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Abstract: Owing to low temporal resolution and cloud interference, there is a shortage of 

high spatial resolution remote sensing data. To address this problem, this study introduces a 

modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic 

Landsat imagery. This algorithm was designed to avoid the limitations of the conditional 

spatial temporal data fusion approach (STDFA) including the constant window for 

disaggregation and the sensor difference. An adaptive window size selection method is 

proposed in this study to select the best window size and moving steps for the disaggregation 

of coarse pixels. The linear regression method is used to remove the influence of differences 

in sensor systems using disaggregated mean coarse reflectance by testing and validation in 

two study areas located in Xinjiang Province, China. The results show that the MSTDFA 

algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) 

ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further 

show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the 

Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic 

NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97. 
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1. Introduction 

Because Earth surface observations can be obtained periodically by satellite remote sensing, this 

technology has become a foremost technique for monitoring land surface processes [1]. Since 1978, 

satellite remote sensing of the land surface process has been dominated by polar-orbiting sensors 

including the Advanced Very High Resolution Radiometer (AVHRR) [2], Systeme Pour l’Observation 

de la Terre (SPOT) Vegetation (VGT) [3], and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) [4]. The temporal resolution of these coarse resolution sensors is one–two days, which means 

they can image the entire Earth at one–two-day intervals. Owing to their high temporal resolutions, the  

time series data of these sensors are widely used in land surface processes dynamic monitoring 

applications [5–8] such as land cover and land change [9,10], crop mapping and production  

forecasts [11,12], disasters such as fires [13], floods [14], and algal blooms, and forest [15] and  

grassland [16] ecosystems. However, these high temporal resolution data have low spatial resolution; 

therefore, the signals recorded by these sensors are not suitable for highly spatially variant land surface 

processes monitoring. Medium spatial resolution sensors such as the Thematic Mapper (TM), Enhanced 

Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) sensors on Landsat satellites are 

other types satellite data widely used in land surface monitoring for applications such as detailed land 

use and land cover mapping [17,18], environmental monitoring [19], and ecological system dynamic 

monitoring [20,21]. However, these data have low temporal resolution and cloud interference; therefore, 

their application to land surface monitoring leads to a shortage of valid data. Leckie [22] found that the 

probability of acquiring cloud-free Landsat images for a given time with cloud cover <10% can be as 

low as 10%. Therefore, no single satellite can provide data to meet the challenges of high spatial and 

temporal land surface process monitoring. 

To address this problem, several spatial and temporal data fusion approaches have been proposed to 

generate high spatial and temporal data by fusing coarse and medium spatial resolution data. Gao et al. [23] 

introduced the spatial and temporal adaptive reflectance fusion model (STARFM) for blending MODIS 

and Landsat imagery, and Roy et al. [24] used a semi-physical fusion approach to fuse multi-temporal 

MODIS–Landsat data. Several studies have applied the STARFM to urban environmental variable 

extraction, vegetated dry-land ecosystem monitoring, public health studies, and daily land surface 

temperature generation [25–29]. Hilker et al. [25] improved the STARFM for the spatial temporal 

adaptive algorithm for mapping reflectance change (STAARCH) for producing synthetic imagery and 

detecting changes. Zhu et al. [30] enhanced the STARFM for complex heterogeneous regions. 

Emelyanova et al. [31] assessed the accuracy of STARFM and ESTARFM in two landscapes with 

contrasting spatial and temporal dynamics. However, most of these models are based on the assumption 

that the change in reflectance r of each land cover class is linear, which is not accurate for land cover 

types such as vegetation [32]. 

In response, other scholars have proposed methods based on a linear mixed model that assumes that 

the reflectance of each coarse spatial resolution pixel is a linear combination of the responses of each 

land cover class contributing to the mixture [33–35]. However, owing to differences in environmental 

factors such as altitude, morphology, and soil type or management factors such as sowing date and 

fertilization, this assumption is not always valid. Zhukov et al. [36] and Maselli [37] addressed this 

problem by using the neighboring pixel information based on the assumption that spectral properties of 
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a land cover class do not show great variations in the surrounding pixels. On the basis of their  

work [36,37], Busetto et al. [32] developed a new method in which the neighboring pixels are selected 

and weighted on the basis of their Euclidean distances from the target pixel; this method also considers 

the spectral similarity of the subcomponents with those of the targets. However, the reflectance 

disaggregated by these proposed methods is the mean reflectance of each land cover class in the 

identified subset s, which is still not equal to the real surface reflectance r of fine-resolution pixels. To solve 

this problem, Wu et al. [38] proposed a spatial and temporal data fusion approach (STDFA) based on the 

assumption that the temporal variation properties of each fine pixel in the same class are constant. They 

applied this method to the estimation of the high spatial and temporal resolution land surface  

temperature [39] and leaf area index [40]. They also validated that ESTARFM and STDFA can be 

applied to combine Huanjing (HJ) charge coupled device (CCD) and MODIS reflectance data together 

with Gaofen satellite no. 1 (GF-1) wide field of view camera (WFV) and MODIS reflectance data [41]. 

Gevaert and García-Haro [42] introduced an unmixing-based algorithm and compared it with STARFM. 

They recommended using unmixing-based data fusion for situations in which the spectral characteristics 

of the medium-resolution input images are downscaled. 

However, STDFA has several limitations. The differences in sensor systems are not considered, and 

the window sizes used to select coarse pixels involved in the solution of the linear mixed models is fixed. 

The best window sizes for different land cover classes may vary according to the different spatial 

distribution of each land cover class; a constant window size may result in lower accuracy solution of 

the linear mixed models of some land cover classes. To address these limitations, the objectives of the 

present study are (1) to modify STDFA by introducing sensor difference correction and adaptive window 

size selection methods; (2) to test and analyze the applicability of the modified spatial and temporal data 

fusion approach (MSTDFA) in other data such as MODIS MOD13Q1 products and Landsat Normalized 

Different Vegetation Index (NDVI) data; and (3) to test and analyze the availability of Finer Resolution 

Observation and Monitoring of Global Land Cover (FROM–GLC) data in MSTDFA. 

2. Methods 

2.1. Method Inputs and Processing Steps 

To address the weaknesses of STDFA in the estimation of daily synthetic Landsat imagery, MSTDFA 

is proposed in this paper. The input of this algorithm includes a Landsat image, land cover and time 

series MODIS reflectance data that were acquired on the same day as was the Landsat image, and at 

least one MODIS reflectance dataset acquired on the same day as was the Landsat image selected for 

simulation. The output of this algorithm is a time series of synthetic Landsat imageries in which the 

acquisition date can be considered the same as that of the time series MODIS data. The algorithm 

includes four steps: (1) best window size selection; (2) mean reflectance disaggregation; (3) sensor 

difference adjustment; and (4) calculation of each pixel’s reflectance and outputting of the daily synthetic 

Landsat imagery. A flowchart of the algorithm is shown in Figure 1. The algorithm is run by one band. 

To generate a multispectral synthetic Landsat imagery, we need to apply this method for each  

band, respectively. 
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Figure 1. Flowchart of the modified spatial and temporal data fusion approach (MSTDFA) 

algorithm. The processing steps of the three main blocks are explained in Sections 2.2–2.5. 

2.2. Selecting the Best Window Size 

According to the unmixing theory, the reflectance of a coarse-resolution spatial pixel is assumed to 

be a linear combination of the responses of each land cover class contributing to the mixture [33].  

The coarse spatial reflectance R (i, t) of the landscape thus consists of k discrete land cover class c 

weighted by their class fractional cover as 
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in coarse pixel i, which is usually assumed to not change over time; ( , )f ir c t  is the mean reflectance of 

fine-resolution homogeneous pixels belonging to land cover class c at time ti; and ( , )ii t  is the residual 

error term. If we know the coarse spatial reflectance R (i, ti) and the fractional cover values, Equation (1) 

can be solved with the ordinary least squares technique and by generating the disaggregated mean surface 

reflectance value ( , )f ir c t  for class c at time ti. Generally, the fractional cover values were extracted 

from high-resolution spatial land cover map. 
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Then, by inputting the fractional cover values and the time series coarse spatial reflectance from time 

t1 to time tn, the time series mean surface reflectance value ( , )f ir c t  for each class was calculated by 

solving Equation (1) using the ordinary least squares technique. Since this solved mean surface 

reflectance was disaggregated by the ordinary least squares technique, we defined this disaggregated 

mean surface reflectance as ( , )d ir c t  to distinguish with the mean surface reflectance ( , )f ir c t  calculated 

from real fine-resolution pixels. The time series mean surface reflectance value ( , )f ir c t  for each class 

ranges from 0 to 1. Disaggregated mean surface reflectance out of this constraint were not used to build 

a linear model between the disaggregated mean surface reflectance and actual TM mean surface 

reflectance for the adjustment of sensor difference. To reduce the influence of spatial variation and 

geolocation errors, the solution of Equation (1) was conducted in a rectangular window centered to the 

MODIS target pixel. Owing to the different spatial distribution of each land cover class, the best window 

size s for each land cover class may be different. To determine the best window size s for each land 

cover class, rectangles of lengths of 3–120 MODIS pixels for different classes were tested. Firstly, for 

window length l, a subset s of MODIS pixels centered to the MODIS target pixel mk, fractional cover 

data, and Landsat pixels was extracted. Then, the disaggregated mean surface reflectance value 

( , , )d i kr c t m  and real mean surface reflectance value of Landsat pixels ( , , )f i kr c t m  for the MODIS target 

pixel mk were calculated. Thirdly, along with the MODIS target pixel being moved to cover the entire 

MODIS image, a real mean fine reflectance vector  , ,f ir c t m  and a disaggregated mean coarse 

reflectance vector  , ,d ir c t m  pair for land cover class c was calculated to allow calculation of the 

correlation coefficient between those two vectors for window length l.  , ,f ir c t m  and  , ,d ir c t m  were 

described as follows: 

       1 2, , ( , , , , , , , , , )f f f fi i i i nr c t m r c t m r c t m r c t m  (2) 

       1 2, , ( , , , , , , , , )d d d di i i i nr c t m r c t m r c t m r c t m  (3) 

where m1, m2, and mn is the MODIS target pixel; n is the number of the MODIS pixel. Obviously, the 

best window length l for land cover class c will have the highest correlation coefficient. Thus, the 

window length l with the highest correlation coefficient R was set to the best window length for land cover 

class c. 

2.3. Disaggregating Mean Reflectance 

After the best window size for land cover class c is determined, the mean reflectance for land cover 

class c of target MODIS pixel mk can be calculated by solving Equation (1) using the ordinary least 

squares technique by inputting a subset s for window length l of the MODIS pixels centered to the 

MODIS target pixel i, fractional cover data, and Landsat pixels. 

2.4. Adjusting Sensor Difference 

Owing to sensor system differences in bandwidth, acquisition time, spectral response functions, 

geolocation errors, and atmospheric correction, there is a need to adjust the disaggregated mean 

reflectance ( , )d ir c t  for land cover class c to the real mean fine reflectance ( , )f ir c t . In Section 2.2, a 
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real mean fine reflectance vector  , ,f ir c t m  and disaggregated mean coarse reflectance vector 

 , ,d ir c t m  pair for each land cover class was generated. This allowed for construction of a linear model 

between the real mean fine reflectance vector and disaggregated mean coarse reflectance vector by using 

linear regression analysis, which can be described as: 

( , , ) ( , , )f di ir c t m a r c t m b    (4) 

where a and b are coefficients of the linear regression model. Then, this model was used to calculate real 

time series mean fine reflectance ( , )f ir c t  from time t2 to time tn from the time series disaggregated mean 

coarse reflectance ( , )d ir c t . 

2.5. Calculating Pixels Reflectance and Method Outputs 

Since the time series mean fine reflectance ( , )f ir c t  from time t1 to time tn was calculated, the time 

series reflectance of each fine resolution pixel can be determined using the SRCM model proposed by 

Wu et al. [38], which is described as 

1 1( , ) ( , ) ( , , ) ( , , )f fi f i fr c t r c t r c t k r c t k    (5) 

where ( , )f ir c t  and 1( , )fr c t  is the mean fine reflectance at time ti and t1, ( , , )f ir c t k  and 
1( , , )fr c t k  is the 

reflectance of pixel k of class c in target MODIS pixel mk at time ti and t1. With the 1( , )fr c t  and 

1( , , )fr c t k  obtained from the Landsat scene at the time t1 and time series ( , )f ir c t  calculated in Section 2.4, 

MSTDFA allows the output of time series synthetic 30 m Landsat imagery. 

3. Method Tests and Results 

3.1. Study Area 

Two study areas located in Xinjiang Province, West China, were selected to test and validate this 

method (Figure 2). The first is Bole County, Xinjiang Province, China, located in the valleys between 

Alatau and Gang Giger mountains, Boertala River. The area to the west of Bole is mountainous, whereas 

that to the east is plains. In the plains area, the main land use type is farmland, in which the crop plots 

are usually large. Therefore, the land cover types in this area are relatively homogeneous. The second 

study area is Luntai County, Xinjiang Province, China, located in southern Tianshan, northern  

Tarim Basin. The areas north of Luntai are hills, whereas the middle and the southern parts are plains. 

The crop plots in Luntai are very small; thus, the landscapes are heterogeneous. 
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Figure 2. Locations of the study areas. 

3.2. Data and Pre-Processing 

3.2.1. Landsat Data and Pre-Processing 

Three Landsat-5 TM datasets in Bole and Three Landsat-8 OLI datasets in Luntai were used in this 

study (Table 1). All data were acquired in clear sky conditions and were provided by the United States 

Geological Survey (USGS). The Landsat data used in the Bole study area were surface reflectance 

products, whereas those used in Luntai were Level L1T products. The three Landsat L1T products were 

atmospherically corrected by using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) Atmospheric Correction Model in software ENVI 5.0. Then, the six Landsat datasets were 

georeferenced by using a second-order polynomial warping approach based on the selection of 43 ground 

control points (GCPs) using a 1:10,000 topographic map by the nearest neighbor resampling method 

with the position error within 0.74 Landsat pixels. 

Table 1. Satellite images used in this study. 

Study 

Area 

Landsat-5 TM/ Landsat-8 OLI MODIS 

Acquisition Date Path/Row Usage Acquisition Date Usage 

Bole 

11 July 2011 146/29 Reference Classification 12 July 2011 
Mean reflectance 

estimation 
27 July 2011 146/29 Validation 28 July 2011 

13 September 2011 146/29 Validation 14 September 2011 

Luntai 

4 September 2013 144/31 Validation 3 September 2013 
Mean reflectance 

estimation 
6 October 2013 144/31 Reference Classification 7 October 2013 

22 October 2013 144/31 Validation 21 October 2013 

Landsat images acquired on 11 July 2011 in Bole and on 6 October 2013 in Luntai were used as 

reference images for building a linear model between Landsat and MODIS mean reflectance and to 

calculate the reflectance of fine pixels from the mean reflectance. These images were also used for land 

cover mapping, which is explained in Section 3.2.3. The subsequent Landsat images were used to 

evaluate this algorithm. 
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3.2.2. MODIS Data and Pre-Processing 

Six daily MODIS surface reflectance products (MOD09GA, 500 m) obtained in clear-sky conditions 

were used in this study (Table 1). Ideally, the MODIS image acquisition date should be the same as the 

acquisition date of Landsat data. However, the quality of MODIS data acquired on the same date as the 

Landsat data was not good in Bole and Luntai; therefore, these MODIS data were replaced with data of 

good quality acquired one day earlier or later than the Landsat data. 

These six MODIS images were reprojected from the native Sinusoidal projection to a UTM-WGS84 

reference system and were resized to the selected study area using MODIS Reprojection Tool (MRT) 

software. We also resized the spatial resolution from 500 m to 480 m with a nearest neighbor resampling 

method in MRT. All of these MODIS data were then georeferenced by a second-order polynomial 

warping approach based on the selection of 38 GCPs on 480 m Landsat images with a nearest neighbor 

resampling method in which the position error was within 0.63 MODIS pixels. The 480 m Landsat 

images were resized from georeferenced Landsat images by using the pixel aggregate resampling method. 

3.2.3. Land Cover Data 

Two types of land cover data were used in this study. The first was mapped by using the maximum 

likelihood classification method from the reference Landsat images with 1196 field survey data including 

334 plots in Bole and 862 plots in Luntai. The field survey data in Bole and Luntai was obtained in 2011 

and 2013, respectively. These land cover data were used in the generation of high spatial and temporal 

synthetic Landsat imageries. Currently, abundant global and regional information of land cover and  

use are provided, for example, by National Land Cover Database (NLCD) and FROM–GLC data. 

Usually these sources will be updated every five years. To test the applicability of these data in 

MSTDFA, the FROM–GLC data in Bole mapped by using Landsat-5 TM data acquired on 21 July 2009 

was used in MSTDFA. The classification accuracy of the FROM–GLC data in Bole was evaluated by 

using a confusion matrix with regions of interest (ROIs) selected by using visual interpretation methods 

and field survey data. Table 2 shows the accuracy evaluation results. The overall accuracy and Kappa 

coefficient of the FROM–GLC data in Bole is 78.06% and 0.65, respectively. 

Table 2. Accuracy evaluations of Finer Resolution Observation and Monitoring of Global 

Land Cover (FROM–GLC) data in Bole. 

Class 
Reference Data 

Prod. Acc. (%) User Acc. (%) 
Water Forest Grass Shrub Impervious Cropland Bare Land 

Water 1615 0 0 0 0 0 0 25.47 100 

Forest 0 972 0 0 0 0 0 35.37 100 

Grass 79 1775 349 372 824 541 0 27.35 8.86 

Shrub 0 0 390 71 0 5 0 8.73 15.24 

Impervious 700 0 0 0 2035 0 0 65.9 74.41 

Cropland 425 0 470 370 200 25,928 0 96.03 94.65 

Bare land 3522 1 67 0 29 525 5669 100 57.77 
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3.3. Results and Accuracy Assessment 

3.3.1. Results of Landsat Mean Reflectance Regressing 

A linear model between Landsat mean reflectance and disaggregated mean coarse reflectance at time 

t1 (Bole: 11 July 2011; Luntai: 6 October 2013) was built successfully by using linear regression analysis. 

Table 3 shows the best window size for each band and each land class. Table 4 shows that high-correlation 

coefficients R were acquired in these two study areas. This result demonstrates that the adaptive window 

size and moving steps selection method have the ability to select the best window size for the 

disaggregation of coarse pixels. 

Table 3. The best window size for each band and each land class. 

Bole Best Window Size (MODIS pixels, 500 m) 

Class Blue Green Red NIR SWIR1 SWIR2 

Forest 45 37 45 15 33 41 

Corn 45 37 45 27 37 37 

Cotton 15 23 19 35 45 19 

Desert 35 35 39 45 39 39 

Bare land 41 45 39 41 45 45 

Water 31 23 25 35 37 43 

Building land 35 37 37 45 43 13 

Other crops 41 45 45 13 45 43 

Luntai Best Window Size (MODIS pixels, 500 m) 

Class Blue Green Red NIR SWIR1 SWIR2 

Cotton 71 73 73 37 33 21 

Water 67 59 65 41 57 57 

Building land 57 51 65 75 75 67 

Bare land 15 19 75 75 19 39 

Desert 63 39 33 37 49 13 

Corn 73 73 73 73 71 73 



Sensors 2015, 15 24011 

 

 

Table 4. Linear model built by linear regression analysis between Landsat mean reflectance and disaggregated mean coarse reflectance. 

Bole: 𝐲 = 𝐱 × 𝐛 + 𝐚 

 Blue Green Red NIR SWIR1 SWIR2 

Class R2 a b R2 a b R2 a b R2 a b R2 a b R2 a b 

Forest 0.984 0.022 0.972 0.929 0.080 0.389 0.956 0.036 0.775 0.972 0.055 0.745 0.929 0.075 0.658 0.869 0.045 0.761 

Corn 0.854 0.018 0.771 0.748 0.022 0.581 0.895 0.011 0.783 0.757 0.087 0.708 0.912 0.091 0.328 0.792 0.046 0.338 

Cotton 0.490 0.035 0.205 0.487 0.023 0.700 0.593 0.031 0.519 0.939 −0.039 1.021 0.821 0.025 0.787 0.584 0.041 0.511 

Desert 0.966 −0.021 1.364 0.994 0.010 0.974 0.996 −0.005 1.003 0.996 −0.027 1.043 0.990 0.003 0.907 0.996 −0.028 1.015 

Bare land 0.980 0.021 0.929 0.988 0.016 0.928 0.996 0.006 0.955 0.994 0.008 1.002 0.996 −0.009 1.014 0.941 −0.083 1.351 

Water 0.914 0.027 0.931 0.962 −0.017 1.233 0.986 −0.002 1.046 0.984 0.060 −0.120 0.543 0.022 −0.073 0.642 0.015 −0.035 

Building land 0.806 0.037 0.861 0.953 0.001 0.982 0.958 −0.019 1.045 0.984 0.028 0.858 0.918 0.012 0.552 0.824 −0.053 0.925 

Other crops 0.953 0.020 0.869 0.958 −0.018 1.059 0.972 −0.011 1.028 0.951 0.068 0.799 0.951 −0.034 0.989 0.958 0.006 0.906 

Luntai: 𝐲 = 𝐱 × 𝐛 + 𝐚 

 Blue Green Red NIR SWIR1 SWIR2 

Class R2 a b R2 a b R2 a b R2 a b R2 a b R2 a b 

Cotton 0.910 0.007 0.831 0.824 0.014 0.763 0.841 0.032 0.678 0.699 −0.018 1.102 0.691 0.056 0.685 0.555 0.082 0.423 

Water 0.845 0.146 −0.872 0.839 0.189 −0.475 0.941 0.216 −0.508 0.882 −0.061 0.811 0.852 −0.017 0.456 0.785 0.001 0.358 

Building land 0.968 0.023 0.825 0.947 0.038 0.734 0.945 0.060 0.662 0.984 0.142 0.435 0.972 0.112 0.509 0.964 0.072 0.686 

Bare land 0.968 0.029 0.902 0.990 0.005 1.013 0.990 0.056 0.836 0.994 0.048 0.873 0.996 −0.007 1.022 0.994 0.006 0.991 

Desert 0.962 0.056 0.766 0.937 0.128 0.541 0.916 0.146 0.556 0.964 0.149 0.586 0.750 0.248 0.351 0.676 0.121 0.660 

Corn 0.867 −0.011 1.108 0.755 0.011 0.792 0.752 −0.001 0.910 0.870 0.078 0.826 0.627 0.147 0.297 0.585 0.072 0.483 

x: disaggregated mean coarse reflectance; y: Landsat mean reflectance. 
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3.3.2. Results of Synthetic Landsat Image Generation 

By using MSTDFA, four synthetic Landsat images were outputted that contained six bands including 

blue, green, red, near infrared (NIR), short-wave infrared 1 (SWIR1), and SWIR2. The acquisition date 

of these data can be considered the same as that for MODIS. Figure 3a shows the actual observation of 

MODIS surface reflectance on the NIR band acquired on 28 July 2011 in Bole and on 21 October 2013 

in Luntai, and Figure 3b shows the synthetic surface reflectance imagery on the NIR band generated by 

MSTDFA in the two study areas. Figure 3c shows the actual observation of Landsat NIR band surface 

reflectance acquired on 27 July 2011 in Bole and on 22 October 2013 in Luntai. Through visual 

interpretation, we determined that the synthetic and actual Landsat data are highly similar and were 

unable to be distinguished with the unaided eye. 

 

Figure 3. Comparison of Near-infrared (NIR) band surface reflectance data of the Moderate 

Resolution Imaging Spectroradiometer (MODIS; left), synthetic Landsat image (middle); 

and actual Landsat image (right) acquired on 11 July 2011 in Bole (upper panels) and  

6 October 2013 in Luntai (lower panels), respectively. 

3.3.3. Accuracy Assessment 

In this study, four actual observations of Landsat data were used to evaluate the accuracy.  

Closer similarity of the synthetic Landsat image to the actual image relates to the higher precision of the 

method. To quantitatively evaluate the similarity between the actual observations and synthetic images, 

correlation analysis was used to calculate the correlation between the synthetic Landsat imagery and the 

actual observation of Landsat data. Several indicators such as the coefficient (R), variance, mean absolute 

difference (MAD), bias, and RMSE were calculated. Table 5 shows the results of this analysis.  

As indicated in Table 5, MSTDFA can generate synthetic Landsat images with high similarity to the 

actual images. Most synthetic Landsat images had a high correlation with the actual Landsat imageries 
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with a coefficient (R) higher than 0.90. Figure 4 shows the scatter plots between the actual and synthetic 

Landsat images, which were close to the 1:1 line. These results indicate a high similarity between the actual 

and synthetic Landsat data and that MSTDFA has high accuracy in generating synthetic Landsat images. 

Table 5. Results of correlation analysis between synthetic and actual Landsat imageries. 

Study Area Bole Luntai 

Date 27 July 2011 4 September 2013 

Parameters R Var MAD RMSE Bias R Var MAD RMSE Bias 

Blue 0.646 0.002 0.011 0.044 −0.001 0.917 <0.001 0.016 0.038 0.029 

Green 0.909 0.003 0.012 0.023 −0.003 0.925 <0.001 0.018 0.031 0.018 

Red 0.918 0.004 0.015 0.027 −0.003 0.930 <0.001 0.020 0.032 0.015 

NIR 0.961 0.016 0.020 0.036 −0.006 0.856 <0.001 0.023 0.034 0.014 

SWIR1 0.932 0.007 0.018 0.031 −0.007 0.893 <0.001 0.021 0.033 0.013 

SWIR2 0.946 0.010 0.020 0.032 −0.005 0.909 <0.001 0.021 0.033 0.012 

Date 13 September 2011 22 October 2013 

Parameters R Var MAD RMSE Bias R Var MAD RMSE Bias 

Blue 0.735 0.002 0.012 0.041 0.004 0.980 <0.001 0.006 0.010 0.001 

Green 0.902 <0.001 0.015 0.026 0.005 0.985 <0.001 0.007 0.014 0.008 

Red 0.904 <0.001 0.017 0.030 0.004 0.986 <0.001 0.008 0.017 0.011 

NIR 0.839 0.003 0.034 0.051 0.001 0.968 <0.001 0.008 0.017 0.009 

SWIR1 0.868 <0.001 0.022 0.034 0.004 0.979 <0.001 0.009 0.018 0.010 

SWIR2 0.903 <0.001 0.023 0.037 0.010 0.986 <0.001 0.009 0.019 0.011 

 

Figure 4. Cont. 
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Figure 4. Scatter plots between the actual and synthetic imagers of Landsat at (a) Bole and 

(b) Luntai by using the modified spatial and temporal data fusion approach (MSTDFA). 

4. Discussion 

4.1. Comparison to STDFA 

Table 6 and Figure 5 show the results of the conditional STDFA. It is evident that in the Luntai area, 

MSTDFA had better accuracy than the conditional STDFA in nearly all parameters. In the Bole area, 

MSTDFA had much better accuracy than the conditional STDFA in SWIR1 and SWIR2 bands. 

However, the precision of MSTDFA was slightly lower in the blue, green, and red bands. A comparison 

of Figures 4 and 5 revealed that in the Luntai area, the scatter diagram of MSTDFA was closer to the 

1:1 line than that of STDFA. Two factors can explain these results. Firstly, MSTDFA has two important 

improvements over STDFA. In particular, the differences in sensor systems are considered in MSTDFA. 

In Figure 5, a high correlation is shown between the synthetic and actual Landsat images. However, a 

certain deviation appeared between the regression line and the 1:1 line that was caused mainly by 

differences in the sensor systems. Therefore, these deviations were eliminated in the scatter plots of 

MSTDFA. Secondly, many plots indicate that land cover type changed in the Bole area from 11 to  

27 July 2011. For example, the northwest corner of the study area is Aibi Lake which is a huge shallow 

lake. In addition, Boertala River flows east from the west of the study area. As the water level changed, 

a lot of bare land changed into water. These changes in land cover type will reduce the precision of the 

model, and they had a more severe influence for MSTDFA. In STDFA, two days of Landsat images 

were used to detect the land cover change areas. The land cover change areas were classified as other 

class. However, only one Landsat image was used in MSTDFA and the change area cannot be detected. 

So, the land cover type change leads to more reflectance changes of blue, green, and red bands. Thus, 
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MSTDFA performed worse than STDFA in these bands. Details of the influence of land cover change 

are described in Section 4.5. 

Table 6. Results of correlation analysis between synthetic and actual Landsat imageries by 

using the spatial and temporal data fusion approach (STDFA). 

Study Area Bole Luntai 

Date 27 July 2011 4 September 2013 

Parameters R Var MAD RMSE Bias R Var MAD RMSE Bias 

Blue 0.654 0.002 0.010 0.043 −0.001 0.912 <0.001 0.018 0.035 0.025 

Green 0.919 <0.001 0.011 0.021 −0.002 0.922 <0.001 0.018 0.030 0.016 

Red 0.930 0.001 0.013 0.024 −0.002 0.930 <0.001 0.020 0.031 0.014 

NIR 0.961 0.001 0.020 0.035 −0.006 0.864 <0.001 0.022 0.035 0.016 

SWIR1 0.894 0.001 0.019 0.037 −0.003 0.872 <0.001 0.022 0.038 0.020 

SWIR2 0.889 0.002 0.024 0.047 0.001 0.892 <0.001 0.024 0.038 0.018 

Date 27 July 2011 22 October 2013 

Parameters R Var MAD RMSE Bias R Var MAD RMSE Bias 

Blue 0.735 0.002 0.013 0.041 0.002 0.968 <0.001 0.010 0.060 0.058 

Green 0.907 <0.001 0.016 0.026 0.004 0.974 <0.001 0.011 0.070 0.068 

Red 0.899 <0.001 0.019 0.030 0.001 0.977 <0.001 0.012 0.071 0.069 

NIR 0.769 0.004 0.041 0.062 0.002 0.956 <0.001 0.011 0.069 0.066 

SWIR1 0.863 0.001 0.023 0.035 −0.001 0.978 <0.001 0.010 0.020 0.010 

SWIR2 0.894 0.001 0.025 0.038 0.002 0.956 <0.001 0.007 0.026 0.025 

 

Figure 5. Cont. 
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Figure 5. Scatter plots between actual and synthetic images of Landsat in (a) Bole and  

(b) Luntai by using the spatial and temporal data fusion approach (STDFA). 

4.2. Improvement 

Compared with traditional STDFA, MSTDFA has two improvements. 

Firstly, in the traditional STDFA, the best window size for the solution of Equation (1) was set to a 

fixed value of 40 coarse pixels. However, owing to the different spatial distribution of each land cover 

class, the best window size for each land cover class may be different. Thus, a fixed window size may 

not be appropriate for all classes. In MSTDFA, an adaptive window size and moving step length 

selection method was used to avoid this problem. This method tested every window size and moved the 

step length from minimum to maximum by using the exhaustive method, and the correlation coefficient 

between the reference Landsat mean reflectance and the MODIS disaggregated mean coarse reflectance 

of every test was calculated. The best window size and moving step length were designed to be those 

which can lead to the maximum correlation coefficient between the fine and coarse mean reflectance. 

Secondly, the differences in sensor systems are not considered in traditional STDFA. In MSTDFA, 

the sensor differences were removed by using linear models between the Landsat mean reflectance and 

the disaggregated mean reflectance. 

To show the improvements by the above steps, we tested those methods step by step in Luntai at NIR 

band. Firstly, the basic STDFA model with a fixed window size of 40 MODIS pixels and without sensor 

difference adjustment was used to generate a synthetic NIR image. Then the adaptive window size 

selection method and sensor difference adjustment were added step by step to generate a synthetic NIR 

image. Finally, the similarity between those synthetic NIR imageries and the actual Landsat NIR image 

were evaluated by correlation analysis. Table 7 shows the results of correlation analysis. From Table 7, 

we can see improvements of correlation coefficient R and declines of Variance, RMSE, MAD, and bias 

in each step. So, the traditional STDFA methods were enhanced by those improvements. 
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Table 7. Accuracy improvements of every step in MSTDFA method of NIR band in Luntai. 

Parameters STDFA Adaptive Window Size Selection Sensor Adjustment Total 

R 0.9557 +0.0116 +0.0003 0.9676 

Variance 0.0003 −0.0001 0.0000 0.0002 

MAD 0.0113 −0.0027 −0.0003 0.0083 

RMSE 0.0688 −0.0502 −0.0013 0.0173 

Bias 0.0664 −0.0548 −0.0021 0.0095 

4.3. Landsat and MODIS Fusion Using FROM–GLC Data 

To determine the applicability of the FROM–GLC data in MSTDFA, the FROM–GLC data in Bole 

mapped by using Landsat-5 TM data acquired on 21 July 2009 was used in MSTDFA. By inputting 

FROM–GLC data rather than classification data mapped using the maximum likelihood classification 

method, six synthetic Landsat images ware generated. Table 8 shows the results of accuracy assessment 

of these six synthetic Landsat images. As indicated in Table 8, most synthetic Landsat images had a high 

correlation with the actual Landsat imageries with coefficient R higher than 0.90. Figure 6 shows the 

scatter plots between the actual and synthetic Landsat images, which were close to the 1:1 line.  

These results indicate a high similarity between the actual and synthetic Landsat data and that MSTDFA 

has high accuracy in generating synthetic Landsat images. Therefore, the FROM–GLC data can be used 

in MSTDFA. 

Table 8. Results of correlation analysis between synthetic and actual Landsat imageries 

using the modified spatial and temporal data fusion approach (MSTDFA) with input of Finer 

Resolution Observation and Monitoring of Global Land Cover (FROM–GLC) data. 

Parameters R Variance MAD RMSE Bias 

Blue 0.661 0.002 0.011 0.043 −0.003 

Green 0.917 0.000 0.012 0.022 −0.003 

Red 0.924 0.001 0.014 0.026 −0.004 

NIR 0.961 0.001 0.021 0.036 −0.007 

SWIR1 0.936 0.001 0.017 0.030 −0.010 

SWIR2 0.956 0.001 0.019 0.029 −0.008 

  

Figure 6. Cont. 
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Figure 6. Scatter plots between the actual and synthetic imageries of Landsat using modified 

spatial and temporal data fusion approach (MSTDFA) with input of Finer Resolution 

Observation and Monitoring of Global Land Cover (FROM–GLC). 

4.4. Influence of the Image Extents 

The Ordinary Least Squares technique was used to disaggregate the time series mean surface 

reflectance value ( , )d ir c t  for each class. However, the solutions will affect the number of pixels an 

image contains from two aspects. It is easier to generate outliers in the solution of Ordinary Least Squares 

in a small area. In addition, the images with different extents will produce different disaggregated mean 

reflectance. These effects were reduced by three steps in this method. Firstly, abnormal disaggregated 

mean surface reflectance value was not used. Then, all the normal disaggregated mean reflectance for 

every target MODIS pixels was used to adjust the sensor difference. Finally, the sensor adjusted time 

series mean fine reflectance ( , , )f i kr c t m  of target MODIS pixels mk was only used for the fusion of fine 

pixels belonging to target MODIS pixels mk. To evaluate the influence of the image extents, we applied 

MSTDFA in different image extents in NIR band acquired on 22 October 2013 in Luntai. Figure 7 shows 

that the correlation coefficient R has a logarithmic relationship with the size of applied area. The bigger 

of the study area, the higher the correlation coefficient R. So, we recommend using the MSTARFM 

model in a large area and using the MSTDFA model in areas greater than 200 × 200 MODIS pixels. 

 

Figure 7. Relationship between correlation coefficient R and study area size. 
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4.5. Comparison of Actual NDVI and NDVI Calculated Using Synthetic Data 

This method was applied to MODIS and Landsat NDVI data in Bole to test its applicability with 

different data. The MODIS NDVI data included 250 m 16-day MOD13Q1 products acquired on 12 July 

2011 and 28 July 2011. The Landsat NDVI data was calculated by using the red and NIR bands of 

Landsat data acquired on 11 July 2011. By inputting these NDVI data and the land cover data mapped 

by using the maximum likelihood classification method, a synthetic Landsat NDVI image was generated 

by using MSTDFA and conditional STDFA. Table 9 shows the accuracy assessment results of the two 

synthetic Landsat NDVI images. Both STDFA and MSTDFA can be used to fuse NDVI data, and the 

results of the latter were better than those of the former. Another method to generate synthetic NDVI 

data is to calculate NDVI using the synthetic red and NIR data generated by STDFA and MSTDFA.  

Wu et al. [41] compared the two methods in the generation of synthetic NDVI and leaf area index. 

Table 9. Accuracy assessment result comparison of Landsat Normalized Different 

Vegetation Index (NDVI) fusion application. 

 NDVI Generated by MSTDFA NDVI Generated by STDFA 

R 0.970 0.949 

Variance 0.006 0.010 

MAD 0.043 0.074 

RMSE 0.086 0.125 

Bias 0.037 0.073 

4.6. Limitations of the Method 

Although MSTDFA can generate daily synthetic Landsat images with high similarity to actual 

Landsat images, this method has weaknesses. 

Firstly, all the spatial and temporal data fusion methods are based on the assumption that the land 

cover classes do not change over time. Weng et al. [28] found that the accuracy of those models will be 

substantially reduced if this assumption is violated. As discussed in Section 4.2, many plots include land 

cover changes over time in the Bole area. For example, the northwest corner of the study area is  

Aibi Lake which is a huge shallow lake. In addition, Boertala River flows east from the west of the study 

area. As the water level changes, a lot of bare land changes into water. To evaluate the influence of land 

cover change, we extracted the land change plots by using the differences in Landsat images acquired 

on 11 July 2011 and 27 July 2011. The residual image between the synthetic and actual images was also 

calculated. Then, we calculated the correlation coefficient between these two data sets to obtain a high 

correlation coefficient R of 0.992. We also found that pixels with large errors were located in the plots 

in which the land cover types changed. Therefore, land cover class change has a very important influence 

in MSTDFA. To assess the influence, we masked these plots and calculated the accuracy assessment 

parameters again, as shown in Table 10. A comparison of Tables 5 and 10 revealed that the maximum 

fusion accuracy improvement was 0.32 in correlation coefficient R if the plots are not considered. 
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Table 10. Accuracy assessment result with no consideration of land cover change plots. 

 R Variance MAD RMSE Bias 

Blue 0.974 <0.001 0.005 0.011 −0.001 

Green 0.989 <0.001 0.006 0.010 −0.002 

Red 0.988 <0.001 0.008 0.012 −0.001 

NIR 0.997 <0.001 0.009 0.014 −0.004 

SWIR1 0.990 <0.001 0.010 0.017 −0.005 

SWIR2 0.986 <0.001 0.012 0.019 −0.004 

Secondly, this method considered only the fusion of multi-sensor optical images. Therefore, it cannot 

provide effective data under cloudy conditions because all optical satellites are affected by clouds.  

In this situation, radar satellite must be considered as a solution [43–48]. 

Thirdly, a simple method in which solutions out of the range of 0%–100% were not used was 

employed to satisfy the constraints of the solutions of the linear mixed model. Optimization algorithms, 

such as the normalization algorithm which uses all solutions, minimizing the squared errors between the 

predicted response variable and observed data, can be used to improve this method [49]. Furthermore, 

nonlinear least squares regressions for spectral quantitative analysis is also an important direction to 

modify this method for future research [50]. 

5. Conclusions 

In this study, an MSTDFA was developed and validated for two study areas located in Xinjiang, 

China. By inputting MODIS reflectance data, Landsat data, and land cover data, this method is able to 

generate daily synthetic Landsat images in which the spatial resolution is the same as that of the Landsat 

data and the temporal resolution is the same as that of the MODIS data. A comparison with the actual 

Landsat image revealed the following findings: 

(1) The adaptive window size and moving step selection method can select the best window size for 

disaggregation of coarse pixels. The disaggregated mean coarse reflectance had a strong linear 

relationship with the Landsat mean reflectance. 

(2) MSTDFA had higher accuracy than STDFA but was more easily influenced by land cover change. 

Land cover data such as that of FROM-GLC can be used in MSTDFA. Synthetic Landsat images 

with high similarity to actual Landsat images with a correlation coefficient R of 0.96 can be generated. 

(3) Land cover class change had a very important influence in MSTDFA, which can lead to a 

reduction in the correlation coefficient R of 0.32 in the blue band. 

(4) MSTDFA can be applied in 250 m 16-day MODIS MOD13Q1 products and Landsat NDVI data. 

A synthetic NDVI image with very high similarity to the actual NDVI observation with a high 

correlation coefficient R of 0.97 can be generated. 
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