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Abstract: Health monitoring of lightweight structures, like thin flexible plates, is of interest in several
engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of
such structures through data collected by a network of optimally placed inertial sensors. As a main
drawback of standard monitoring procedures is linked to the computational costs, two remedies
are jointly considered: first, an order-reduction of the numerical model used to track the structural
dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter,
which features an extended Kalman updating of each evolving particle before the resampling stage.
The former remedy can reduce the number of effective degrees-of-freedom of the structural model
to a few only (depending on the excitation), whereas the latter one allows to track the evolution of
damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed
procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure
is appropriately fed by measurements, damage is efficiently and accurately estimated.

Keywords: structural health monitoring; reduced-order modeling; proper orthogonal decomposition;
particle-Kalman filtering; inertial sensors

1. Introduction

The health monitoring of aging structures and infrastructures [1-4] is nowadays becoming
more and more important, and can exploit devices and methodologies developed within the field of
embedded or inclusive smart technologies [5-7]. The envisioned structural health monitoring (SHM)
systems have to sense in real-time the changing environment, so as to send out early warnings if
dangerous situations are approached. Such feature would also be appealing if structures have to be
monitored in regions where environmental and geological risks are of concern [8].

To provide some data highlighting the timeliness of smart SHM technologies, it is worth noting
that a high percentage of civil structures and infrastructures in the developed and industrialized
nations was built in the first half of the twentieth century: over 50% of the bridges in the USA were
built prior to 1940 [9]; furthermore, over 42% of all the aforementioned bridges are structurally deficient,
as reported in [10]. In Canada, over 40% of the bridges were built earlier than 1970, and a majority of
them demands prompt rehabilitation, strengthening or replacement [11].

The aim of this paper is the development of an online damage identification method, or SHM
strategy based on recursive Bayesian filters [12]. Such filters have been already successfully applied
to the (grey-box) identification of shear-type buildings: in [13], unscented Kalman and particle filters
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were adopted for the online parametric identification of nonlinear hysteretic models with uncertainties;
in [14], an efficient extended Kalman-particle filter scheme was adopted for the online identification
of a structural model featuring a softening inter-story behavior. Recently, the attention has also been
drawn to input-state estimation so that the obtained structural response can be used for the fatigue
damage assessment, via vibration measurements, of structures subject to cyclic loadings [15,16].

The focus of the present study is on the design of a SHM strategy featuring fast, robust and
unbiased estimations of damage indexes, obtained thanks to partial observations of the structural
response. Within this frame, the aforementioned local damage indexes quantify the reduction of the
stiffness properties of the structure. A similar approach can be adopted to also estimate the local
reduction of the materials strength properties, although this topic is out of the scope of the current
work and will be investigated in future activities. We therefore assume that the structure behaves
piece-wise linearly, within any time window between subsequent observations of the structural
response; accordingly, only the time-varying elastic properties of the system need to be identified. The
goal of fast and accurate monitoring of these systems is here attained by introducing an effective model
order reduction technique, to guarantee low computational costs, and by optimizing the deployment
of a limited number of (inertial) sensors, collecting the observations of the system response.

The model order reduction is achieved through a Galerkin projection of the original full structural
model onto a sub-space spanned by the so-called proper orthogonal modes (POMs), computed via
proper orthogonal decomposition (POD) in its snapshot version [17-19]. The simultaneous, dual
estimation of the reduced-order structural state and of the mentioned damage indexes is obtained
with a particle filter, enhanced through the use of an extended Kalman filter before the resampling
stage [14,19]. The analysis of such dual estimation procedure, featuring an augmented state vector that
gathers both the state of the system and the parameters to be tuned, can be traced back to [20] and,
somehow, to the seminal paper [21]. In recent years, nonlinear dual estimation problems related to
structural dynamics have been tackled with the use of the extended Kalman filter (see [22,23] among
others), of the unscented Kalman filter [24], of particle filters [25,26], and of hybrid particle-Kalman
filters [19,27]. Hence, in this work we do not focus on the development of a new filtering technique
but we instead show how a hybrid particle-Kalman filter can be adopted to identify on-the-fly the
time-dependent properties of a reduced-order model of the structural system.

It is known that, as number of parameters to be identified increases, the accuracy of identification
tends to decrease: this issue can be linked to the so-called curse of dimensionality. When dealing
with the identification of structural systems featuring a large number of degrees-of-freedom (DOFs),
methods like component mode synthesis were developed for reducing the number of unknown system
parameters in procedures for model updating; with this approach, modal properties are identified
offline. In this study, the goal is the online and real-time estimation of the damage parameters of
the system, so the POMs are directly obtained from the response of the system in the initial training
phase. As the inception and growth of damage modify the structural properties and, thereby, the
relevant response to the external actions, the sub-space spanned by the POMs needs to be continuously
updated during the filtering process; such update is here obtained thanks to a further Kalman filter.
The resulting intricate formulation allows tracking the time evolution of the damage parameters as
well as of the state of the partially observed system.

To assess the capability of the proposed SHM procedure, a thin plate subject to bending-dominated
deformations and (possibly) time evolving damage is considered. It is shown that the filter is able to
identify the spatial distribution of damage even if an extremely low number of POMs (on the order
of 1 to 4) is adopted. This strongly reduced-order of the model handled by the filter is not strictly
related to the kind of excitation considered; it takes instead advantage of the filter adopted to track the
evolution of the POMs, which beneficially affects the overall accuracy of the procedure. Concerning
observations, it has been assumed that a network of inertial sensors is surface-mounted on the plate,
according to what proposed in [28,29]. To investigate the computational advantage of the proposed
method, the computational complexity and the CPU time have been considered: it is demonstrated
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that the proposed method can speed-up the analyses up to hundreds of times in comparison to the full
finite element model.

Methods similar to the one adopted herein for dual estimation and sub-space update, were
recently developed and successfully applied to shear-type buildings in [18,19]. The current study
represents an evolution of previous works, as it proves to be able to locate and estimate a structural
damage via a few vibration measurements only.

The remainder of this paper is organized as follows. In Section 2 the proposed SHM strategy is
described: first, the model order reduction approach is detailed; next, the intricate filtering strategy,
developed to simultaneously track the damage evolution and the response of the structure in the
reduced-order space, is reported. In Section 3, results are shown for the SHM of a thin square plate
displaying a reduction of its stiffness properties. Some closing remarks and suggestions for future
developments are gathered in Section 4. Finally, Appendix A collects some major algorithmic details
of the proposed procedure.

2. Methodology

As already discussed, the health monitoring of real-life structures with complex geometry and/or
boundary and loading conditions can become extremely time consuming, as an accurate model to
interpret the collected measurements has to be provided.

In order to send out warnings as soon as dangerous conditions are approached, the SHM
procedure cannot be run offline; accordingly, a reduced-order model of the system has to be set
with a high level of fidelity; this issue is here tackled through POD. Since reduced-order modeling
introduces additional uncertainties into the structural model, the Bayesian procedure used to provide
the estimations of damage amount (if any) and location can become inaccurate. Such problem is next
handled through a fully automated filtering methodology able by itself to enhance the accuracy of
the reduced-order model, adapt it to possible structural changes and simultaneously estimate the
local damage.

2.1. Model Order Reduction

The dynamic behavior of any space-discretized (e.g., through finite elements) mechanical system
can be described through the following vector-valued equation of motion [19]:

Mii (t) + D (t) + Ku (t) = F(t) 1)

where ¢t is time; u € R" is the vector that collects the kinematic quantities describing the structural
response, either displacements or rotations for the considered plates; as a superposed dot stands
for time derivative, i and ii, respectively, gather the relevant velocities and accelerations; M is the
mass matrix; D is the viscous damping matrix; K is the stiffness matrix; and F is the vector of the
external forces.

The model order reduction technique is set to decrease the dimension of the vectors gathering
the kinematic quantities and their time derivatives and, therefore, of the matrices in Equation (1).
The reduction is obtained via a projection of system dynamics onto a low order sub-space, leading to:

M () + D& (t) + Ka(t) = F (t) @)

where &« € R!, with | < n, and [18,19]:

M =M,
D = o] DP, 3)
IC = ®[K®,

F=®]F
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where, above, ®; € R"*! is a matrix wherein POMs are arranged according to:
o, =[®! - q>l]

This projection matrix allows linking the kinematic variable vectors in Equations (1) and (2)
through u (t) = ®;« (), and gathers the required number ! of POMs to attain an a-priori defined
degree of (energy-like) accuracy. Details relevant to this topic can be found in [18,19,30,31] and are not
further discussed here. POMs are obtained through a principal component analysis of a matrix built
around the so-called structural snapshots, which provide the evolution in time of the system response
to the external loads (see [17] and [32]). The snapshots are collected in the initial training stage of the
reduced-order modeling procedure. The computational burden of this stage is basically linked to the
number of snapshots that guarantee the convergence towards a steady-state solution ®;; adaptive
procedures are available to reduce this to a minimum, see e.g., [32]. As already reported in [18], for
systems like shear buildings subject to earthquake excitations, the duration of the training stage can
be simply based on the fundamental period of vibration of the structure, and a collection of around
30 — 50 snapshots proves sufficient to approach the mentioned steady-state.

POD has been devised for linear systems; to cope with an evolving damage state, leading to
a time-dependent stiffness matrix K, the POD is here coupled with a Kalman filter that continuously
adapts the sub-space onto which the model evolution is projected. Such simultaneous use of a filter has
been devised for systems whose nonlinearity slowly evolves in time; if abrupt changes of the system
properties occur, the proposed procedure requires some time for the reduced-order model to adapt to
the new structural health, and so some delay in the tracked damage conditions can emerge.

2.2. Damage Detection and Localization

To estimate the possible local damage, the SHM procedure is driven by the reduced-order model
only. The problem is framed as a dual estimation one, within which both the dynamic evolution of the
structure and its local integrity are retained in a state vector that reads, at time f;:

K
&
%=\ & )

dy

where vector oy collects the current values of the generalized coordinates associated with the
reduced-order model; vector dj collects instead the local damage indexes d;; (for i = 1,...,Np)
of all the Nj, zones in which the structure is conceptually decomposed. Hence, it turns out that
xi € R¥*FNr. As reported in Equation (4), not only the generalized coordinates oy but also their time
derivatives & and &y are retained in x¢. Such increase of the number of the state components has been
already targeted in [24,33,34] as a necessary condition to track the nonlinear evolution of the statistics
of the system within a stochastic framework. In fact, in the presence of dissipative phenomena like
the considered degradation of the mechanical properties of the structure, activation conditions are
typically adopted to model the evolution of internal state variables (in our case, of the damage indexes),
and so complementarity conditions arise. The Jacobian of the state evolution equations, that will be
shown to have a role in the filtering procedure, is linked to such activation conditions; the evolution
of the state variables thus becomes path-dependent, and requires all the kinematic variables to be
gathered in the augmented state vector xy.
Considering all the equations governing the evolution of system and damage indexes in
a stochastic environment, the dynamics of the augmented state vector in the generic time interval
[tk_1 tg] reads:
xp = fi (¥—1) + wi ®)
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where wy is a zero mean, additive white Gaussian noise with covariance W, that represents the
uncertainties related to the mathematical/numerical model of the system and, further to any standard
full-order formulation, the errors introduced by the reduced-order modeling; the nonlinear operator
f depends on the adopted time integration algorithm and on the mechanical characteristics of the
structure, i.e., on the matrices M, D and C showing up in the reduced-order model. A thorough
discussion on this topic is provided in Appendix A, see also [14].

To model the structural effects of damage, we now follow a rather standard approach in damage
mechanics, see e.g., [34]: the mass and damping matrices are not affected by the damage state; the
stiffness matrix is instead assumed to scale proportionally to the damage. To account for multiple
damage scenarios with different patterns, the reduced-order stiffness matrix KC is represented as
a linear combination of N, sub-matrices, each one relevant to a region featuring a uniform damage:

Np

K=Y (1—di) Kl (6)
i=1

where the index k is now also adopted for K to denote that its value is damage-dependent, and
therefore time-dependent. The summation in Equation (6) has to be correctly interpreted as the
assemblage [35] of the undamaged stiffness contributions Kim 4 all scaled by the corresponding values
of the damage indexes. Equation (6) shows that damage indexes are dimensionless variables. Here, we
do not aim to model the evolution of damage induced by the current loading; we therefore assume
that indexes d, ; are material parameters, which might change in time (according to thermodynamic
requirements, they can only monotonically increase in time in the range [0-1)) and are homogeneous
inside each region (so, independent of the adopted space discretization inside the region itself).

The structural response thus becomes nonlinear whenever damage grows. The linear structural
dynamics described by Equation (1) or (2) does not provide any means to explicitly model such
evolving state of the system; by assuming in the filtering procedure that K can evolve in time in
a step-wise fashion, such issue gets negligible if the time scales corresponding to the damage evolution
and to the monitored structural response are well separated.

To estimate the state of the system and the hidden (i.e., not explicitly observable) damage
parameters, observations of the system look necessary. Allowing for the formulated reduced-order
model of the structure, the stochastic measurement equation reads

Y = HLixy + vy 7)

and provides a link of the N,;,; observations collected in the vector y, with the reduced-order state
vector xy. Here, H is an appropriate Boolean matrix that allows to pick up the components of u, & and
it actually observed. Since the type of sensors and their positions are not supposed to change in time,
H turns out to be time-independent. In Equation (7), vy is a zero mean, additive white Gaussian noise
featuring covariance V, that represents the uncertainties due to measurements, typically related to the
accuracy of the sensors deployed over the structure. As observations in y, are defined in the full-order
space while x; lies in the reduced sub-space, the transformation matrix Ly is required for the state
vector to be recovered in the original space. According to the definition (4) of x;, we therefore have:

L, = ! 8)

where ®;  is the projection matrix estimated at time t;, and all the off-diagonal matrices not reported
are null. Matrix L obviously features null diagonal block corresponding to the vector d; of the
non-observable damage variables, as they do not have a role in the sub-space projection.
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Damage evolution in the structure depends on the loading conditions; hence, the evolution in time
of the POMs linked to the changes of the structural health, cannot be a-priori assigned. In our approach,
we assume that damage evolution is smooth and slow enough, so that POMs can be considered
constant within each time step. Since in a Kalman filtering implementation state variables are all
gathered in vector form, POMs of the reduced model are rearranged now inside vector @;; € R"
according to:

1
(I)k
Prk=19
l
(I)k

Within a stochastic frame, we can therefore model the evolution of the projection sub-space as:

Pri= Pri—1 T W )

where wi® is a fictitious zero mean Gaussian noise, whose covariance W is to be tuned in order
to guarantee stability and accuracy of the estimations. The measurement equation relevant to the
sub-space tracking reads:

Y = Hi® @y + vk (10)

where H;® is an appropriate matrix that links the observations y; and the sub-space vector @ ;. It must
be noted that Equations (7) and (10) do represent the same link between observables yy, state variables
xr and POMs @, withi = 1,...,I; they are only written in somehow different forms to explicitly state
what is identified in the two stages of the proposed procedure, namely x first and @; ; next.

Sensor inaccuracies can potentially affect sub-space and damage estimates. As far as the sub-space
estimation is concerned, it should be noted that the POMs are the set of basis vectors which optimally
capture the maximum variations in the structural response. Therefore, a constant unexpected offset
in the sensor measurement is not supposed to alter the estimates of POMs; conversely, in case of
a time varying offset, POMs may be affected. To alleviate issues raised by an inaccurate calibration
of noises, some methodologies were proposed for their online and real-time, yet optimal estimates
through Kalman-type filters, see e.g., [36,37]. While the focus of these works was on developing
Bayesian probabilistic methods for noise covariance estimation, it was shown in [37] that they could
be generalized to also account for a time variability of the noise mean value.

To cope with all the details reported here above, the adopted recursive Bayesian method has
been developed starting from what proposed in [19]: a particle filter is exploited first to estimate the
state vector xi, given a certain set of data y; acquired from the network of sensors deployed over
the structure; next a Kalman filter is adopted to update the POMs, still on the basis of observations
Yi- The latter stage is obviously necessary whenever the damage state changes, and so a different
structural response arises; thanks to the final update stage of the Kalman filter, biases in the observables
can be exploited to achieve model updating. Both filtering procedures deliver the estimate of damage
or the model updating via two stages: first, a prediction is achieved through the evolution or state
equations; second, the prediction is updated by taking advantage of observations. Prediction is usually
pursued through Chapman-Kolmogorov integrals, whereas the update through the Bayes rule of
conditional probability. A closed form solution to the aforementioned procedure can be found only for
linear systems with white Gaussian uncertainties. In case of a nonlinear state-space model featuring
weak nonlinearities, the solution is obtained by linearizing the state-space equations; if instead the
probability distribution of the state variable is non-Gaussian or if severe nonlinearities prevail, the
Chapman-Kolmogorov integrals can be computed with numerical quadrature rules. A well-known
method to deal with general nonlinear, non-Gaussian systems is the adopted particle filter [38], which
is based on a Monte Carlo sampling performed according to the posterior probability distribution of
the state variables. As such distribution is not available while sampling, a major aim of the filtering
method is to approximate it. Alternatively, sequential importance sampling [38] usually makes
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recourse, in the absence of the optimal distribution, to the prior probability density function of the
state variables. Hence, with this latter approach samples drawn do not contain information brought by
the latest observations.

According to what discussed, particle filtering has been preferred to other methods, e.g., the
extended or unscented Kalman filtering [14,19,33,34], in order to better match the real non-Gaussian
statistics of the state of the nonlinearly evolving system. As this approach would require a large set of
particles to get an accurate estimation of damage, an extended Kalman filter is adopted to push the
samples towards zones of higher probability and therefore reduce the overall number of particles to be
adopted [19].

To perform the dual estimation, a linearization of the evolution Equation (5) is required.
In Algorithm 1, F; denotes the Jacobian of function f; computed with the currently available estimation
xi_1 of the state of the system; further details are provided in Appendix A. The whole procedure, as
detailed in Algorithm 1, consists of an initialization step, and of a recursive update of the estimates
and their covariances. As already described, estimations are provided for the whole state vector xy,
including damage indexes dy, and for the POMs in ¢y .

In the initialization step, the initial guess (in terms of £y and @; y and relevant covariance matrices)
is first set, then all the filter particles ixg, with j =1,...,N; being the particle or sample index, are
consistently selected along with the corresponding weights /cwyg.

The state vector %y can be easily determined according to initial conditions at time ¢y. For instance,
if the structural system is initially at rest, all the entries of vectors # and # are null, whereas entries
of it could be computed by solving Equation (1) at instant fy; components of &y can next be obtained
once the POMs are initialized too. According to real situations encountered whenever a structural
system (like a building) has to be monitored, we assume that at time ty a preliminary stage of
training of the reduced-order model has been actually carried out. This means that, besides possible
random fluctuations due to noises, the initial estimation of @, o is indeed accurate. Vector @, ; will be
subsequently updated to cope with a changing damage state leading to a variation in the structural
responses to loading, avoiding the need of a time consuming retraining stage; for further details
readers are referred to [14,19].

Within the subsequent time steps, particles are first drawn on the basis of the current expected
value and covariance of the estimates, then allowed to (nonlinearly) evolve in time and, eventually, the
estimations are updated by averaging what brought by the particles themselves. As proved in [39], the
variance of the weights increases over time and, therefore, after few steps only one weight will be not
negligible, while all the other ones will converge to zero. In order to avoid the computational costs
associated with negligible terms, a resampling stage is adopted to select only the most likely particles;
accordingly, /u is a random value drawn at this stage from the uniform probability distribution £([0,1].
Finally, the tracking of the POMs of the reduced-order model is obtained with Kalman filter; hence, no
particles have been defined for this step of the proposed SHM strategy. A subtle difference between
the approach discussed above and what typically reported in the literature is that the estimation of
the augmented state and POMs is pursued separately. Linearity of POMs evolution and the related
observation equation, then allows computing a closed-form solution to their estimation through
a Kalman filter. When POMs are updated, the orthogonality condition among them is destroyed and
so they must be re-orthogonolized right after.
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Algorithm 1: Scheme of the proposed damage identification and state tracking method

- Initialization at f:
&0 = Lo"E [x]

Po = LOT]E [(x[) —E [XQD (xo —E [x[)})T] Lg

Ixg = %
Twy = p(yolxo) j=1,-.., N
@10 = E [@y0]
Py =E[(p0 — ¢10) (@10 — P10)"]

- Recursive computation at ty = t1,..., Topg; j=1,..., N
Prediction stage:

1.  Draw samples
T~ pal/xe-1)
2. Push particles toward the region of high probability through an EKF

P, = FJPFL + W
. . ) -1
iGy =P H" (HJP;HT + V)
Iy :jx; _;,_ka* <yk _ g jxl:)
ipy :]'pk* ,J‘pkapk*
. Update stage:

1. Evolve weights
T =Twy 1 p(yylxe)
2. Resampling _
Ju ~ $10,1]
m—1 m

find m s.t. E e <Ju < Ziwk
i=1 i=1

Txp ="
; 1
jor = —
k NS
3. Compute expected value
Ns
??k = ] (4);: ] Xk
j=1
4. Predict sub-space and associated covariance
P = (i’l,k—l
R
5. Calculate Kalman filter gain for updating sub-space
G = ps— T (HssPi—HssT + V) -1
e =5k He Kk Sk
6.  Update sub-space and associated covariance

Pk =@ +GP (yk - H?<S‘p;k)

P}S{S — PiS* _ GiSHiSP;S*

To investigate the computational aspects of incorporating a reduced-order model within the
proposed hybrid particle-Kalman filtering scheme, the computational complexity of the procedure is
considered in terms of the order of the required floating-point operations, and compared with that of
the full order model. Concerning reduced-order modeling, the complexity associated with obtaining
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the reduced bases from the snapshot matrix is O (n stmp + 11 Nyps + NS'MP , Where we recall that n
is the number of DOFs of the full-order model, I is the number of POMs retained in the reduced-order
one, and Njy,p stands for the number of snapshots collected, see [40]. Table 1 provides instead the
computational complexity of all the stages of the proposed hybrid particle-Kalman filtering, as listed
in Algorithm 1. In the prediction phase, the drawing of samples from a multivariate probability
distribution scales linearly with the size 3/ + N, of the state vector, and the number N; of samples;
next, by adopting an Extended Kalman Filter (EKF) to improve the quality of the particle ensemble,
asquare n X n matrix must be inverted and the related computational complexity is O (n®) according
to a Gauss-Jordan procedure [41]. In the subsequent update stage, the complexity is dominated
by the calculation of the determinant of the covariance matrix Py of the state vector; resampling is
endowed with a O (N;) complexity, according to [42]. When dealing with the reduced-order modeling,
an additional computational burden is associated to the updating of the sub-space, as reported at
Stages 4-6 of the Algorithm. Overall, the computational complexity of the whole procedure is:

O (12N Ns (N +1)" 4 Ny Nat (Np 1)+ N3, (N, 1)) a

In the case that the full-order model is used for hybrid particle-Kalman filtering, the relevant
complexity instead reads:

O (N5 ((Np + 1) + Ny + Nops (Np + 1) + Ny (N, +71)) ) (12)

By making recourse to the above defined relations for complexities associated with the use of
reduced- and full-order models in the hybrid particle filtering procedure, an estimate of the analysis
speed-up can be computed as the ratio between the number of operations required to run the SHM
with the full-order model and that required instead to run the SHM with the reduced-order model.
It can be observed in Equations (11) and (12) that the complexity features at most a term O (nz) in
the first case, and O (n%) in the second. The obtained complexities for the two procedures refer to
asymptotic scenarios; the real CPU times and so the corresponding speed-up could be different from
the estimates obtained via complexity due to the effects of, e.g., processor architecture, hardware
settings, and structure of matrices.

Table 1. Computational complexity of the stages of the proposed algorithm.

Computational Complexity (Flops)
O (Ns (I+Np))
3 2 2 3
2 O(NS ((Z+NP) + Nobs (l+Np) +Nobs (Z+NP)+Nobs)>

prediction

—_

O (Ns (1+Ny)?)
O (Ns)
O (Ns (I+Np))
o] (nz)
O (n*Nyps +n N2+ N3, )
O (nNgps +n N2,,)

update

NG| | WD

3. Results and Discussion

We consider in this Section a benchmark test represented by a thin plate subject to bending.
We provide first the geometrical features of the plate and the mechanical properties of the material
considered, along with loading/boundary conditions. We next discuss possible effects on the health
monitoring capabilities of the major parameters of the proposed approach, namely: the number I of
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the POMs retained in the reduced-order model; the process noise; the measurement noise. We provide
outcomes at varying damage level in one region of plate only, and also at a varying spreading
of the damage over the plate. Finally, data are reported considering the speed-up provided by
the reduced-order modeling, at varying space discretization adopted for the initial full-order finite
element model.

As shown in Figure 1, the structure to be monitored is a thin square plate, with side length
200 mm and thickness 5 mm. The plate is assumed to be made of aluminum (6061-T6), whose relevant
mechanical properties (in the virgin state) are: Young’s modulus E = 68.9 GPa, Poisson’s ratio v = 0.3,
and density p = 2500 kg/m?.

o F) - g

4) (1)

Figure 1. Benchmark plate test: boundary and loading conditions, and zone numbering.

The plate has been modeled with the commercial finite element code Abaqus, using the
S4R general-purpose, conventional shell elements which take into account also transverse shear
deformations [43]. The kinematics of this element type is fully characterized by six DOFs per node,
that are the three displacements along the axes of any orthonormal reference frame (typically with two
of them belonging to the mid-plane of the plate and one pointing perpendicularly to such mid-plane)
and the three rotations about the same axes.

The plate is simply supported at the four corners, and subject to a sinusoidally varying force
F (t) = FMsin (27tft) at its center (Figure 1). The maximum value of the force FM = 100 N has been
set to avoid damage development in the plate caused by it; the plate is therefore considered already
damaged during the test, and to possibly suffer damage growth due to external causes. The frequency
of the load has been instead set to f = 80 Hz, which is smaller than the fundamental frequency
of vibrations of the aluminum plate, which amounts to f ! = 315 Hz for the undamaged case, and
f" = 280 Hz for the reference damage case described in what follows.

The structure is decomposed into four regions, each of them associated with the relevant target
damage index d;, withi = 1,...,4. If not stated otherwise, in the examples to follow the structure is
supposed to be damaged only in zone 2 (see Figure 1), where the Young’s modulus is reduced to one
half of its virgin value: therefore, dy = 0.5 is the target damage value to be estimated.

In a pseudo-experimental test frame, finite element analyses have been adopted to first obtain the
mass matrix M of the whole system and the (undamaged) stiffness submatrices K',_; (see Equation (6))
of the mentioned N, = 4 regions. Next, for each damage scenario here considered, the same code
has been used to run the full-order analysis (although it can be run independently, once the mass and
stiffness matrices have been obtained); accordingly, the snapshots are collected for the considered
loading /boundary conditions, and POMs in ; 3 are obtained. As for measurements, results of the
simulations have been corrupted with a Gaussian noise of known variance according to Equation (7).
For the plate bending model considered in this paper, rotations about the in-plane reference axes,
at the mid-point of each plate edge are handled as observations; this is in line with the optimal
spatial distribution of measurements gathered through a network of surface-mounted inertial sensors,
proposed in [28,29] to achieve sensitivity to damage independently of its location and amount.

The uncertainty and noise levels in the model are quantified for the structural system by the
time-independent matrices W and V (Section 2.2). As for the process noise, which takes into account
the uncertainties introduced by the model (due to the spatial and temporal discretization and to the
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order reduction procedure), its covariance W is scaled by a dimensionless factor ¢, having the role of
a standard deviation for the DOFs in the reduced-order model, according to:

W =021,

where I, € R¥*Nr is an identity matrix of appropriate size.

The measurement noise takes instead into account what related to the physical medium of
communication between the sensors and the acquisition system, the random electrical noise due to the
sensors and the electrical circuits, the quality of the measurement devices and also the environmental
noise. Similar to the process noise, the measurement covariance V is scaled by a dimensionless factor
0y, playing the role of the standard deviation of the collected rotation angles, according to:

V=02,

where now I, € RNebs. So, all the measurements are assumed uncorrelated. It is well-known that the
performance of Bayesian filters rests on a proper choice of the above covariance matrices. By tuning
the values of the process and measurement noise variances, the level of confidence in the model and
measurements equations can be set; for instance, in case the measurements are deemed more reliable
than the model, a low measurement noise variance ¢ should be assigned, when compared with the
process one ¢2. In practice, measurement noise variance is known for the used sensors; tuning of
the process noise variance is in general more intricate, and is normally achieved by a trial and error
procedures offline. The optimal estimation of noise parameters in an online fashion has recently gained
attention; reader are referred to [36,37,44] for further details.

In this study, the number of samples in particle filtering has been always assumed N; = 10.
Moreover, to build the initial POMs, a number of snapshots Nsy,p = 50 always led to convergence of
those retained in the analyses.

Moving to the results, let us first investigate the effects of the number / of POMs taken in the
reduced-order model, on the accuracy of the estimations obtained. In Figure 2, it is possible to see
that such accuracy grows as the number of POMs gets higher. If the plate is coarsely meshed using
only one finite element for each single region, the resulting structural DOFs turn out to amount to
50, once the constraints at plate corners are taken into account. Although both the geometry and the
loading condition are two-fold symmetric, such symmetry has not been exploited in the analyses, as
damage in only one region breaks it. A remarkable result reported in Figure 2d is the proof that, for
this benchmark, it is possible to reduce the number of DOFs to only 4 and get an estimation error
smaller than 10%.

To assess the influence on the results of the initialization of the filter in terms of the damage state
dy, Figure 3 shows for [ = 3 that estimates are stable whenever the initial guess is close enough to
the target one. Such performance test guarantees a wide range of applicability of the method, since
the undamaged state dy = 0 and also an underestimation by 50% of the initial elastic moduli allow to
assure stability. The other way around, an initial guess too far from the target solution (Figure 3c) is
shown to insert instabilities or biases in the estimations.
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Figure 3. Time-invariant target damage state, I = 3, 0, = 1073, o, = 107%: time evolution of
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If we consider the effects of the process noise, some exemplary results are gathered in Figure 4.
As expected, a high noise level amounting to o, = 10~ 2 (Figure 4a), can incept large variations of the
estimates over each time interval, and therefore gives rise to possible biases or even divergence in
the final solution. On the other hand, if the process noise is lowered to 0y, = 10~° (Figure 4b), wild
oscillations do not show up any longer and the estimation evolutions become smooth.

2 06
dl
151 05 d2
1F _d3
0.4H
d
05 hd
03t
= 0 ~
_osl 0.2
-1 01
_ //’_—
15 Py — e
-2
0 0.1 0.2 0.3 0.4 05 01 . . . . ,
t [ 0 0.1 0.2 0.3 0.4 0.5
t [
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Figure 4. Time-invariant target damage state, | =3, 0, = 1075, dy = 0: time evolution of estimations
of the damage indexes d;, identified with a process noise (a) 0, = 1072 and (b) oy = 107°.

In the analyses so far, the measurement noise level was kept low through o, = 10~ 2, i.e., (even if
not explicitly shown) smaller than 10% of the maximum amplitude of the structural response under
the considered loading. Figure 5 testifies that, as the measurement noise gets bigger (up to o, = 1073),
the ability of the procedure to estimate the damage indexes drops; as results are here shown for [ = 3,
they can be compared to the plots already reported in Figure 2a for ¢;, = 1075, The trend shown by the
accuracy of the estimates and by the readiness to approach the target values is basically due to the fact
that the structural response gets hidden by the noise if 0, becomes bigger, and the filter is not able to
extract significant information from measurements. Overall, by increasing ¢, the transitory stage in
the time evolution of the damage indexes lasts more and more (Figure 5a), or the SHM procedure can
even lose the ability to estimate the damage in a region (Figure 5b). This response has been checked to
vary monotonically and smoothly when ¢, changes; moreover, plots in Figure 5 are reported for a null
initialization of damage parameters, namely for dy = 0, but similar results can be obtained for any
other initial guess guaranteeing the stability of estimations.
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Figure 5. Time-invariant target damage state, | = 3, oy = 107>, dy = 0: time evolution of estimations
of the damage indexes d;, identified with a measurement noise featuring (a) 0, = 1.5 x 1072 and
(b) 0, = 1073,

We next investigate the method performance at a varying value of the target damage index d»,
with [ = 3 and still keeping the noise factors ¢, = 07, = 10~ adopted in Figure 3. Figure 6 shows the
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results in terms of time evolutions of the estimate of d; for the four target cases d, = 0.1, 0.25, 0.5, 0.75.
Such evolutions are obtained along with those relevant to the other damage indexes (all zero valued);
since the trend shown by these latter ones is basically the same reported in Figure 3b, we focus on the
initial transient stage of the estimations of d; starting from the initial guess d» = 1. Such transient stage
is reported to last less than 0.01 s; after that, estimates are affected by small fluctuations only. It also
appears that target values are promptly matched if damage values are large. This is somehow expected,
as small target values of dy provide small drifts from the response of the healthy structure, and so the
sensitivity to damage of the monitoring system in the noisy environment gets detrimentally affected.

—=-d=0.10
v d =025
vmm 420,50 |
—d=075

0 1 1 == L L L 1 L ]
0 0001 0002 0003 0.004 0.005 0006 0007 0008 0009 001

ts

Figure 6. Time-invariant target damage state, | = 3, 0, = 1073, o = 10*5,1710 = 1: time evolution of
estimations of the damage index d; at varying target value.

The proposed methodology also features the same accuracy level if all the plate regions are
damaged. Figure 7 provides the time evolutions of the estimates, in the exemplary case characterized
by target values d; = 0.75,dy = 0.5, d3 = 0.9 and d; = 0.25. For two different initialization sets, it is
shown that estimates converge fast towards the target values, and small oscillations around them are
next linked to the hybrid filtering methodology adopted. Comparing these results with those reported
in Figure 6, it can be seen once again that smaller values of the damage indexes (and, so bigger values
of the residual stiffness reported in the graphs) are connected to a delayed convergence of the filter
estimates. Indeed, the provided steady-state solutions always perfectly match the target one.
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Figure 7. Time-invariant target damage state, four plate regions damaged, ! = 3 ¢, = 105,05, = 1075
time evolution of estimations of the scaled elastic moduli, identified with initial values (a) dy = 1 and
(b) dy = 0.

We move now to a case characterized by a time evolving damage state. The structure is still
assumed to be initially damaged with d, = 0.5, but such damage is suddenly increased to dy = 0.7
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around t = 0.25 s due to a further event, possibly linked in real-life situations to unexpected or
extreme loadings. In Figure 8 results are provided concerning the estimated time evolution of the
damage indexes, by either disregarding (Figure 8a) or allowing for (Figure 8b) the sub-space update.
Such update, according to the setting defined in Section 2, is automatically driven by the filtering
procedure as soon as the structural observations display a drift away from the response expected on the
basis of the current damage state. POMs update is obviously compulsory to keep a similar degree of
accuracy of the reduced-order model when the damage state is altered. If such update is not performed,
the reduced-order model (that has been trained with the initial damage state) does not match the
current structural health, and the damage estimates diverge or are affected by unacceptable biases.
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d 0.6 d
08 ‘ 3 N
/ d4 0.5 4
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Figure 8. Time-varying target damage state, | = 3, o, = 1075, oy = lO*S,dO = 0: time evolution
of estimations of the damage indexes d;, identified (a) without update of POMs and (b) with POMs
update.

Some additional results are provided in Figure 9 in relation to a finer mesh adopted to build
the full-order model; in this case, the free DOFs of the initial finite element model amount to 722.
Compared to the former case linked to the coarsest possible mesh, a slightly higher number of POMs
would be necessary to attain a high level of accuracy of the reduced-order model, if the proposed
filtering procedure were not adopted. However, as stated in Section 2, the intricate formulation
consisting in three filters processing the data, allows also to increase the accuracy of the reduced-order
model, so that only two POMs prove enough to achieve an unbiased estimation of the damage state in
a short time, see Figure 9b.

0.6
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Figure 9. Time-invariant target damage state, fine space discretization, o, = 107°, o, = 1075, dyg = 0:
time evolution of estimations of the damage indexes d;, identified with (a) / = 1 and (b) | = 2.

Results in the figures have shown that each damage index, although theoretically constrained to
belong to the [0-1) interval, may be estimated out of the bounds on such interval. If damage becomes
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negative, then the stiffness properties of the structure results to be enhanced, hence greater than in the
virgin state; that is obviously of no practical interest, and should be considered as a wrong outcome of
filtering procedure. Anyhow, this kind of results does not violate the thermodynamic requirement
to always have a positive reduced Young's modulus (see [34]). The other way around, damage can
become greater than one, and so the reduced stiffness turns out to be negative. Although negative
tangent stiffness values can be encountered at the structural level when local failure phenomena
take place, in our case those values are to be considered wrong outcomes of the filtering procedure.
Nonetheless, values of the damage indexes have not been constrained in our procedure, so that
a standard particle-Kalman filter can be adopted. Alternatively, implementations centered on the
so-called constrained Kalman filters were offered [45—47]; such possible alternative implementations
have not been considered in our work since, as clearly depicted in the graphs of this Section, estimates
of the damage indexes largely exceed the bounds only when the solution becomes unstable. In all the
analyses providing reliable results, it usually happens that only some indexes slightly move below the
zero value threshold.

Finally, concerning the analysis speed-up, relevant outcomes are reported in Table 2 at varying
mesh and order / of the model, in terms of both CPU time and floating-point operation metrics.
These data have been obtained by running the procedure implemented in Matlab (release 2014a) on
a personal computer featuring an Intel Xeon E3-1270 V2 @ 3.50 GHz processor, with 8.00 Gb of RAM
and Windows 7 64-bit as OS. It can be seen that the finer the full-order space discretization, the higher
the speed-up; on the basis of a minimum reported speed-up value exceeding 30 for the coarse mesh,
this joint use of intricate filtering schemes and reduced-order modeling can prove successful in the
design of real-time SHM procedures.

Table 2 also shows that the speed-up computed through the algorithmic complexity discussed in
Section 2.2, actually represents an upper bound on the real one given by the CPU time. It decreases
at a smaller rate than that linked to CPU time when the number [ of retained POMs is increased, but
it converges to unitary values when [ tends to the number 7 of total DOFs of the full-order model
(actually it converges to values slightly less than one, as POM update is not carried out with the
full-order model).

Table 2. Analysis speed-up provided by CPU time and flops, at varying mesh and order ! of the
reduced-order model.

I Coarse Mesh Fine Mesh
CPU Time  Flops CPU Time  Flops
1 41.8 100 1319.5 1812
2 37.2 89 701.7 1810
3 33.3 79 611.7 1809

4. Conclusions

In this work, an online structural health monitoring procedure based on reduced-order modeling
and recursive Bayesian filters has been proposed. Order reduction of the numerical model, used to
track the structural behavior, has been achieved through proper orthogonal decomposition. Filtering
has been centered around an extended Kalman-particle filter, whereas adaptivity of the reduced-order
model has been obtained thanks to a further Kalman filter.

According to the results of a benchmark test on a thin square plate subject to bending deformations,
the main outcomes shown here can be outlined as follows:

e the model order reduction method allows decreasing dramatically the number of system
degrees-of-freedom, without losing accuracy as for the estimation of damage;

e  The initial conditions for the damage state can be easily set, so that the estimation procedure
keeps stability;
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e Measurement and process noises should be small in comparison with the amplitude of
measurements, to avoid biases in the estimates.

In future investigations, the proposed approach will be further extended to attack real-life, more
complex cases in terms of structural geometry, material behavior and loading/boundary conditions.
It is in fact well known that by increasing the number of parameters to be estimated, i.e., by increasing
the number of regions wherein damage is assumed to be homogeneous, problems connected to the
curse of dimensionality arise. This generally means that by increasing the number of parameters to
estimate, a lower accuracy of the filtering procedure is expected.
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Appendix A. Algorithmic Details

In this Appendix, we go through the main algorithmic details of the proposed procedure to handle
the dual estimation of the continuously updated, reduced-order model of the structural system.

We start by showing how Equation (5) can be obtained from the equation of motion (Equation (2))
of the reduced-order model. Within the considered time step [t;_; tx], the solution is advanced
through the following three-stage scheme:

a. Predictor stage

~ 1
Xy = O + Atog_1 + AP <2 — ﬁ) K1

& = &1+ AF(1— ) &4

b. Explicit integrator stage
& = M1 (Fr— Dy_qoq — Ky 16%)

c. Corrector stage
oy = & + AP B

& = oy + At i

where: 8 and v are the Newmark’s parameters (see [35]); and matrices Mj_1, Dy_1 and K;_; are
time-dependent, since the sub-space model can be continuously updated at the end of each time step.

To simplify the equations, we assume in what follows that system damping is null. It was already
discussed in [23] that, whenever the system is continuously excited, the filter results will not be affected
by the damping properties of the structure. By considering the components of the state vector xj
related to the structural state only, arranged according to:

Kk
Zp = &
Ok

the relevant evolution equation can be written, as provided by the time integration scheme described
above:
zp = Ap12zk-1 + br 1
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where:
1
I-BAPM Ky AMI—BAPM LG, AP (2 — ,3> [1 —~ ﬁAtZMk—}lick,l]
1
A= | MM T-APYML Ky (1= ) dtl — Ay (2 - ﬁ) M
_ _ 1 _
CMOL K MM o (3 B) MK
APBM L Fy
b1 =< AtyMLF
Mk_jl}-k

Entries of A;_ 1 and by_; vary in time not only because POMs are updated, but also because
damage indexes dy_; affecting the stiffness matrix are tracked in their time evolution.
In a noisy environment, the whole process model thus becomes:

z Ay _1z_1 + by
=19 =9 T S 4w = f (v1) + w
dy di—1

whose Jacobian matrix Fj reads:

A d(Ax_12r_1)
Fo=| ¢! ddy_1
0 I,

where I; € RM is an identity matrix, and the upper-right term of the matrix is made of terms like:

- ‘ - j 1 _ ;
AtZIB'AA‘k—ll imd Ai-fiﬂg'/\/"k—ll imd AP (2 - ﬁ) ﬁMk—ll ;nd
0 (Ax_1zx_ _ 1 g 1 1 g
( ;dil k1) _ AyMI Ky APYML KL, APy (2 - [3) MLIC,
k-1

L L 1 o
Mk—ll ;md Ath_ll ;md AP (2 - :B) Mk_lllcimd
IC! 4 terms being already defined in Equation (6).
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