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Abstract: The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU  

tightly-coupled integration system with aiding information that can provide reliable position 

solutions when the GNSS signal is challenged such that less than four satellites are visible in 

a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled 

integration system with height and heading aiding (ATCA). This approach adopts a novel 

redundant measurement noise estimation method for an adaptive Kalman filter application 

and also augments external measurements in the filter to aid the position solutions, as well 

as uses different filters to deal with various situations. On the one hand, the adaptive Kalman 

filter makes use of the redundant measurement system’s difference sequence to estimate and 

tune noise variance instead of employing a traditional innovation sequence to avoid coupling 

with the state vector error. On the other hand, this method uses the external height and 

heading angle as auxiliary references and establishes a model for the measurement equation 

in the filter. In the meantime, it also changes the effective filter online based on the number 

of tracked satellites. These measures have increasingly enhanced the position constraints and 

the system observability, improved the computational efficiency and have led to a good 

result. Both simulated and practical experiments have been carried out, and the results  

demonstrate that the proposed method is effective at limiting the system errors when there 

are less than four visible satellites, providing a satisfactory navigation solution. 
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1. Introduction 

Inertial navigation systems (INS) and global navigation satellite systems (GNSS) have been widely 

used to provide accurate and reliable navigation information (i.e., attitude, velocity and position). GNSS 

has long-term stability in ideal conditions, but has certain limitations in urban areas (e.g., a city 

downtown), inside tunnels and under heavy tree canopies. INS is completely self-contained and 

autonomous, but suffers from accuracy degradation over time. The integration of GNSS and INS can 

maximize their respective advantages, minimize their individual drawbacks and provide a more 

satisfactory navigation solution. Especially in recent years, Micro-Electro-Mechanical System (MEMS) 

sensors have met the specifications and requirements needed for applications in various fields because 

of their low power consumption, small size, light weight and low cost. Accordingly, low-cost GNSS/INS 

integration systems have become an increasingly attractive option. In most commercial GNSS/INS 

products, the GNSS-derived positions and velocities are integrated with MEMS sensors through a 

Kalman filter (KF) for the navigation solution [1,2]. In the meantime, the IMU is also used to provide 

the navigation information during GNSS signal outages and can be used for fast GNSS signal  

reacquisition [3,4]. A precondition for utilizing such loosely-coupled integration methods is that at least 

four satellites are visible. However, this premise is not always satisfied, especially in urban areas. If less 

than four satellites are visible, the filter cannot be updated, because the GNSS position is unavailable. 

Several studies have focused on providing continuous and accurate position results with less than four 

satellites [5,6]. The common approach is to use dead-reckoning with inertial sensors and other sensors 

to bridge GNSS outages. To mitigate the drifts of dead-reckoning, several methods have been presented. 

One direct method is to make use of external sensors or equipment, such as magnetometers or an 

odometer, to provide heading or velocity updates [7,8] when GNSS is invalid. Moreover, cameras and 

laser scanners can be used to extract the features of scanned objects for position and heading 

determination in urban scenarios when the satellite number is below four [9,10]. This kind of method is 

effective, but relies on additional sensors, which are not always affordable. Another popular and 

attractive method to solve the navigation problem with less than four satellites is the non-holonomic 

constraints (NHC) [11,12]. This method takes advantage of the knowledge of the vehicle’s dynamics 

and the physical conditions that the vehicle experiences. This knowledge is utilized as measurements in 

the vehicle state estimation process [13]. However, this method can only be applied when constrained 

conditions exist during the dynamic process. 

Additional literature has contributed to enhancing the attitude estimation without the need for extra 

hardware. Examples of these methods include: using nonlinear estimation algorithms [14] or using neural 

networks; enhancing the quality of sensor data through calibration [15], stochastic modeling [16] and  

de-noising [17]; and introducing a priori information, such as control inputs, vehicle maneuver  

models and kinematic constraints [18]. Additionally, some other methods, such as post-processing with 

a Rauch-Tung-Striebel (RTS) smoother, provide more reliable results [19] and are always used in 

applications for which it is not critical to obtain the position solution in real time, like mobile mapping. 
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However, these methods have their limitations and, thus, only work under specific situations. On the 

one hand, methods based on additional sensors (laser scanner, camera) are effective, but are not always 

affordable for civilian navigation applications and cannot properly provide real-time solutions. On the 

other hand, approaches that utilize a priori information can improve the navigation performance for 

some applications under specific scenarios; however, these methods cannot completely solve the 

divergence of the navigation errors. The most important point is that these listed methods do not consider 

or evaluate the quality of measurement in the process. Because the situation in which a reduced number 

of visible satellites occurs most often when the signal is heavily blocked, the remaining visible satellite 

measurements will properly have a lower performance that affects the filter solution if we do not adopt 

approaches that adjust the filter parameters. 

In order to solve the listed problem and to achieve the main objective of this paper, which limits the 

system errors when the GNSS signal is challenged, such that less than four satellites are visible in a harsh 

environments, we put forward an adaptive tightly-coupled integration system with height and heading 

aiding (ATCA), which adopts an adaptive noise covariance tuning strategy and combines the external 

aiding measurement in both a directly and pseudo measurement aiding manner. The main contributions 

of our research include: 

1. We present a novel adaptive method to tune the Kalman filter measurement noise covariance 

matrix® in real time online and mitigate the effect of GNSS measurement errors caused by the 

changing of visible satellites. The proposed method has the advantage that the tuning process is 

dependent on only measurements and is totally decoupled from estimated state vectors.  

2. This research suggests using information from external sensors to enhance the navigation 

performance, and the whole system works under a filter switching strategy. This means that when 

at least four satellites are visible, the system works in standard tightly-coupled mode without 

employing the external measurements in order to improve the computational efficiency; when 

three satellites are visible and the barometer data are available, the system switches to the height 

aiding filter; and when two satellites are available and the magnetometer and height information 

are also available, the system changes to the height/heading aiding integration filter. 

3. We utilize both the barometer and magnetometer measurements, not only in a directly aiding 

manner, but also a pseudo-measurement and velocity measurement manner. Specifically, we 

present the method of using the height measurement by approximately modeling the Earth as a 

static pseudo satellite; also, the magnetometer measurements are used to aid the velocity 

measurement, which implicitly assumes that the receiver moves in the direction of its heading, 

which actually is an implicit NHC approach. The benefit is that the measurements are more deeply 

coupled with the indirect related states in the Kalman filter. For example, the height measurements 

can even be potentially correlated with the horizontal position errors; also, the magnetometer 

measurements may enhance not only the INS heading, but also the horizontal velocities. 

This paper is organized as follows: Section 2 describes the standard GNSS/INS tightly-coupled 

method; Section 3 introduces the proposed method, including the overall system design; Section 4 

illustrates the theorem and the proof of the method for adaptively tuning the measurement noises and the 

utilization of this approach in a GNSS/INS tightly-coupled system. Section 5 provides the height and 

heading measurements aiding the filter; Section 6 gives the design and implementation of the hardware 
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platform of the tightly-coupled integration system. Section 7 provides both simulation and real test 

results, and Section 8 finally draws the conclusions. 

2. Standard Tightly-Coupled GNSS/INS Integration 

Before introducing the proposed ATCA method, we describe the standard tightly-coupled GNSS and 

INS integration system here first, and its block diagram is shown in Figure 1. As shown in Figure 1, the 

GNSS/INS Kalman filter processes the difference of GNSS output and INS derived pseudo-ranges and 

pseudo-rates as measurement directly and corrects the INS mechanization in a closed loop with the 

estimation results. The Kalman filter state (system) and measurement equations are described separately 

in this section. 

 

Figure 1. Tightly-coupled integration scheme. 

2.1. Tightly-Coupled System State Model 

The tightly-coupled integration system uses the INS error propagation model as its dynamic model. 

The state vector is composed of the INS navigation errors (i.e., attitude errors, velocity errors and 

position errors), IMU sensor errors (e.g., gyroscope and accelerometer biases) and the distance error 

caused by clock errors (e.g., clock bias and clock drift) of the GNSS receiver. The state vector is given 

as follows: 

 

[ ]

[ , , , , , , , , ]

[ , , , , , ]

INS IMU GPS

INS E N U E N U

IMU x y z x y z

GPS

X X X X

X v v v L h

X

X cdt cdt

        

  





   



 (1) 

where [ , , ]E N U   ,[ , , ]E N Uv v v    and [ , , ]L h    denote the errors of attitude, velocity and position, 

respectively; [ , , ]x y z    and [ , , ]x y z    represent gyroscope and accelerometer biases; cdt  and cdt

denote the distance error caused by the receiver clock bias and clock drift, respectively. The subscripts E, 

N and U denote the east, north and up components in the local navigation frame (l-frame), and the 

subscripts x, y and z denote the right, front and up components in the body frame (b-frame).  

Then, according to the chosen state vector, the system dynamic model can be written as follows: 
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where 0 and I  separately denote the zero and unity matrix. Several literature works [20,21] have 

described the INS error-based dynamic model; the model is not illustrated here specifically, but the 

detailed description of the system model is listed in Appendix for reference. 

2.2. Tightly-Coupled System Measurement Model 

In the GNSS/INS tightly-coupled integration system, the differences between GNSS-measured and 

INS-derived pseudo-ranges and pseudo-rates are taken as observations for the filter: 

( )
( ) ( ) ( )

( )

GPS INS

GPS INS

Z t H
Z t X t V t

Z t H

 

 

 

 

    
       

       
 (3) 

where GPS and GPS  denote the GNSS pseudo-range and pseudo-rate and INS  and INS denote the 

pseudo-range and pseudo-rate predicted from the satellite and INS motion information. H  and H

denote the measurement matrices. V is the measurement noises and is white, zero-mean, uncorrelated 

and has the covariance matrix [ ]T

k j k k jE V V R   . Because the measurement equation has also been 

introduced in several literature works [22,23] and is not illustrated here specifically, the detailed 

description of the measurement model is listed in Appendix for reference. 

Although the standard tightly-coupled GNSS/INS integration system is designed specifically for 

navigation scenarios with less than four satellites, the filter performance degrades dramatically because 

of the lack of measurement information [24]. Two reasons mainly contribute to the performance 

degradation. The first one is that the observability matrix is not a full column rank matrix, and the system 

becomes unobservable when the visible satellite number is less than four [25]. In this situation, the rank 

of the null space is greater than one, so the existing measurement information cannot estimate the exact 

INS system error, and the final navigation solution’s error has an accumulating trend. In other word, the 

rest of the satellite information is not strong enough to provide the position constraints. The second 

reason is the negative effect of the measurement error. Typically, the less than four satellites situation 

most often happens when the GPS signal is heavily blocked, such as driving downtown. The block that 

causes the invisibility of the majority of the satellites will in the meantime lead to the remaining visible 

satellites suffering from large measurement error. Then, in the measurement update of the Kalman filter, 

the inaccurate satellite measurement information unfortunately further influences the system state 

estimation. Especially when a low-cost IMU is used, the positioning error may increase rapidly and even 

lead to the divergence of the filter.  

3. Overview of the Proposed System 

Based on the drawback analyses of the standard tightly-coupled system previously described, aiming 

to solve the current existing problems, the main idea to solve the problem is, first, adding external 
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auxiliary measurements, such as height and heading, to increase the system observability and to provide 

stronger position and velocity constraints; second, adopting the adaptive measurement noise estimation to 

have the evaluation of the measurement quality and optimally blend the data from the GNSS and INS. 

Hence, the proposed ATCA method mainly focuses on the following points: (1) adopt an adaptive 

Kalman filter to adjust the measurement noise covariance matrix (R) in real time based on the situation, 

instead of using a constant matrix, to reflect the noise characteristics accurately; (2) employ external 

auxiliary measurements effectively; and, finally; (3) redesign the filter for different situations and switch 

them in the navigation process. The system scheme is shown in Figure 2. 

 

Figure 2. Adaptive tightly-coupled aiding (ATCA) system scheme. 

In the ATCA system, first, an adaptive measurement noise estimation is introduced, which is shown 

in the red block, and it makes use of the two different sources of pseudo-range and pseudo-rate to 

estimate measurement noise variance and then adjusts it online. Compared to traditional methods, which 

are based on the innovation sequence [26,27], this adaptive method takes only GNSS measurements and INS 

predictions into consideration. Therefore, this method is totally decoupled from estimated state vectors. 

Second, if at least four satellites are visible, the ATCA system works in the traditional tightly-integrated 

mode and combines the GNSS-measured pseudo-range and pseudo-rate with INS to construct the 

measurement vectors, as described in Section 2 before, and this part is shown in the blue block in Figure 2. 

The filter utilizes the residuals to obtain the INS error estimates and corrects the navigation components 

in a closed loop.  

Finally, when fewer satellites are visible, the ATCA system works in aiding mode, and this part is 

shown in the green block in Figure 2. In detail, when only three satellites are available, the system 

introduces an external height measurement and switches to the height-aiding mode. A new algorithm is 

presented in this mode, and it treats the Earth as a static pseudo satellite and adds an ellipsoid  

equation-based position constraint into the measurement equations. Meanwhile, when only two satellites 

are available, the system changes to height/heading integration aiding mode; the magnetometer 

information is introduced and used in a velocity measurement aiding manner to correct not only the 

heading, but also the horizontal velocities. The main reason to adopt the switch filter strategy is to 
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decrease the system computational burden for the real-time navigation application. We build the 

prototype of our tightly-coupled integration system aiming to provide a real-time navigation solution in 

practice, so the system computational efficiency is also a significant point that needs to be considered in 

the design process. With the filter switch strategy, we only involve the aiding information when less than 

four satellites are available, and the measurement matrix will have a lower dimension in the more than 

four satellites available periods, so the filter computation will be decreased in such a situation. As 

referred to in [28], if we only consider the multiplication computation here, the multiplication number 

for the one-step recursion of the Kalman filter is 3 2 2 22 3 2 2n n m n nm nm    . Hence, if the height and 

heading measurements are all included in the measurement equations (n = 17, m = 12) all of the time, 

the multiplication number is 25,823 for the one-step recursion, while the number is only 19,499 during 

the more than four visible satellites period (n = 17, m = 8) with the filter switching strategy. Therefore, 

we can save 24.5% multiplication operations for the one-step recursion of Kalman filter. Moreover, we 

do not have to utilize a blunder detector to evaluate the measurement of the barometer and magnetometer 

in each epoch to save the computational resources. Furthermore, we do not need to collect the height and 

heading information from the external equipment through the I2C (Inter-Intergrated Circuit) or UART 

(Universal Asynchronous Receiver/Transmitter) interface in every sample epoch to save the system 

hardware resources, and the savings will become obvious when the system requires a higher 

measurement sampling frequency.  

4. Adaptive Kalman Filter 

Real-world navigation scenarios are complex and unpredictable. For example, it is a common case 

that some satellites are blocked or becoming invisible. When one satellite is losing its sight, the satellite 

pseudo-range and pseudo-rate errors will increase significantly and even become unacceptable before 

the satellite becomes invisible. Moreover, the visible satellites may suffer from large pseudo-range and 

pseudo-rate errors. In other word, the real measurement noise is strongly dependent on the navigation 

scenarios. However, in many applications, it is difficult to predict the navigation environment, and hence, 

the Kalman filter itself is preferred to be smart enough to tune the measurement noise covariance adaptively 

according to the navigation environment and measurement quality. 

In order to solve this problem, the adaptive Kalman filter is the most commonly-used method and can 

be found in several literature works [29,30]. However, this method is always an innovation  

sequence-based adaptive estimation (IAE) approach and will involve the sate vector X during the 

calculation of the measurement noise covariance. Therefore, if the state is not well estimated, a negative 

effect properly occurs for the filter performance. Here, in order to avoid such risks, a novel adaptive 

method is introduced based on the redundant measurement system noise estimation theorem. Both the 

theorem and proof of the proposed method are provided in this section.  

4.1. Theorem: Noise Estimation Based on Redundant Measurement Systems 

Assume that 1( )Z k  and 2 ( )Z k  are measurements of the value Z  from different systems at time k. 

Here, the measurements from System 1 and System 2 can be expressed as follows: 
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 (4) 

where 1( )V k  and 2 ( )V k  are independent and zero mean white noises, 1( )f k  and 2 ( )f k  are trend items 

of the measurement errors. If the following conditions are satisfied: 
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diag f k f k E V k V k

E V k V k E V k V k

   
   

      




 (5) 

The measurement noise variance of System 1 can be estimated as: 

   1 1 1 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) 2
TTR E V k V k E Z k Z k Z k Z k         (6) 

where: 

1 1 1

2 2 2

( ) ( ) ( 1)

( ) ( ) ( 1)

Z k Z k Z k

Z k Z k Z k

   

   

 (7) 

4.2. Proof of the Theorem 

The above theorem can be proven as follows: 

First, calculate the difference sequence (i.e., the differences between every two adjacent measurements) 

of the two separate measurement systems: 

   

     
1 1 1 1 1 1 1

1 1 1 1

( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( ) ( 1) ( )

Z k Z k Z k Z k f k V k Z k f k V k

Z k Z k f k f k V k V k

            

        
 (8) 

   

     
2 2 2 2 2 2 2

2 2 2 2

( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( ) ( 1) ( )

Z k Z k Z k Z k f k V k Z k f k V k

Z k Z k f k f k V k V k

            

        
 (9) 

Then, subtract the two difference sequences and yield the second order difference sequences; the 

trend items 1f  and 2f are extremely small values compared to the measurement noise, so they are 

neglected after subtraction: 

   

   

   

1 2 1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

Z k Z k f k f k f k f k

V k V k V k V k

V k V k V k V k

       

     

     

 (10) 

Since 1( )V k  and 2 ( )V k  are uncorrelated, zero mean white noises, the autocorrelation of the second 

order difference sequences is:  
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When the prerequisite Equation (5) is satisfied, the variance of measurement 1Z  can be calculated as: 

   1 1 1 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) 2
TTR E V k V k E Z k Z k Z k Z k         (12) 

4.3. Availability of Using the Theorem in a GNSS/INS Tightly-Coupled System 

The precondition of the theorem is that two separate measurement systems are available for the same 

value Z. This is suitable for the tightly-coupled integration system because the GNSS can provide the 

measurements of pseudo-range and pseudo-rate in a direct manner, and the INS can provide them in an 

indirect approach. Hence, the GNSS and INS are treated as Systems 1 and 2, respectively, in the  

proposed system. 

On the other side, as the INS owns the short-term accuracy characteristic, the INS errors that 

accumulated in several seconds are much smaller than the GNSS errors and, thus, can be neglected. 

Therefore, the tightly-coupled GNSS/INS also meets the prior condition in Equation (5), that is: 

 

 

2

2

( ) ( 1) [ ( ) ( ) ]

( ) ( 1) [ ( ) ( ) ]

[ ( ) ( ) ] [ ( ) ( ) ]

i i T

INS INS GPS GPS

i i T

GPS GPS GPS GPS

T T

error error GPS GPS

diag f k f k E V k V k

diag f k f k E V k V k

E INS k INS k E V k V k

   
   

      




 (13) 

Hence, the proposed method can be applied in the tightly-coupled GNSS/INS system to estimate the 

variances of the GNSS pseudo-range and pseudo-rate noises. Furthermore, a sliding window strategy is 

designed for noise estimation. There are two main reasons for this design. First, the measurement noise 

is not always identically distributed and may change during the process; thus, using a sliding window 

can track the real-time noises accurately and mitigate the influence of historical information. Second, 

the INS errors are relatively smaller than the GNSS errors in each sliding window, which can lead to 

more accurate R estimation results. The formula for the second reason is: 

 : : : :1 1 1 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) 2k M k k M k k M k k M k

TTR E V k V k E Z k Z k Z k Z k   
         

       (14) 

where k denotes the current time epoch and M denotes the size of the sliding window and is usually set 

as 20–50. The value of M decides the contribution of historical data to the R estimation.  

5. Height/Heading-Aiding Modes  

Except for the adaptive Kalman filter, another important and indispensable measure is to introduce 

the external measurement, actually the height and heading aiding to improve the system performance in 

GNSS signal-challenged environment. The proposed ATCA system includes both the height and heading 

aiding, and the system block diagram is shown in Figure 3. 
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Figure 3 shows the height and heading-aiding mode in the tightly-coupled integration system. In order 

to effectively make use of these measurements and to maximize their contributions to improve the 

performance, this external information works in both directly aiding and measurement aiding manners 

in the proposed system, and the specific descriptions are provided in this section. 

 

Figure 3. External measurement aiding system scheme. 

5.1. Height Aiding 

The basic idea of using the height aiding is that if the height is constrained to a known value, then the 

remaining unknowns can be solved with one less measurement from the satellites. The height aiding is 

divided into two manners. The first one is the directly aiding manner, and it adds the height difference 

in the measurement model, which is directly relative to the state vector h . The second one is the  

pseudo-measurement manner, and it assumes that the Earth is a static satellite, where an extra  

pseudo-range measurement is established and is added to the filter. In this way, it is able to provide a 

better position solution and to increase the horizontal solution. 

5.1.1. Direct Height Aiding 

The difference between the height from external sources, such as a barometer, and the INS-computed 

height is added into the measurement equation. The barometer can measure the local atmospheric 

pressure and calculate the height to aid. Considering both GNSS and height updates, the measurement 

model under the height-aiding mode is: 

    ( ) ( )H AUX INS HZ Z H H H X t V t      (15) 

where HZ  is the height difference, AUXH  and INSH  denote the height from auxiliary sensor and the INS 

derived result, measurement matrix is  1 8 1 80 1 0HH    and V is the measurement noise. 

In general, direct height aiding can enhance navigation performance by directly correcting for the height 

error and indirectly improving other states related to the height in the Kalman filter system model. To provide 
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a stronger correlation between height measurement and the navigation states, a pseudo-measurement height 

aiding method is presented in the next subsection.  

5.1.2. Pseudo-Measurement Height Aiding  

As shown in Figure 4, the Earth can be imaged as a pseudo-satellite, which keeps static at the Earth’s 

center (i.e., the position of this pseudo-satellite is (0, 0, 0)). Therefore, an extra pseudo-satellite update 

can be applied, and its constraint the point lies on the surface of approximation ellipsoid. 

 

Figure 4. Height aiding scheme. 

Assuming the Earth’s surface as a reference ellipsoid, an ellipsoid equation can be employed to 

express the altitude constraint on the INS-derived position solution:  

2 2 2

12 2 2( ) ( ) ( )

INS INS INS

e e p

x y z
l

R h R h R h
  

  
 (16) 

where ( , , )INS INS INSx y z  is the INS-derived position, ,e pR R  denote the length of the Earth’s semi-major 

and semi-minor axes, h  is the altitude with respect to the Earth’s surface and 1l  is defined as the altitude 

constraint. The value of 1l  varies around one, and the difference between 1l  and 1 depends on the 

position error ( , , )x y z   . Linearizing Equation (16) around the true position ( , , )x y z  and ignoring the 

higher-order small items, we could obtain: 

2 2 2

1 2 2 2

2 2 2

2 2 2 2 2 2

1 2 2 2
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2 2 2
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 (17) 
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Then the pseudo-measurement model could be established as: 

1( ) [ 1] ( ) ( )h hZ t l H X t V t     (18) 

where 1 6 1 2 3 1 8[0 0 ]hH h h h  , and: 

   

   

1 2 2 2

2 2 2 2
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2 sin cos 2 cos sin 2 cos cos
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2 [ (1 ) ]cos 2 sin
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n n

e e p

n n
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n

e p

x R h L y R h L z L
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R h R h R h

x R h L y R h L z L
h

R h R h R h

x R e h L z L
h

R h R h

  

  

  
  

  

  
  

  

 
 

 

 (19) 

Compared to the directly aiding manner, the pseudo measurement aiding approach can deeply relate 

the height measurements with the position solutions. 

5.2. Heading Aiding 

Typically, in heading aiding mode, we derive the external heading information with the magnetometer 

sensor and use it in two different manners to aid the ATCA system at the same time. The first one is the 

directly aiding manner, and it adds the heading difference in the measurement equation; the second one 

is the velocity measurement aiding manner, and it is based on the relationship between heading angle 

and horizontal velocities; here, the advantage of this manner is that it can provide correction for the 

velocities. In the proposed heading aiding mode, we implicitly assume that the receiver is only moving 

in the direction of its heading, and it will not move in the side direction or have other complex motion 

types. This actually is a kind of implicit NHC, but does not require all traditional NHC conditions, which 

is also true and can be applied in many practical cases.  

Followed by the heading aiding manners, after the calibration of the magnetometer [31], we introduce 

how to derive an absolute heading through a commonly-used magnetometer sensor, and it follows these 

steps [32]: (1) leveling the magnetometer measurements by using roll and pitch angles; (2) using the 

leveled magnetometer measurements to calculate the magnetic heading (i.e., the heading angle from the 

Earth’s magnetic north); and (3) calculating the true heading (i.e., the heading angle from the Earth’s 

geographic north) by adding a declination angle to the magnetic heading. 

5.2.1. Direct Heading Aiding 

In this aiding manner, the difference between the magnetometer heading and the INS-derived heading 

is added into the measurement model as: 

( ) ( ) ( ) ( )mag INSZ Z t H t X t V t             (20) 

where ( )Z t  is the added heading observation, ,mag INS   denote the heading from magnetometers and 

INS, respectively,  1 14( ) 0 0 1 0H t   means the measurement matrix and V  is measurement noise.  
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5.2.2. Velocity Measurement Aiding 

The derivation of this heading aiding manner starts from the relationship between heading and the 

horizontal velocities. The true heading   and the INS-derived heading INS  can be written as: 

arctan
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 (21) 

where NV  and EV  denote the velocity in north and east in the local level frame, NV  and EV denote the 

velocity error. Linearizing the INS heading equation around ( , )E NV V  and keeping only first-order terms, 

the equation becomes: 

2

2 2 2 2

1
arctan E NE

INS N E

N E N E N

V VV
V V

V V V V V
  


  

 
 (22) 

Substituting Equation (21) into Equation (22), the heading error equation is: 

2

2 2 2 2

1E N
INS N E

E N E N

V V
V V

V V V V
   


  

 
 (23) 

Then, the measurement model for the heading aiding is: 

( ) [ ] ( ) ( )mag INSZ t H X t V t        (24) 

where 
2

1 3 1 122 2 2 2

1
[0 0 ]E N

E N E N

V V
H

V V V V
  


 

 
, mag magV   , magV  denotes the measurement noise. 

The measurement model also revealed that this external heading aiding contributes to the system 

when the vehicle’s speed is sufficiently high; otherwise, it may bring error to the velocity estimation. In 

this system, this heading aiding is activated only when the vehicle’s speed exceeds 5 m/s.  

6. System Platform Implementation 

We design and implement a tightly-coupled integration system to test the proposed method. The 

system is comprised of a low-cost IMU, a GNSS receiver, a magnetometer, a barometer and a core 

processor. The high performance digital signal processor (DSP) TMS320C6416 from Texas Instrument 

(Dallas, TX, USA) is chosen as the core processor for the proposed system, and the basic command 

operations, data collection, time synchronization and the navigation solutions’ calculation are all  

built-in. The processor is configured with 2 MB static RAM, 16 MB SDRAM and 4 MB flash memory, 

and the processing frequency is set up to 1 GHz, where the storage configuration and powerful 

processing ability guarantee that the proposed tightly-coupled algorithm is capable of running on the 

device in real time.  

The device is configured with four UARTs for data collection with the TL16C752B chip from Texas 

Instrument (Dallas, TX, USA). The TL16C752B is a dual universal asynchronous receiver/transmitter 

(UART) with 64-byte FIFOs (First Input First Output); it also has the function of automatic 

hardware/software flow control, and the data rates can be up to 3 Mbps. Of all of the available four 
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UARTs, three of them are for the INS, GNSS and magnetometer input; the last one is just for the 

navigation solution output and is connected to the user interface. 

The GNSS pulse-per-second (PPS) signal is required for the time synchronization process and is 

connected to the external interrupt pin of the device. When the PPS signal is generated, it will trigger an 

interrupt in the processor, and the INS data and the auxiliary measurement data are all time-tagged with 

the GNSS time; they are in the same time frame [33]. 

The system combination and constitution are shown in the Figure 5, and all of the components are 

listed in Table 1. All of the parts of the system are installed in a case and are connected by cables or 

jumpers inside the case. 

 

Figure 5. System constitution. 

Table 1. System components. 

No. Component No. Component 

1 Crossbow IMU-440 5 Output Interface (RS-232) 

2 Core Processor (6416) 6 JTAG (Joint Test Action Group) interface  

3 Voltage Converter (28 V to 5 V) 7 Voltage Input (28 V) 

4 Magnetometer TCM5 8 GNSS Receiver 

The system is comprised of the Crossbow (Milpitas, CA, USA) IMU-440 MEMS sensor, a GNSS 

receiver, the TCM5 magnetometer by PNI Company (Santa Rosa, CA, USA) and the MS5803 low-cost 

barometer. The dimensions of the whole system are 238 mm × 172 mm × 200 mm (B × L × H), with a 

±0.5 mm dimensional tolerances, and the system power consumption is 33.6 W, where the input voltage 

is 28 V and the measured current is 1.2 A. The Crossbow (Milpitas, CA, USA) IMU440 MEMS inertial 

measurement unit used in this system is a six DOF (degree of freedom) MEMS inertial sensor cluster that 

includes three axes of MEMS angular rate sensing and three axes of MEMS linear acceleration sensing. 

These sensors are based on rugged, field-proven silicon bulk micromachining technology [34]. The 

gyroscope’s bias stability is 10°/h; the angular random walk is 4.5 °/ h ; and the measurement range is 

±200°/s and can be set up to ±400°/s. The accelerometer’s bias stability is 1 mg; the velocity random 

walk is 0.5 m/s/ h ; and the measurement range is ±4 g and can be set up to ±10 g. 

The TCM5 is a low power, electronic tilt-compensated compass sensor module. It integrates  

a three-axis magnetic-field sensing with three-axis tilt sensing together and can provide the compass 

heading information [35]. The TCM5 is capable of providing pitch, roll and azimuth angle together, but 

only the azimuth output is used in the proposed system. 
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7. Tests and Results 

We conduct both computer simulation and practical experiments to evaluate the effectiveness and 

performance of the proposed system, and they are illustrated in the following subsections. We utilized 

computer simulation to investigate the quality of the algorithm when less than four satellites are tracked 

and guide the design of real tests in advance. Furthermore, we conducted land-based vehicle driving tests 

for verification.  

7.1. The Description of the Algorithms for Comparison 

In order to have a further assessment of our proposed system, we also employ several previously 

existing methods here to calculate the navigation solution and compare all of the results together to 

evaluate the performance. The methods used for the comparison are briefly described below:  

1. Standard tightly-coupled integrated system: also referred to as centralized integration. An 

integration filter is used to fuse INS and GPS measurement. The raw pseudo-range and Doppler 

measurements from GPS tracking loop output and those from INS prediction are combined  

to form the input of the centralized integration filter. The filter directly accepts their differences 

to obtain the INS error estimates [22]. This approach is represented as Standard TC in the  

following illustration.  

2. Standard tightly-coupled integrated system with height and heading aiding: based on the standard 

tightly-coupled integration system, the external height and heading information are involved in 

the measurement model of the filter; the differences of INS-derived height and heading and the 

measured height and heading (from barometer and magnetometer) are added in the measurement 

equation for the update [23]. This approach is represented as TCA (tightly-coupled with height 

and heading aiding) in the following illustration. 

3. Standard tightly-coupled integrated system with height and heading aiding and the improved  

Sage-Husa (SG) method for measurement noise estimation: An adaptive measurement noise 

estimation strategy using the improved SG method is introduced in the previously described 

“standard tightly-coupled integrated system with height and heading aiding” method. The 

improved SG is the most commonly-used noise estimation method in adaptive Kalman filter [28]; 

it is an innovation based adaptive estimation (IAE), which utilizes new statistical information 

from the innovation sequence to correct the estimation of the states. The measurement noise 

covariance is derived from the innovative sequence according to the following equation: 

1

0

1

k k k k

N
T

k k i k i

i

d z H x

R d d
N





 



 

 
 (25) 

where kz , kH  and kx

kH denote the measurement, measurement matrix and prediction in the 

Kalman filter. 
kd  denotes the innovative sequence, N denotes the window size, and k

R  denotes 

the noise covariance. This approach is represented as TCA with SG in the following illustration.  
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7.2. Simulation Experiment 

The benefit of simulation experiments is that the specific test scenarios can be created by software; 

therefore, it is feasible to obtain the true values to compare with system solutions for algorithm 

evaluation. The block diagram of the simulation process is shown in Figure 6. A trajectory generator 

was employed to produce the desired test trajectory and corresponding true IMU data. Then, errors, such 

as bias, random walk and scale factor errors, were added into the true IMU data to mimic the measured 

IMU data. Meanwhile, the generated trajectory file was imported into the Spirent GNSS simulator 

software suite SimGEN™ (Spirent Company, Sunnyvale, CA, USA) to simulate the GNSS data. Finally, 

the GNSS output was collected and integrated with IMU data for the navigation solution.  

 

Figure 6. Simulation experiment scheme. 

The simulated trajectory is shown in Figure 6. This trail consisted of three stages, including linear 

motion with a constant acceleration, uniform linear motion and turning with a constant angular velocity. 

The satellite visible number was adjusted to less than four randomly in the navigation process through the 

SimGEN ™ software by turning off some satellite channels. The simulated gyroscope biases were set as 

10°/h, and the angular random walk was 20 °/ h , while the accelerometer biases and velocity random 

walk were set as 1 mg and 1 m/s/ h , respectively. Meanwhile, the simulated height and heading were 

generated by adding Gaussian distributed noises to the true values.  

Figure 7 shows the flight trajectory, and the red arrows show the flight directions. The trajectory is 

shown in meters scale, and the start point is set as (0, 0). The simulated data are processed with the 

standard TC, TCA, TCA with SG and ATCA previously discussed for performance evaluation. The 

initial values of the filters are set the same to assess the navigation solution in the same situation, and 

the parameters configurations are listed as follows: 

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

{(1m/s/ h ) , (1m/s/ h ) ,(1m/s/ h ) ,(20 / ) ,(20 / ) , (20 / )

(1 / ) , (1 / ) , (1 / ) , (1mg) , (1mg) ,(1mg) ,(1m) ,(0.1m/s) }

{1 ,1 ,1 ,1 , 0.1 , 0.1 , 0.1 , 0.1 }

0 0 0 0 0 0

           

         

   0 0 0 1 / 1 /  1 /

diag h h h

h h h

diag

h h h

   

  



   

Q

R

X         1mg 1mg 1mg 1m 0.1m/s

TP X X

 (26) 

The simulation experiment lasted 1020 s, and during this process, the visible satellite number is randomly 

changed through the SimGen™ software. The satellite visible number is shown in Figure 8. The position 

results of GNSS receiver and the four compared tightly-coupled algorithms are shown in Figure 9. 
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Figure 7. Simulated trajectory. 

 

Figure 8. Satellite visible number. 

Figure 9 shows the position error in the ECEF (Earth-Centered, Earth-Fixed) frame of the GNSS receiver 

and the four compared tight-coupled methods. Figure 9a denotes the GNSS receiver position error; it can be 

seen that the receiver has no position output in some periods, because the satellite number is below four. 

Figure 9b–e denotes the position errors of standard TC, TCA, TCA with SG and ATCA. Table 2 lists the 

RMS position error results of the GNSS receiver and the compared tightly-coupled algorithms, where it 

includes the periods that the satellite visible number is more than four and less than four in the whole 

experiment. It is obvious that the proposed ATCA algorithm has the least position error overall no matter the 

satellite visible number being more than four or less than four. In order to further evaluate the proposed 

method, we also selected four periods in this experiment to compare the position error and to see more details. 

Table 2. RMS position error result. 

 
Satellite Number More than 4 Satellite Number Less than 4 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

GNSS receiver 12.1204 19.7539 26.4187 NA NA NA 

Standard TC 10.4966 14.4910 24.6421 778.5215 456.6524 643.8866 

TCA 10.0638 9.7813 13.5467 33.3155 27.1117 26.2960 

TCA with SG 7.9877 11.8187 11.7559 13.0102 11.0251 24.4045 

ATCA 5.4093 9.6268 8.2195 10.0279 8.8454 13.3769 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 9. Position errors of different methods: (a) GNSS receiver error; (b) standard TC position 

error; (c) TCA position error; (d) TCA with SG position error; (e) ATCA position error. 

Figure 10a,b shows the position error results of TCA, TCA with SG and ATCA during the periods of 

189–233 s and 531–700 s. Table 3 shows the RMS of position error in these two periods. Because the 

satellite visible number is less than four in these two periods, the GNSS receiver has no output, and the 

performance of the standard TC is much worse than the other three methods. Hence, for a better 

comparison and presentation in the figure, only the position results of TCA, TCA with SG and ATCA 

are shown in the figures, but the standard TC position error result is listed in Table 3. 
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(a) 

 

(b) 

Figure 10. Position error comparisons: (a) position errors of TCA, TCA with SG and ATCA 

in the ECEF (Earth-Centered, Earth-Fixed) frame during the periods of 188 s and 233 s;  

(b) position errors of TCA, TCA with SG and ATCA in the ECEF frame during the periods 

of 531 s and 700 s. 

Table 3. RMS position error results. 

 
The Period of 189–233 s The Period of 531–700 s 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

Standard TC 350.6096 707.5608 198.8642 1163.5 367.2 342.6 

TCA  93.3646 77.1261 12.6208 37.7900 28.5764 16.7951 

TCA with SG 11.5668 15.5311 6.4813 15.2633 14.6680 17.4740 

ATCA  13.0553 14.0751 6.0460 12.0622 12.1148 12.9468 
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Figure 11a and b shows the position result of the GNSS receiver, standard TC, TCA, TCA with SG, 

ATCA during the periods of 50–187 s and 673–698 s. They are presented in the blue line, black line, 

pink line, green line and red line. Table 4 lists the RMS of the position error in these two periods. The 

visible satellite number during the two periods is always more than four, and the GNSS receiver works 

normally in the two periods. 

Based on the position performance comparisons of several selected periods and the overall results, 

we can conclude that the proposed ATCA method has the least error and is capable of providing the best 

navigation solutions in the simulation experiment. 

 

(a) 

 

(b) 

Figure 11. Position error comparisons: (a) position errors of GNSS receiver, standard TC, 

TCA, TCA with SG and ATCA in the ECEF frame during the periods of 50 s and 187 s;  

(b) position errors of the GNSS receiver, standard TC, TCA and ATCA in the ECEF frame 

during the periods of 673 s and 698 s. 
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Table 4. RMS position errors. 

 
The Period of 50–187 s The Period of 673–698 s 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

GNSS 8.0610 11.2364 7.0904 38.1481 67.8798 104.6477 

Standard TC 7.6642 9.8481 6.3391 34.9907 47.0839 99.4847 

TCA 5.9293 10.1106 6.1428 26.5837 10.8538 31.2858 

TCA with SG 4.1211 8.9007 5.4018 15.4418 26.3500 38.1509 

ATCA 3.1442 8.0449 5.7103 8.7274 17.6114 22.9864 

7.3. Practical Experiment 

In the practical experiment, post-mission processing using the real-time algorithms is used to assess 

the integration system performance. Though the algorithm was demonstrated in post-processing mode, 

no special pre-processing of the data was required. A series of tests were conducted to verify the 

performance of the approach proposed in this paper. 

The initial values and the parameter configuration of the filters for the compared methods are listed 

as follows:  

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
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         (1mg) , (1mg) ,(1mg) ,(1m) ,(0.1m/s) }

{1 ,1 ,1 ,1 , 0.1 , 0.1 , 0.1 , 0.1 }

0 0 0 0 0 0 0 0 0 1 /   1

diag h h h

h h h

diag

h
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R

X         / 1 / 1mg 1mg 1mg 1m 0.1m/s h h

T

 

P X X

 

The field test was performed in Beijing, China, and the driving route is around the Beijing National 

Stadium. The IMU, GNSS receiver and the auxiliary measurement equipment are mounted in the vehicle. 

The inertial data are collected by the Crossbow (Milpitas, CA, USA) MEMS IMU 440, and the barometer 

MS5083 and magnetometer TCM5 are used as the auxiliary sensors to measure the height and  

magnetic heading.  

The whole test lasted about half an hour, and the data were collected for verification. Both “simulated” 

outages and “real” partial outages existed in the processed data. The simulated outage means that if the 

satellite visible number is more than two or three in this period, this is treated as two or three satellites 

being tracked, and randomly, two or three satellites’ information is used for the calculation. In this field 

test, both the 345–530-s and 1450–1500-s periods are simulated as the two visible satellites situation, 

and the 1130–1300-s period is simulated as the three visible satellites situation. The satellite visible 

number during the process is shown in Figure 12. 

 

Figure 12. Satellite visible number in the practical experiment. 
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Figure 13 shows the position result of standard tight-coupled solution for the practical experiment. 

The blue points denote the reference trajectory. The dark green points denote the tightly-coupled solution 

with more than four satellites. The light green points denote the solution with three satellites. The red 

and pink points separately denote the position result with two satellites and less than two satellites. It 

can be seen in the figure that during the two visible satellites periods, the result of the standard  

tightly-coupled method drifts from the true trajectory greatly and has a large position error. 

 

Figure 13. Standard tightly-coupled position result. 

Figure 14 shows the whole trajectory result of ATCA and some zoomed details. The result obviously 

shows that the proposed method is also capable of solving the navigation problem in a GNSS  

signal-challenged environment in practice and is much better than the standard TC.  

The TCA and TCA with SG are also implemented for evaluation and comparison. The differences 

between TCA, TCA with SG and ATCA are hard to identify, so the TCA result is not shown in the 

figures. However, the RMS of the position error is listed in Table 5 for comparison. Moreover, we also 

select two periods where only two satellites are visible to compare the solution. 

Table 5 lists the RMS of the position error for the whole practical experiment, and it shows that the 

ATCA has the least position error. Figure 15 shows the position errors of TCA, TCA with SG and ATCA 

in the two simulated two visible satellites periods, and Table 6 lists the RMS of position errors. The 

practical results also show that the proposed ATCA has the best performance and can provide the best 

position solutions with less than four visible satellites.  

After both the simulation experiment and practical land vehicle test, the navigation solution results 

of standard TC, TCA, TCA with SG and ATCA have been described in the figures and listed in the 

tables. The specific analyses of the four compared methods are illustrated in the following. 

The standard TC obviously diverges and suffers from the largest position errors, which can be up to 

hundreds of meters; the reason for this is that the system becomes unobservable because of the lack of 

enough measurement for the position solution.  

The TCA has a much better performance compared to the standard TC. The position errors of TCA 

become convergent and can be constrained to less than 100 m; this is because the external height and heading 

information improves the position constraints of the whole system, and the system becomes observable. 

 

Start Point

End Point
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However, in some periods, the position error will increase to 20–50 m and slightly decrease to a normal 

range, as shown in Figure 10; this is because at several points, the system measurements (pseudo-range and 

pseudo-rate) suffer from a large measuring noise because of signal blockage; the filter still makes use of 

the constant measurement covariance model and leads to the error in the final solution. 

 

Figure 14. Position result of ATCA. 

Table 5. RMS of the position error in the ECEF frame of the whole experiment. 

 Error X (m) Error Y (m) Error Z (m) 

Standard TC 355.8420 276.7677 483.7556 

TCA 8.4694 4.0710 8.1874 

TCA with SG 6.4785 3.8244 8.8093 

ATCA 3.4617 3.6882 4.3391 
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Table 6. RMS position error in the two periods. 

 
The Period of 345–530 s The Period of 1450–1500 s 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

Standard TC 794.757 628.0711 1076.4786 126.3409 39.7067 109.4160 

TCA 7.7362 4.85646 9.48123 18.6519 6.94387 17.7130 

TCA with SG 13.1257 12.4301 21.6142 6.4785 3.8244 8.8093 

ATCA 5.1612 3.14215 5.86392 3.17873 5.62555 5.11066 

 

(a) 

 

(b) 

Figure 15. Position error comparisons: (a) position errors of TCA, TCA with SG and ATCA 

in the ECEF frame during the periods of 345 s and 530 s; (b) position errors of TCA, TCA 

with SG and ATCA in the ECEF frame during the periods of 1450 s and 1500 s.  

The TCA with SG involves the SG method in TCA and employs the innovation sequence to 

adaptively estimate and tune the measurement noise covariance R online. With this strategy, the 

measurement quality can be evaluated, and the noise covariance is adjusted based on the actual situation 

instead of employing a constant value. The results listed in the Tables 2, 3 and 5 have demonstrated that 
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the TCA with SG successfully avoid the position error appeared in TCA, which is caused by the signal 

blockage. As illustrated in Figures 11b and 15a, in some periods, the TCA with SG performs worse than 

TCA and suffers from a larger position error, the reason for this is that the system state vector X is not 

well estimated, and it affects the estimation of covariance noise R in these two durations. However, 

though the TCA with SG cannot perform well all of the time and have larger position error in some 

periods, this method still owns an overall better performance than TCA.  

The ATCA has the best performance of all. This proposed method is able to effectively make use of 

external measurement height and heading together and add them in the measurement mode to increase 

the system observability. On the other side, it introduces the redundant measurement noise estimation 

method to adaptively tune the R online to avoid the negative effect of GNSS measurement noise. 

Compared to TCA with SG, which also owns the adaptively tuning strategy to estimate the measurement 

noise, the novel proposed redundant measurement noise estimation method used in ATCA, which 

utilizes the second order difference sequence to estimate the noise variance, totally relies on the 

measurement system itself to acquire the noise information without coupling the system state error. 

However, the Sage-Husa method is based on the innovation sequence, and the database for noise 

estimation is the difference of measurement Z and system prediction X−, which means that the estimation 

error of X will be involved in the noise estimation to affect the filter. Hence, the ATCA performs better, 

has less position errors than TCA with SG and has the best solution result of all of the compared methods.  

8. Conclusions 

In this paper, we put forward a novel adaptive low-cost GNSS/MEMS-IMU tightly-coupled integration 

system that can provide satisfactory navigation solutions in a GNSS signal-challenged environment when 

less than four satellites are visible. The proposed system features an adaptive measurement noise 

estimation method, which is totally based on the measurement system and decoupled from state vector 

error. Moreover, we also design a tightly-coupled integration manner of contributing the external 

measurement height and heading angle to the filter. The hardware platform of the proposed system is 

established by combining the DSP processor, GPS receiver, IMU, barometer and magnetometer. Both 

simulation and practical experiments were conducted to test and verify the system. The results show that 

the proposed ATCA is capable of offering seamless navigation solutions in harsh environments and has 

the best performance compared to the standard tight-coupled system and the tightly-coupled system with 

aiding measurement.  
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Appendix 

A. System State Mode 

As described in Equation (2), the system state matrix is the combination of three non-zero matrices

9 9( )IF  , 6 6( )MF  , 2 2( )GF   and ( )I t . The specific components of the three matrices are listed below. 
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A.2. Second Matrix 6 6( )MF   
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where iT  denotes the correlation time of a Gauss–Markov process. 

A.3.Third Matrix 2 2( )GF   
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where rT  is the correlation time of a Gauss-Markov process. 

A.4. Fourth Matrix ( )I t  

3 3 3 3

3 3 3 3

3 3 3 3

0 0

( ) ( ) 0

0 ( )

n

I b

n

b

t C

C

 

 

 

 
 

 
 
  

 

where 
3 3( )n

bC 
 denotes the rotation matrix from the b-frame to the n-frame.  

B. Measurement Mode 

As described in Equation (3) in Section 2, the measurement mode of the tightly-coupled integration 

system is: 
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The factors 
ija  and 

ijb  are computed as:  
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