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Abstract: In the detection of moving objects from vision sources one usually assumes that the scene
has been captured by stationary cameras. In case of backing up a vehicle, however, the camera
mounted on the vehicle moves according to the vehicle’s movement, resulting in ego-motions on
the background. This results in mixed motion in the scene, and makes it difficult to distinguish
between the target objects and background motions. Without further treatments on the mixed motion,
traditional fixed-viewpoint object detection methods will lead to many false-positive detection
results. In this paper, we suggest a procedure to be used with the traditional moving object detection
methods relaxing the stationary cameras restriction, by introducing additional steps before and after
the detection. We also decribe the implementation as a FPGA platform along with the algorithm.
The target application of this suggestion is use with a road vehicle’s rear-view camera systems.

Keywords: moving object detection; mixture of Gaussians; pyramidal Lucas-Kanade optical flow;
backup collision intervention

1. Introduction

Improvements to the function, reliability, and manufacturing process of various sensors making
them small, sensitive, and yet strong enough, have made it possible to use those sensors in
automobiles [1–4]. One of its major applications is Backup Collision Intervention (BCI), which informs
drivers of obstacles behind the vehicle by giving visual, aural, or tactile feedback. So far this technology
has utilized laser, ultrasonic, microwave radar, and vision sensors to measure the distance from the
vehicle to obstacles. Although they differs by specific application, those on-board sensors work as
the main components for the BCI function independently or in conjunction with others. Drivers of
vehicles with extended bodies or carrying oversized loads may have difficulty in seeing behind them
directly through the rear-view mirror. As a part of BCI components, on-board monitors connected to
a camera mounted on the back of the vehicle provide a visual aid to its user, helping the driver avoid
obstacles behind while backing-up. In addition to covering the blind spots, further processing of the
video feeds may provide more features such as moving object detection. The processed information
then can be integrated back to the original video feed.

Although many other sensors detect stationary obstacles well based on the distance between
objects and the vehicle, we focus on moving objects that are beyond the active sensor’s range that
might still require the user’s attention while backing up. As a practical approach, we do not assume
the obstacles to be of any specific type, therefore, in our suggested method the target objects can range
from pedestrians to other vehicles. If available, the detection results may also further processed in
combination with the results from other sensors to provide on the screen information in integrated
form such as distance, speed, and direction.
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Meanwhile, vision-based moving object detection is a major theme in the computer vision arena,
and vast number of suggestions has been made. However, many of them assume its viewpoint to
be stationary [5–8], because the movement introduced to its vision source is also reflected on the
background of the taken scene. Without proper distinction, the mixed motion between the background
and foreground object is hard to separate out. Since our target application is a vision-based BCI
system mounted on the back of a vehicle, movement of the viewpoint is inevitable. Therefore, in our
suggestion, we first compensate for the background movement, called ego-motion, for later processing
using the traditional object detection methods. This is possible because of the unique characteristics of
the slow-moving back-up movement, which introduces mild motions across the scene. The uniform
vectors found all over the frame then be extracted, and based on those vectors, a rough compensation
of the background will be made. The actual object detection routine is then performed using the
difference between a frame and the compensated background frame at the time. This paper first
examines the previous methods for object detection. Details about the suggested procedure then follow,
and we discuss about the implementation of the suggestion as a hardware platform.

2. Background Works

In computer vision, finding target objects without additional information from other sensing
sources is a challenging job [9]. Despite its ill-posed characteristics, various object detection algorithms
having been introduced for vision-based applications such as surveillance cameras, robotics, intelligent
systems, and smart devices. Yilmaz et al. classified those algorithms into four types according to the
completeness of the detected target objects: feature point detectors, image segmentation, supervised
learning, and background subtraction [10].

Among other methods, we focus on background subtraction methods to extract the moving
objects from image frames. Supervised learning methods, on the other hand, use object classifiers in
the form of decision trees or networks [11–13]. To build those decision-making networks, analysis of
the every type of target object is required. However, due to the fact that any kind of object can obstruct
the vehicle’s course, it is impossible to prepare a tree for all types of objects, including unknown ones.
Therefore learning-based object detection should not be used in a vehicle backing-up scenario.

In this section, we introduce background subtraction methods first, followed by optical flow
which widely finds motion vectors between two consecutive frames. In fact, those vectors are key
components for deriving the movement of vision source itself. The optical flow will also be used later
in detecting, distinguishing, and finding objects which are moving in the source frames.

2.1. Background Subtraction

Background subtraction is a method of separating moving foreground objects from stationary
background images. In a video sequence taken from a traffic monitoring camera, for example, vehicles
can be separated out from stationary objects such as road markings and traffic signs which are found
on the same location over frames. This separation is necessary to transform the video data into traffic
information since the moving vehicles are of more interest than the road itself in most cases. To separate
the foreground and background objects, building the information about background objects is essential.
For this purpose, the background image is kept in various forms during the subtraction process.
The actual form differs among methods though, keeping the background information as accurate as
possible is critical. Among the background subtraction methods, one common background extraction
method is to hold pixels relatively consistent across two or more consequent images, while rejecting
other pixels whose value rapidly changes.

Frame differences [5] were one of earliest suggestions of a background subtraction process.
This generates a background image by simple frame differences between two consequent images,
making the method depend solely on the previous frame. Due to its simplicity, this method has modest
computational loads and the background image can be generated with only two frames. The simplicity
also makes the background references highly adaptive, resulting in very fast updating of background
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changes. The major drawback is however that moving foreground objects may easily become part of
the background if the object is stopped for more than one frame. The interior pixels of an object also
may not be distinguished correctly if the inside has a uniformly distributed intensity value, leaving no
difference between the two frames.

Instead of simple subtraction, approximated median [6] keeps an accumulation of approximated
pixel values, continuously updating the background image in the result. During the approximation,
the generated background converges to a median value of all frames, therefore, background objects
which are stationary across several frames may be better imprinted than foreground moving objects
which have less opportunity to converge. Although the number of frames used in this convergence
process depends on the pixel values of the objects, it is generally much longer than the simple frame
difference. Temporarily stopped foreground objects or ones with a plain interior can now be better
filtered than with simple frame differences, unless the object becomes part of the background by
appearing in the same position longer than the originally occluded background.

Gaussian mixture models [7,8], on the other hand, process the input frames in different ways.
Unlike the abovementioned methods, background components are accumulated as terms of Gaussian
distribution functions, and the terms do not directly depict a background image at a specific moment.
Rather, the Gaussian distribution functions decide whether a pixel from the input image is foreground
or background. This statistical determinant is effective for minor changes in the background, such as
waving leaves, moving clouds, or raindrops. Furthermore, using mixtures of such functions makes the
method multimodal. That is, in the moving clouds example, both clouds and occluded sky should be
considered as background. Thus, the distribution must be at least bimodal to classify the clouds and
sky as background at the same time.

Recent suggestions on the background subtraction, on the other hand, use sophisticated techniques
in combination with those basic ones. Several methods use advanced statistic models to extract
backgrounds from moving viewpoints [14–17], while others suggests the use of neural networks or
outlier detection models [18,19]. These subtraction models are further categorized into 17 groups
according to their main characteristics [20].

2.2. Optical Flow

Rather than background subtraction, another strategy to find moving objects from consequent
video frames is by using the optical flow of the frames. According to its definition, optical flow
is a motion of apparent movement of brightness patterns in an image, making it sensitive to light
sources [21]. Finding the movement can be described as finding the displacement δwhich minimizes ε
in the following equation:

εpδx, δyq “

ux`wx
ÿ

x“ux´wx

uy`wy
ÿ

y“uy´wy

`

I1px, yq ´ I2px` δx, y` δyq
˘

(1)

with a given point x, y in an image I. Searching for such a value is performed within a small
window w. The window should be introduced because it becomes an aperture problem without
the window. An adequate window size provides hints on the direction of vectors from searching
through neighbouring points. To find displacements between two consequent frames, various optical
flow estimation techniques are introduced [21–24]. The derived displacements, or flow vectors, contain
both the directions and magnitude of pixels, and these vectors are grouped together to form objects.
Besides optical flow methods, further classification processes are needed to separate the vector group,
in turn which represents the movement of an object, into foreground or background. For this purpose,
various statistical grouping algorithms, such as RANSAC and K-means clustering are used [25,26].

Both background subtraction and optical flow methods have been widely used for applications
including intrusion or motion detection from video stream with stationary cameras. Recent studies
showed that the use of grouping algorithms with optical flow also alleviates the limitation of using
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stationary cameras for some level by further classification of feature points into two different motion
groups [25,26]. Rather using classification methods, in our suggestion, we combine a background
subtraction and an optical flow process to eliminate the stationary restriction and derive backgrounds
at the same time. The key benefits of using this combinational approach are that the background
motion, known as ego-motion, can be cancelled by its optical flow vectors, and the each detection
result from optical flow and background subtraction can be cross-checked later.

3. Moving Object Detection

In this section, we present the proposed procedure for moving object detection. To achieve better
detection and less false positives than previous standalone approaches with moving view sources,
our proposed scheme uses both background subtraction and optical flow methods simultaneously.
As shown in the Figure 1, this combinational scheme is composed with the following two step approach:
background motion compensation, and object detection. The actual detection of moving objects is done
in the object detection part by using the optical flow between a frame and the derived background at
the moment. In our suggestion, a background frame is defined by the difference between two video
frames, thus, object detection can be started with a sequence having at least two frames.
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Figure 1. Overall detection procedure of the proposed scheme. 

3.1. Background Motion Compensation  

As the camera on the vehicle moves freely, the image sequences obtained from the camera 
contain motions of both background and target objects. Therefore, when a new frame arrives, the 
ego-motion of background at that time needs to be eliminated first. In our scheme, the ego-motion 
is induced by optical flow estimation between the newly captured frame and previously derived 
background components. The background components, on the other hand, are derived by Gaussian 
mixture models. Since we have movements in the background, the multimodal distribution 
functions discussed previously are needed for distinguishing the moving background objects. In 
this approach, background frames are stored as Gaussian mixture function terms, and if the 
ego-motion vector is induced, the entire background terms can be shifted back along the vector, 
resulting in compensated background terms. 

To derive the motion vector disparities of each pixel, we use an optical flow method which is 
based on the pyramidal Lucas-Kanade optical flow and warp theory [23,27]. In this method, the 
overall optical flow is derived through several scales. The input images are scaled down into 
specified sizes for each level, similar to the pyramid structure. Optical flow results on each level are 
then scaled back and summed to form the overall disparities for all pixels between the two frames 
like one in the Figure 2. After the disparity between previous background and current frame has 

Figure 1. Overall detection procedure of the proposed scheme.

3.1. Background Motion Compensation

As the camera on the vehicle moves freely, the image sequences obtained from the camera
contain motions of both background and target objects. Therefore, when a new frame arrives, the
ego-motion of background at that time needs to be eliminated first. In our scheme, the ego-motion
is induced by optical flow estimation between the newly captured frame and previously derived
background components. The background components, on the other hand, are derived by Gaussian
mixture models. Since we have movements in the background, the multimodal distribution functions
discussed previously are needed for distinguishing the moving background objects. In this approach,
background frames are stored as Gaussian mixture function terms, and if the ego-motion vector is
induced, the entire background terms can be shifted back along the vector, resulting in compensated
background terms.

To derive the motion vector disparities of each pixel, we use an optical flow method which is
based on the pyramidal Lucas-Kanade optical flow and warp theory [23,27]. In this method, the overall
optical flow is derived through several scales. The input images are scaled down into specified sizes
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for each level, similar to the pyramid structure. Optical flow results on each level are then scaled
back and summed to form the overall disparities for all pixels between the two frames like one in the
Figure 2. After the disparity between previous background and current frame has been derived, it is
possible to extract the ego-motion from the entire pixel flow. This normalization process incorporates
the generation of histogram statistics on all displacements and selection of the most frequent flow as
the representative background movement. In our suggestion, the size of each histogram section is
adjusted so there exist 100 sections. The estimated ego-motion vector is composed with the average
values of the elected sections on each axis, such as ´0.75 and ´0.02 in Figure 3.
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Before compensating the ego-motion, the background component should be built first. There are
several methods to do this, as we discussed in the previous section, but we use Gaussian mixture
models for their better adaptation to partial movements of the background itself. In this model, pixels
of the background frame are stored as mean terms for the Gaussian functions. The mean and deviation
terms are affected by upcoming frames with predefined update factors, therefore, the mean term can
be changed over frames. At the very beginning of background subtraction, the mean term is initialized
by the first frame directly, assuming it is a background image.

With the estimated vector and the subtracted background components, now it is possible to
compensate the background motion. This action is done by a simple shift of the mean and deviation
terms of the Gaussian Mixture functions along with the estimated vector, but being aware that the
estimated movement is usually less than one, so the shift action should be handled as a convolution
between the terms and the motion vector. The mean term after the shift action now can be seen as the
compensated background.

3.2. Object Detection

Although it may seem possible to extract target objects using the frame differences between
the compensated background and the current frame, the simple comparison between those frames
contains both false-positives and false-negatives. This leads the detection results to have way too much
noise and yet even less detection tendency than the results obtained sing optical flow methods alone.
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To solve this problem, we use optical flow between the background and the current frame to deduce
the motion vectors of all pixels. At this point, the resulting vectors which have different magnitude and
direction than the background can be grouped into moving regions, and the regions can be reported as
the moving objects.

To group the regions from scattered motion vectors, a threshold magnitude value should be
presented. In our suggestion, we added a routine that chooses the threshold which can bisect and holds
at most 5%–38% of overall vectors in a frame. This is because the optical flow between a background
and a frame with relatively big ego-motion tends to yield many more false-positives. In this case, the
threshold magnitude needs to be big enough to be less sensitive to both the background and foreground
movement, resulting in reduced false-positives. The background motion magnitude determinant has
to be chosen based on its application, so that the routine can choose the percentage proportionally
according to the determinants.

Before reporting the final detection results, it is also possible to further apply a simple filtering
process which can reduce false-positives. Since we derived the detection results solely from the optical
flow method, the aforementioned frame difference between the background and the current frame is
still valid for cross-checking with the results. In this usage, the subset of optical flow results, shown
as red and green rectangles in the left picture of Figure 4, can be reported as moving objects which
also have been confirmed as moving objects on the frame difference results. Other filtering methods
including a median filter on the results are also possible.
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4. Experimental Results

To evaluate our suggestion and compare the results with other methods, we present two
experimental results in this section. In most cases, evaluations on optical flow based methods are
usually focused on the terms of precision and recall, relative distance, angular error, and computation
time. Since the accuracy is what matters in our target application, we mainly state the precision and
recall terms. Precision and recall are defined as follows:

Precision “
True positive

True positive` False positive
(2)

Recall “
True positive

True positive` False negative
(3)

where true positive is the region first detected by the algorithm that turned out to be actually moving.
False positive is the region reported by the algorithm as moving when it actually only contains
background. False negative is the region which should be reported as a moving object but not detected
by the algorithm. Thus, the precision term reflects the accuracy of overall detected results while recall
depicts the sensitivity of the algorithm.

The first sample sequence in Figure 5 consists of 200 consecutive frames capturing three vehicles
moving from right to left [28]. The camera also moves right to left along with the first vehicle,
leaving ego-motion on its background pixels. In this sample, two rank-constraint models [18,26] result
precision of 0.83, 0.95 and recall of 0.99, 0.92 are used, respectively, while the suggested procedure
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gives precision of 0.98 and recall of 0.78 (see in Table 1). Since the scenario of the target application
focuses on rather closer obstacles, better precision on those can draw the immediate attention of the
drivers by reducing false-alarms.Sensors 2016, 16, 23 
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Figure 6. The FPGA platform with camera. The (a) platform takes LVDS signal from (b) camera and
outputs as HDMI signal. External HDMI recorder was needed for further analysis as the platform
processes the input frames on-the-fly.

For the test, it took 19 videos 150 frames each, at seven frames per second, having both ego-motion
towards the rear side and the target object’s movement. Figure 7 and Table 2 show parts of the
sequences with false-positive and negative analysis results on all 19 test scenarios.
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Figure 7. Part of detection results from the test vehicle. Tests were conducted in several places and 
under various conditions such as (b,c) parking lots and (a,d), streets ranging from (a,c) daytime to 
(d) dusk. All 19 videos including the above four were taken while the vehicle was in backwards 
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5. Conclusions

In this paper, we discussed two types of methods for moving object detection and their constraints.
We suggested a combinational method and false-positive filters to relieve the stationary viewpoint
constraint. Experimental results show the overall improvement in the term of precision, which is
an important feature for use with BCI applications.
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