empirical mode decomposition
(EMD) is an adaptive method for processing nonlinear and nonstationary signals [19]. Unlike previous
signal processing methods [17,18], the EMD method is intuitive, direct and adaptive. In the whole
process of decomposition, all the basis functions are derived from the signal itself. Therefore, the
method is very well-suited to processing nonlinear and nonstationary signals [32], such as ECG and
speech signal. Given a signal x(t), EMD can adaptively decompose it into a series of oscillatory
components called intrinsic mode functions (IMFs) through the “sifting” process, and each IMF is an
oscillatory signal which consists of a subset of frequency components from the original signal. Figure 2
shows the flow chart of the EMD algorithm.

The sifting process can be described as follows:

1. Locate all the extrema (maxima/minima) of x(t).
2. Interpolate the maxima and minima points by cubic splines to obtain an upper envelope eu(t)

and a lower envelope ed(t), respectively.
3. Compute the average m1(t) of the upper and lower envelopes, subtracted from the original signal

x(t) to obtain h1(t) = x(t) ´ m1(t).
4. Judging whether h1(t) is to satisfies the following two conditions of IMF:

(a) In the whole data item, the number of extrema should be equal to the number of zero
crossings, or one difference at the most.

(b) At any point, the mean of the maxima envelope and the minima envelope should be zero.
That is to say, signal is symmetric about the time axis.

If h1(t) satisfies the conditions to be an IMF, it is regarded as the first IMF1(t), IMF1(t) = h1(t).
5. If h1(t) does not satisfy the two conditions, the h1(t) is regarded as a new signal, steps 1–4 are

repeated on h1(t) to generate the following h2(t). If h2(t) does not satisfy the two conditions, there
is a standard deviation (SD) to terminate the sifting process. The stopping criterion is given by:

SDpiq “
N
ÿ

t“0

|hi´1ptq ´ hiptq|
2

h2
i´1ptq

(10)

Usually, the value range of SD is between 0.2 and 0.3 [19]. If h2(t) satisfies the SD, then the IMF1(t)
= h2(t). If h2(t) does not meet the stopping criterion, and the h2(t) is regarded as a new signal,
steps 1–5 are repeated on h2(t) to generate the following hi(t), until the hi(t) satisfies the two
conditions of IMF or SD. Then, the IMF1(t) = hi(t).

6. Once the IMF1(t) is generated and subtracted the original signal to get a residual r1(t): r1(t) = x(t)
´ IMF1(t). The residual signal is treated as the original signal, and steps 1–5 are repeated to get
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the next residual signal. Therefore, the residual signal can be expressed as rn(t) = rn´1(t)´MFn(t).
At this point, the rn(t) is a monotonic sequence. After the sifting process, the original signal can be
decomposed into several IMF components IMF1(t), IMF2(t), . . . IMFn(t) and a residual sequence
rn(t). Therefore, the original signal can be expressed as:

xptq “
n
ÿ

i“1

IMFiptq ` rnptq (11)
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4.2. Mutual Information Entropy

Mutual information entropy is an information theory measurement for quantifying how much
information is shared between two or more random variables [33]. It can not only describe the linear
correlation between these variables, but also can describe the nonlinear correlation between variables.
The major advantage of MIE is that this method can indicate the correlation between two random
events without any special requirements for the distribution of the types of variables.
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In this paper, MIE is used as a cutoff point to determine the number of reconstructive components.
MIE is always non-negative and can measure the relationship between two variables. The MIE I(X;Y)
between variables X and Y is defined as [34,35]:

IpX; Yq “
ÿÿ

ppx, yqlog2p
ppx, yq

ppxqppyq
q (12)

Entropy mainly measures the uncertainty of random variables, and the MIE can also be
represented by the entropy as:

IpX; Yq “ HpXq ´ HpX |Y q (13)

where:
HpXq “ ´

ÿ

xPΩx

ppxqlog2pppxqq (14)

and:
HpX|Yq “ ´

ÿ ÿ

xPΩx

ppx, yqlog2pppx| yqq (15)

The more uncertain the event X is, the larger H(X) is. Basically, the stronger the relationship
between two variables is, the larger MIE they will have. Zero MIE means the two variables are
independent or have no relationship [36].

4.3. Selecting the Reconstruction Components

Figure 3a shows original radar speech contaminated by white noise. Figure 3b shows the
decomposition of the original radar speech signal by EMD. From top to bottom, the frequencies of
IMFs decreased gradually. In general, the noise of the signal is spread across the IMFs. From Figure 3b,
it is observed that the first three IMFs are mainly noise, and there are few useful original signals.
From the fourth to the ninth IMFs, it is observed that there are many useful original signals and the
IMFs are very similar to the original signal, but some noise components still remain. From the tenth
to the last IMFs, the frequencies of the IMFs are lower and the amplitudes are smaller, and there is
detailed information about the original signal. Thus, it is assumed that the original radar speech can be
decomposed into high frequency modes, middle frequency modes and low frequency modes. The high
frequency modes are mainly noise and interference signal, the middle frequency modes mainly include
original useful signals and the low frequency modes mainly are the detailed information from the
original signal. In short, the noise is mainly concentrated in the high frequency and middle frequency
modes, and there is much less in the low frequency modes.

Some authors have used a wavelet soft-threshold method to remove the noise of IMFs.
This method is often employed to process all the IMF components. However, with regard to radar
speech, if all the frequency modes are denoised, we find that while the noise is suppressed, the
intelligibility of the radar speech is poor. It is because the detailed information from the original signal
is removed. Thus, in order to achieve a good tradeoff between radar speech distortion and noise
reduction, the high and the middle frequency modes are denoised firstly, and then reconstruct speech
signal with the processed IMFs and the remaining low frequency modes.

The mutual information values are sequentially calculated in the adjacent IMF components energy
entropy. According to the information theory, the MIE of adjacent IMF components will be in order of
large to small, and then back to large:

#

If IpIMFi, IMFi`1q Ó and IpIMFi`1, IMFi`2q Ò

k “ f irstparg min
1ďiďn´1

rIpIMFi, IMFi`1qsq
(16)

The point which the minimum MIE appears is selected as the cutoff point to distinguish the high
frequency and the middle frequency modes. In order to find the cutoff point of the middle frequency
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and the low frequency modes, the fixed threshold (FT) was defined as 10´1. If the maximum amplitude
of IMFs are lower than the FT, it can be assumed that these IMFs are low frequency modes.Sensors 2016, 16, 50 
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4.4. The Proposed Algorithm for Radar Speech Enhancement

In the speech enhancement based on the proposed algorithm, the threshold plays an important
role in removing noise from radar speech signal. The threshold was estimated by [17,23]:

Thri “ σi

b

2logpNq (17)

where N is the signal length, σ is the estimated noise level and is defined by [22]:

σ “
median t|IMF1ptq ´median tIMF1ptqu|u

0.675
(18)

In this paper, the soft thresholding function is employed to denoise the high frequency and middle
frequency modes for speech enhancement [18,23]:

IMF1i ptq “

#

sign tIMFiptqu tIMFiptq ´ Thriu |IMFiptq|ě Thri
0 |IMFiptq| ď Thri

(19)



Sensors 2016, 16, 50 10 of 14

Afterwards the high frequency and middle frequency modes are processed by the soft
thresholding. Then, the enhanced speech y(t) is reconstructed with the processed signal IMF1i ptq
and the remaining low frequency modes. The y(t) is given by:

yptq “
k
ÿ

i“1

IMF1i ptq `
n
ÿ

k`1

IMFiptq (20)

where k is the number of the high frequency and middle frequency modes, and n is the number of
IMFs. In conclusion, the proposed algorithm for radar speech enhancement includes the following
steps:

1. Decompose the given signal x(t) into IMFs using the sifting process.
2. Compute the energy entropy of each IMFs using Equations (14) and (15).
3. Compute the MIE of the adjacent IMF components using Equation (13).
4. Determine the cutoff point of high frequency and middle frequency modes using Equation (16).
5. Determine the cutoff point of the middle frequency and low frequency modes using the FT of IMF.
6. Denoise the high frequency and middle frequency modes using Equations (17)–(19).
7. Reconstruct the speech with the processed signal and remaining low frequency modes using

Equation (20).

5. Results and Discussion

This section mainly presents the performance of the proposed algorithm. Speech time domain
waveforms and spectrograms are appropriate tools for analyzing speech quality. They can evaluate
the extent of noise reduction, residual noise and speech distortion by comparing the original radar
speech and the enhanced speech. Figure 4 shows the time-domain waveforms and the spectrograms of
the radar speech “1-2-3-4-5-6”.

Figure 4a,e show the waveform and spectrogram of the original radar speech, respectively. It is
observed that the original radar speech signals are contaminated by some noise. Figure 4b–d show
the waveforms of the radar speech enhanced by the spectral subtraction algorithm, wavelet shrinkage
algorithm and the proposed method, respectively. Figure 4f–h show the corresponding spectrograms
of the radar speech enhanced using the three algorithms. Figure 4b,f show that the spectral subtraction
algorithm is effective in reducing the combined noise of the radar speech, but the algorithm introduces
some new musical noise to the enhanced speech, so the intelligibility of the radar speech was not
improved. Figure 4c,g show that the wavelet shrinkage algorithm can also effectively reduce the
noise of the radar speech, but in this case the change in the color depth illustrates that the essential
information of the speech is removed. This results in severe radar speech distortion. Figure 4d,h
show that the proposed EMD and MIE methods not only reduce the low frequency noise in which the
combined noise are concentrated, but also eliminates the high frequency noise completely. In addition,
to a large extent, the essential signal information of the radar speech is still preserved. These results
suggest that the proposed algorithm outperforms the spectral subtraction and wavelet shrinkage
algorithms, and that the proposed algorithm is an effective way to improve the quality of radar speech.

To test the proposed algorithm, a subjective MOS test was used to evaluate the quality of the
enhanced radar speech. Ten listeners were selected to listen to the enhanced radar speech sentences
using the three algorithms. The results of the averaged MOS under three types of noise at a SNRin of
5 dB are presented in Table 1. It can be seen from the table that all the scores of the enhanced speech
processed by using the three algorithms are improved, especially the proposed method obtained the
highest score, between “3” and “4”, followed by the wavelet shrinkage method, with a score of around
“3”, meanwhile the spectral subtraction algorithm achieved the lowest score. The results suggest that
the proposed method presents the highest speech intelligibility and is more pleasant to the listeners.
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the original radar speech; (b,f) are enhanced speech obtained by the spectral subtraction; (c,g) are
enhanced speech obtained by the wavelet shrinkage; (d,h) are enhanced speech obtained by the
proposed algorithm.

Table 1. Comparison of the results of averaged MOS with three types of noise at a SNR of 5 dB.
The numbers in the brackets represent standard deviation for these mean opinion scores.

Enhancement Algorithms White Pink Babble

Spectral subtraction 2.78 (0.30) 2.98 (0.38) 2.64 (0.35)
Wavelet shrinkage 3.25 (0.46) 3.37 (0.32) 3.21 (0.27)
Proposed method 3.59 (0.37) 3.71 (0.35) 3.56 (0.42)
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The listening tests also indicated the EMD and MIE method is the most suitable for enhancing the
radar speech. The method obtained a good tradeoff between the intelligibility and noise reduction.
This is because EMD is an adaptive method for processing nonlinear and nonstationary signals, and
it does not require presetting fixed basis functions, as all the basis functions are derived from the
signal itself. The wavelet shrinkage algorithm will cause severe speech distortion when reducing
noise. The spectral subtraction algorithm introduces some musical noise into the enhanced radar
speech, so the perceptibility and intelligibility of the radar speech are not improved greatly, and the
resulting speech sounds unpleasant to listeners. An objective measurement, the signal-noise ratio, was
employed to evaluate the performance of the proposed method. We added babble noise, white noise
and pink noise with SNRin of –5, 0, 5 and 10 dB to the original radar speech. The results of the SNRout

obtained for different noise types and algorithms are seen in Table 2. It can be seen that the three
methods lead to an increase of SNRout values at different SNRin levels, and the results demonstrate
the effectiveness of the three methods. The SNRout obtained by the proposed method is much higher
than those obtained by the spectral subtraction and the wavelet shrinkage algorithms. Even for low
SNRin values, it can be observed the effectiveness of the proposed method in removing the noise
components, and we can observe that the spectral subtraction algorithm achieved the worst speech
enhancement. Especially at the SNR of 10 dB level, the spectral subtraction led to a decrease of SNRout.
This is due to musical noise being introduced to the speech. The wavelet shrinkage and the proposed
algorithm performed better, and this is attributed to the time adaptive threshold strategy. However, the
superiority of the proposed method over wavelet shrinkage is due to the adaptive decomposition of
the speech signal provided by EMD, as it does not rely on the fixed basis functions.

Table 2. Comparison of the SNRs obtained by using three enhancement algorithms.

Enhancement Algorithms
White Pink Babble

´5 0 5 10 ´5 0 5 10 ´5 0 5 10

Spectral subtraction 4.1 7.1 8.9 9.7 3.7 6.8 7.4 9.2 2.3 3.7 7.1 8.7
Wavelet shrinkage 4.6 7.6 10.2 12.3 4.1 7.2 8.6 12.1 2.7 5.6 7.3 11.9
Proposed method 5.2 7.5 10.9 14.9 4.8 7.3 10.2 13.7 3.9 6.7 10.1 12.3

6. Conclusions

In this paper, a 94 GHz millimeter wave (MMW) radar sensor was employed to acquire speech.
A superheterodyne quadrature receiver was designed to reduce the severe DC offsets and the associated
1/f noise at the baseband. An EMD and MIE algorithm was designed to enhance radar speech signals,
and the performance of proposed algorithm was evaluated by both objective and subjective methods.
The results show that human speech can be effectively acquired by a 94 GHz MMW radar sensor when
the detection distance is 20 m. The results also show the advantages of the radar speech sensor in long
distance detection, preventing acoustic disturbance and ensuring high directivity. Therefore, this novel
radar sensor and signal processing method is expected to provide a promising alternative to current
methods for various applications associated with speech.
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