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Abstract: In order to eliminate the fixed-pattern noise (FPN) in the output image of  

time-delay-integration CMOS image sensor (TDI-CIS), a FPN correction method based on 

gray value compensation is proposed. One hundred images are first captured under uniform 

illumination. Then, row FPN (RFPN) and column FPN (CFPN) are estimated based on the 

row-mean vector and column-mean vector of all collected images, respectively. Finally, 

RFPN are corrected by adding the estimated RFPN gray value to the original gray values of 

pixels in the corresponding row, and CFPN are corrected by subtracting the estimated CFPN 

gray value from the original gray values of pixels in the corresponding column. Experimental 

results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image 

captured under uniform illumination with the proposed method, the standard-deviation of 

row-mean vector decreases from 5.6798 to 0.4214 LSB, and the standard-deviation of 

column-mean vector decreases from 15.2080 to 13.4623 LSB. Both kinds of FPN in the real 

images captured by TDI-CIS are eliminated effectively with the proposed method. 

Keywords: fixed-pattern noise (FPN); correction method; gray value compensation; 

CMOS image sensor (CIS); time-delay-integration (TDI) 
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1. Introduction 

Time-delay-integration (TDI) camera is a special kind of line-scan camera, which captures images 

through pixels arranged in an area array and works in line-scan mode. It is widely used for high-quality 

and low-noise imaging even under low illumination and at high scanning speed. TDI cameras play a 

key role in the remote push-broom sensing system to improve its low light level capability [1]. The 

TDI technique can be easily applied on charge-coupled device (CCD) which allows noiseless 

accumulation of signals in charge domain [2]. However, CCD requires high operating voltage and it is 

difficult to integrate signal processing circuits in it. CMOS technology is gaining attention in this 

application because of its low-power, low-cost and high integrated density [3]. However, it is more 

difficult to implement on-chip low-noise accumulation in analog domain and synchronous signal 

capturing of the image for all pixels in the same column with CMOS than with CCD. Therefore, the 

key technique in TDI-CMOS image sensor (TDI-CIS) is the signal accumulator. 

Several reports on TDI-CIS have been published recently [4–8]. In our previous work, a 128-stage 

TDI-CIS with on-chip analog accumulator was proposed [9]. However, the parasitic resistors and 

capacitors of the accumulator can lead to row fixed-pattern noise (RFPN) when TDI-CIS works at high 

line rate. RFPN appears as obvious and periodic horizontal stripes in the output image. In addition, the 

structure of on-chip column-parallel readout circuit can lead to column fixed-pattern noise (CFPN) 

because of the technology fabrication deviation of TDI-CIS. CFPN appears as vertical stripes of 

different brightness in the output image. The stripes caused by RFPN and CFPN can lead to failure in 

data classification and incorrect retrievals of useful information. Therefore, both kinds of FPN degrade 

the output image quality seriously, thereby limiting the application of TDI-CIS.  

The RFPN caused by the specific circuit structure of the accumulator is a special kind of FPN and has 

not been reported in the literature. The CFPN of CIS is usually suppressed by on-chip circuit design [10]. 

However, the FPN of manufactured image sensors can only be eliminated by image postprocessing. 

Most existing destriping algorithms are designed for specific image sensors or data types—infrared 

imagery [11], hyperspectral/multispectral imagery [12,13], and moderate resolution imaging 

spectroradiometer (MODIS) [14,15]. The stripes to be removed in the literature are either horizontal or 

vertical, but horizontal stripes and vertical stripes interweave with each other in the output image of  

TDI-CIS. Therefore, the existing destriping algorithms are not suitable for TDI-CIS.  

In order to remove both kinds of stripes in the output image of TDI-CIS, a FPN correction method 

based on gray value compensation is proposed. In the proposed method, RFPN and CFPN are 

estimated and corrected based on the row-mean vector and column-mean vector of a large number of 

images captured under uniform illumination respectively. The remainder of this paper is organized as 

follows. Section 2 analyzes the sources and characteristics of FPN and establishes a noise model of 

TDI-CIS. Section 3 describes the proposed method. Section 4 presents the experimental results, and 

Section 5 provides the conclusions. 

2. Analysis and Modeling of Sensor Noise 

TDI-CIS is mainly comprised of a pixel array, column-parallel accumulators and column-parallel 

analog-to-digital converters (ADCs). In Figure 1, a block diagram of TDI-CIS is depicted [16]. The 
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scanning direction of TDI is called “along-track direction”, and the direction which is orthogonal to the 

along-track direction is called “across-track direction”. The noise of TDI-CIS can be simply divided 

into two types, one is FPN, and the other is random noise. In this paper, we only consider the 

correction of RFPN and CFPN. 

 

Figure 1. Block diagram of TDI-CIS. 

2.1. Source and Analysis of RFPN 

As shown in Figure 1, the image sensor works in TDI mode with signal accumulation in analog 

domain. The circuit structure of the column-parallel accumulator is shown in Figure 2 [9]. The 

accumulator is mainly comprised of a fully-differential operational amplifier (OPA) and (M + 1) 

integrators. When TDI stage is M, the stage of the accumulator is (M + 1). The photoinduced charges 

are firstly stored in the integrators where they can be accumulated, then read out into the corresponding 

column ADC under the control of the sequential circuit. 
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Figure 2. Circuit structure of the column-parallel accumulator. 

TDI-CIS works in rolling-shutter readout mode in along-track direction with temporal oversampling 
rate of ( 1) /M M+ , implementing synchronous signal capturing of the image for all M pixels in the 

same column [9,17]. The correspondence between the integrator stage and the pixel row number in the 

pixel array is shown in Figure 3. The charges stored in the (M + 1)-th-stage integrator, the M-th-stage 

integrator … and the 1st-stage integrator are read out in sequence and periodically under the control of 

the sequential circuit. Therefore, the gray value of the P-th row in the output image corresponds to the 

voltage signal read out from the (M + 2 - P)-th-stage integrator. The periodicity of the readout mode of 

the accumulator leads to the periodicity of the correspondence between the integrator stage and the 

pixel row number in the output image, and the period T is equal to the stage of the accumulator. 

Therefore, T can be expressed as: 

1T M= + (1)

 

Figure 3. Correspondence between the integrator stage and the pixel row number in the  

pixel array. 

As shown in Figure 2, the “input bus” and “output bus” of the accumulator are not ideal wires. 

There are parasitic resistors and capacitors in the layout of the buses, as shown in Figure 4. The 

parasitic parameters of an integrator vary with its corresponding length of buses. When TDI-CIS works 

at high line rate, the readout voltage values of different stages of integrator are different even under 

uniform illumination, and the readout voltage value of an integrator increases with increasing 

integrator stage. This is the reason why RFPN exists. In the output image, RFPN gray values of all 
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pixels in the same row are equal, while RFPN gray value of a row changes periodically and increases 

with increasing row number in the along-track direction, and the period T satisfies Equation (1). 

 

Figure 4. Parasitic resistors and capacitors in the buses of the accumulator. 

Figure 5 shows an original gray-level image captured by TDI-CIS under uniform illumination, which 

is called “uniform-light image”. The image size is 1024  768×  pixels. Due to the existence of RFPN, 

the image brightness changes periodically and decreases with increasing row number in the along-track 

direction, leading to obvious horizontal stripes in the conjunctive areas of two adjacent periods. 

 

Figure 5. Original uniform-light image. 

2.2. Source and Analysis of CFPN 

In Figure 1, there is a mismatch in both accumulators and ADCs of different columns because of the 

technology fabrication deviation of TDI-CIS. The mismatch leads to CFPN, which appears as vertical 

stripes of different brightness in the output image, just as shown in Figure 5. 

In the output image, CFPN gray values of all pixels in the same column are equal, while CFPN gray 

values of pixels in different columns obey a zero-mean Gaussian distribution under the condition that 

the image size in across-track direction—N—is very large. 
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2.3. Noise Model of TDI-CIS 

According to the analyses above, both RFPN and CFPN are a kind of spatial nonuniformity, and do 

not vary with illumination intensity. Both FPN and random noise are assumed to be additive noise, and 

they are uncorrelated. The FPN of a given manufactured TDI-CIS is assumed to be constant under the 

same working environment. The random noise obeys a zero-mean Gaussian distribution. 

As shown in Figure 1, the size of the pixel array is  M N× —M rows and N columns. The row 

number is defined as i, and the column number is defined as j. Assuming that the photoresponses of 
different pixels are uncorrelated, the gray value ( , )y i j  of pixel ( , )i j  in the output image can be 

expressed as: 

( , ) ( , ) ( ) ( ) ( , ) 1 ,  1y i j x i j a i b j r i j i L j N= − + + ≤ ≤ ≤ ≤  (2)

where L is the image size in along-track direction, ( , )x i j  is the ideal gray value of pixel ( , )i j , ( )a i  is 

the RFPN gray value of the i-th-row pixel, ( )b j  is the CFPN gray value of the j-th-column pixel, and 

( , )r i j  is the sum of all kinds of noises except FPN. According to the analyses in Section 2.1, ( )a i  

satisfies the following Equation:  

( ) ( )a i a i T= +  (3)

3. Method Description 

According to the analyses in Section 2, the FPN correction method based on gray value 

compensation is proposed. Firstly sample data is acquired, and then RFPN and CFPN are estimated 

and corrected successively. 

3.1. Sample Data Acquisition 

In order to ensure effectiveness and accuracy of the estimation results of FPN, a large number of 

images should be captured with an image acquisition system. The image resolution of TDI-CIS is 

assumed to be 8-bit. Firstly K uniform-light images whose average gray values are all about  

127—half-saturation—are captured under the same test environment [18]. Then the collected K images 
defined as 1 2 K, ,…,Y Y Y  are selected as the sample data used for estimating FPN gray values. For any 

one image kY , Equation (2) can be expressed as: 

k k k( , ) ( , ) ( ) ( ) ( , ) 1i j i j a i b j r i j k K= − + + ≤ ≤Y X  (4)

3.2. Estimation and Correction of RFPN  

The row-mean vector of kY  is defined as kU , and the average gray value of the i-th-row pixels is 

defined as k ( )iU . As shown in Figure 6, due to the existence of RFPN, the curve of kU  fluctuates 

strongly with periodic jumps in the locations of horizontal stripes. However, the locations of horizontal 

stripes in different images are not all the same, just as shown in Figure 7. Therefore, when calculating 

the row-mean vector of all collected images, the result obtained by averaging directly will be incorrect. 

In order to calculate the effective row-mean vector used for estimating RFPN, the locations of the first 
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horizontal stripe in along-track direction of all collected images should be detected firstly, and this 

kind of operation is called “first line detection”. 

 

Figure 6. Mean gray value k ( )iU  versus i. 

 

Figure 7. Two different uniform-light images. (a) Horizontal stripes in one kind of 

locations; (b) Horizontal stripes in another kind of locations. 

The ratio of two adjacent elements in the row-mean vector of kY  is defined as k ( )iD , which can be 

expressed as: 

k
k

k

( 1)
( ) 1 1

( )

i
i i L

i

+= ≤ ≤ −UD
U

 (5)

As shown in Figure 6, the average gray value of a row in which the horizontal stripes do not locate 

changes gradually and decreases with increasing row number in each period. Therefore, the locations 
where the jumps in the curve of kU  take place can be easily got by threshold detection of k ( )iD   

(such as larger than 1.15), i.e., the last row of every period can be detected. The row number of the last 
row of the first period is defined as kS . 

A new image C,kY  is constructed by cutting t periods from kY  starting from the ( kS  + 1)-th row. The 

image size of C,kY  is defined as cL N× , then the following equation can be deduced from Equation (1): 

c ( 1)L t T t M= × = × +  (6)
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Repeated the operations above on all collected images, K new images C,1 C,2 C,K, , ,…Y Y Y  can be 

constructed, in which the horizontal stripes are in the same locations. The row-mean vector of C,kY  is 

defined as C,kU . Then the row-mean vector of all new images C,1 C,2 C,K, , ,…Y Y Y  can be expressed as: 

C C,k
1

1 K

K
= U U  (7)

CU  is calculated by averaging based on multi-sample, so that the impacts of CFPN and random 

noise are eliminated. Therefore, ( )a m  ( c1 m L≤ ≤ ) can be estimated based on the row-mean vector CU . 

According to the analyses above, both ( )a m  and the elements in CU  change periodically and therefore 

only one period of RFPN needs to be estimated. The estimated RFPN gray value is defined as ( )a r   

(1 r T≤ ≤ ), then ( )a r  can be estimated based on C ( )rU  (1 r T≤ ≤ ). 

( )a r  increases with increasing row number, and it is the relative differences of ( )a r  between 

different rows that lead to RFPN, especially the horizontal stripes. Therefore, assuming that (1) 0a =  

will not reduce the effectiveness of RFPN correction. C (1)U  minus C ( )rU  is exactly the estimated 

RFPN gray value of the r-th row. In consideration of the fact that the gray values are all integers, ( )a r  

can be calculated according to the following Equation: 

C C( ) ( (1) ( )) 2 1a r round r r M= − ≤ ≤ +U U  (8)

where round is a MATLAB function which stands for rounding to the nearest integer. The estimated 

RFPN gray values of one period are shown in Figure 8. 

 

Figure 8. Estimated RFPN gray value ( )a r  versus r of one period. 

According to Equation (2), RFPN can be corrected by adding the estimated RFPN gray value to the 

original gray values of pixels in the corresponding row. The operation of “first line detection” is 
required before RFPN correction, because the correspondence between ( )a i  in Equation (2) and ( )a r  

in Equation (8) needs to be known firstly. In addition, in consideration of the fact that the range of gray 

values in 8-bit images is (0–255), constraints on the correction procedure should be set, as shown in 

the following Equation:  

( , ) ( ) 1 ( , ) 255 ( )
( , )

( , ) ( , ) 0,  or ( , ) 255 ( )

y i j a i y i j a i
z i j

y i j y i j y i j a i

+ ≤ ≤ −
=  = > −

 (9)
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where ( , )z i j  is the gray value of pixel ( , )i j  with RFPN corrected. When ( , ) 0y i j = , the correction 

procedure is not carried out, because it cannot be judged whether the gray value ( , )y i j  satisfies 

Equation (2).  

3.3. Estimation and Correction of CFPN  

According to Equations (2) and (9), the gray value ( , )z i j  of pixel ( , )i j  in the image with RFPN 

corrected can be expressed as: 

( , ) ( , ) ( ) ( , ) 1 ,  1z i j x i j b j r i j i L j N= + + ≤ ≤ ≤ ≤  (10)

Carried out RFPN correction procedure for all collected images 1 2 K, , ,…Y Y Y , K new images 

1 2 K, , ,…Z Z Z  can be got. The column-mean vector of kZ  (1 k K≤ ≤ ) is defined as kV , then the 

column-mean vector of all new images 1 2 K, , ,…Z Z Z  can be expressed as: 

k
1

1 K

K
= V V  (11)

V  is calculated by averaging based on multi-sample, so that the impacts of random noise are 
eliminated. Therefore, ( )b j  (1 j N≤ ≤ ) can be estimated based on the column-mean vector V . Due to 

the existence of CFPN, the curve of V  fluctuates strongly, as shown by the green line in Figure 9. In 

addition, the average gray values of central columns are larger than those of peripheral columns. A 

lens is used when capturing images. In order to clarify the reasons of this kind of shading, another 

group of sample data has been captured under dark condition. The column-mean vector of all collected 
images under dark condition is defined as darkV . The experimental results show that, the distribution of 

darkV  is nearly a flat curve. Therefore, the use of the lens is the only reason of the shading [19].  

In order to estimate ( )b j  based on V , an ideal column-mean vector CV  whose distribution is a 

nearly smooth curve should be constructed firstly, as shown by the red line in Figure 9. Then V  minus 

CV  is exactly the estimated CFPN vector. 

 

Figure 9. Curves of column-mean vectors V  (shown by the green line) and CV  (shown by 

the red line). 

CV  can be constructed by taking the average of several adjacent elements in V —nearest-neighbor-

averaging-filter (NNAF). The simplest NNAF is implemented by taking the average of two adjacent 
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elements, but an ideal curve cannot be got by using the simplest NNAF. In order to construct CV , a 

parametric NNAF expressed as the following Equation is designed: 

2 1

1

W

2

1
( (1) (2)) 1

2
1

( ) 2
2 1

1
( ) 1( )

2 1

1
( ) 1 1

2 2 1

1
( ( 1) ( ))

2

j

j W

j W

N

j N

j

n j W
j

n W j N Wj
W

n N W j N
N j

N N j N

−

+

−

−

 + =

 ≤ ≤ −

 + ≤ ≤ −=  +


− + ≤ ≤ −
− +


 − + =








V V

V

VV

V

V V

 (12)

where W is a variable, and 
1

2 ( )
2

N
W floor

−≤ ≤ ; floor is a MATLAB function which stands for 

rounding toward negative infinity; WV  is the column-mean vector constructed with the designed 

NNAF, and W ( )jV  is the average gray value of the j-th-column pixels. The maximum of W is defined 

as maxW . In total, ( max 1W − ) WV s can be constructed when W ranges from 2 to maxW . 

The CFPN vector estimated based on WV  is defined as WB , and the average gray value of the  

j-th-column pixels is defined as W ( )jB . WB  can be calculated according to the following Equation: 

W W( )floor= −B V V  (13)

The average of all elements in WB  is defined as M,WB , and the absolute value of M,WB  is defined as 

MA,WB , then 

M,W W
1

1
( )

N

B j
N

=  B  (14)

MA,W M,WB B=  (15)

According to the analyses in Section 2.2, the elements in CFPN vector obey a zero-mean Gaussian 

distribution when N is very large, and therefore the average gray value of all elements in estimated 
CFPN vector should be zero or nearly zero. Then the WB  whose corresponding MA,WB  is minimal is 

the best estimation of CFPN vector. The best WB  is defined as SB , and the elements in SB  are defined 

as ( )b s  (1 s N≤ ≤ ), as shown in Figure 10. 

According to Equation (10), CFPN can be corrected by subtracting the estimated CFPN gray value 

from the original gray values of pixels in the corresponding column, as shown in the following Equation:  

max min

max min

( , ) ( ) ( , ) 255
( , )

( , ) ( , ) ,  or ( , ) 255

z i s b s b z i s b
p i s

z i s z i s b z i s b

− ≤ ≤ +
=  < > +

 (16)

where ( , )p i s  is the gray value of pixel ( , )i s  with CFPN corrected, maxb  and minb  are the maximum 

and the minimum of ( )b s  (1 s N≤ ≤ ) respectively.  



Sensors 2015, 15 23506 

 

 

 

Figure 10. Estimated CFPN gray value ( )b s  versus s. 

4. Experimental Results 

In order to validate the effectiveness of the proposed method, a TDI CMOS imaging system based on 

a 128-stage TDI-CIS with on-chip analog accumulator is designed, and the following experiments are 

conducted. The TDI-CIS used in the experiments is the same device as that in our previous work [9]. 

Both RFPN and CFPN also exist in the previous work, but they had been corrected with the proposed 

method in this paper. This is the reason why FPN was not visible in [9]. The specifications of the  

TDI-CIS are listed in Table 1.  

Table 1. Specifications of the TDI-CIS. 

Item Description 

Technology 0.18 µm CMOS 
Power supply 1.8 V (Digital)/3.3 V (Analog) 

Pixel array size 1024 columns × 128 rows 
Pixel size 15 µm × 15 µm 

Column ADC resolution 10-bit 
Column ADC input range 1.6 V 

Maximum line rate 3875 lines/s 

The TDI CMOS imaging system is mainly comprised of seven parts—a ring light source used for 

providing uniform illumination, a lens, a conveyor belt on which original papery-photos are pasted, a 

servo-motor with controller used for scanning motion control, a printed-circuit-board (PCB) with the  

TDI-CIS, a field-programmable-gate-array (FPGA) development-board, and a monitor used for  

image display. The schematic diagram and photograph of the imaging system are shown in Figures 11 

and 12 respectively. 

In the experiments, the TDI-CIS works at the line rate of 3875 lines/s. During sample data 

acquisition, a piece of white paper is used as the scene to be photographed to ensure that TDI-CIS 

works under uniform illumination. When papery-photos are selected as the scene to be photographed, 

the experiment is called “real-test experiment”, and the output image is called “real-test image”.  

In total, one hundred uniform-light images are collected as the sample data used for estimating FPN. 
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The resolution of all output gray-level images is 8-bit. The experimental results are evaluated both 

subjectively and objectively. The subjective evaluation methods consist of “image visual effect” and 

“row-mean curve”. The objective evaluation indexes consist of “standard-deviation of row-mean 

vector (SDRMV)” and “standard-deviation of column-mean vector (SDCMV)”, both of which are 

given in the units of Least Significant Bit (LSB). The smaller the SDRMV is, the better the 

effectiveness of RFPN correction is. Similarly, the smaller the SDCMV is, the better the effectiveness 

of CFPN correction is.  

 

Figure 11. Schematic diagram of the TDI CMOS imaging system. 

 

Figure 12. Photograph of the TDI CMOS imaging system. 

4.1. FPN Correction for Uniform-Light Image  

The comparison of visual effect of a uniform-light image is shown in Figure 13. The image size is 

1024 768×  pixels. After correcting the FPN with the proposed method, the brightness of the corrected 

image is almost uniform in along-track direction, and the vertical stripes in across-track direction are 

significantly alleviated. 
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Figure 13. Comparison of visual effect of a uniform-light image. (a) Original image;  

(b) Corrected image. 

The comparison of objective evaluation indexes of the uniform-light image in Figure 13 is listed in 

Table 2. According to the analyses in Section 3.3, the use of the lens leads to that the average gray 

values of central columns are larger than those of peripheral columns, which is known as lens shading, 

as shown by the green line in Figure 9. The lens shading correction is not included in our method. This 

is the reason why both the SDCMVs of the original image and the corrected image in Table 2 are very 

large. As shown in Table 2, the SDRMV decreases from 5.6798 to 0.4214 LSB, and the SDCMV 

decreases from 15.2080 to 13.4623 LSB. The experimental results indicate that both RFPN and CFPN 

have been eliminated effectively. 

Table 2. Comparison of objective evaluation indexes of the uniform-light image. 

Image SDRMV (LSB) SDCMV (LSB) 

Original image 5.6798 15.2080 
Corrected image 0.4214 13.4623 

4.2. FPN Correction for Real-Test Image  

The comparison of visual effect of a real-test image is shown in Figure 14. Due to the existence of 

FPN, there are obvious horizontal stripes in the conjunctive areas of two adjacent periods in  

the along-track direction, and vertical stripes of different brightness in across-track direction. After 

correcting the FPN with the proposed method, both kinds of stripes are removed.  

The comparison of row-mean curve of the real-test image in Figure 14 is shown in Figure 15, where 

the curve of the original image is called “original curve”, and the curve of the corrected image is called 

“corrected curve”. The original curve fluctuates strongly with periodic jumps marked with ellipses in 

Figure 15a. According to Equation (1), the period of a 128-stage TDI-CIS is 129 rows. After correcting 

the FPN with the proposed method, the jumps disappear completely, and therefore the corrected curve 

is smoother than the original curve. In addition, both the form and change trend of the corrected curve 

are consistent with those of the original curve, demonstrating that the proposed method is able to 

correct FPN with useful information content of the original image well preserved. 
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Figure 14. Comparison of visual effect of a real-test image. (a) Original image;  

(b) Corrected image. 

 

Figure 15. Comparison of row-mean curve of the real-test image in Figure 14. (a) Original 

curve; (b) Corrected curve. 

In order to validate the robustness of the proposed method, the real-test experiment was conducted 

twenty times with the imaging system in Figure 12, and some of the experimental results are shown in 

Figures 16–19. The stripes in different kinds of papery-photos are removed after correcting the FPN 

with the proposed method.  
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Figure 16. Comparison of visual effect of the Dubai International Airport. (a) Original 

image; (b) Corrected image. 

 

Figure 17. Comparison of visual effect of the Tientsin Tower. (a) Original image;  

(b) Corrected image. 

 

Figure 18. Comparison of visual effect of the Century Clock of Tianjin. (a) Original 

image; (b) Corrected image. 
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Figure 19. Comparison of visual effect of the Peiyang University Memorial. (a) Original 

image; (b) Corrected image. 

4.3. Running Time  

In the experiments, both FPN estimation and FPN correction are accomplished in MATLAB 

R2014a on a personal computer with an Intel Core 2 CPU at 2.93-GHz and 2-GB memory. Before 

FPN correction, the FPN gray values are estimated in advance. The running time of the FPN correction 

procedure in different figures is listed in Table 3. All the running times are given in the units of 

Seconds. It can be seen that the FPN correction procedure is very fast. 

Table 3. Running time of the FPN correction procedure in different figures. 

Figure Running Time (s) 

Figure 13 0.392568 
Figure 14 0.431741 
Figure 16 0.391541 
Figure 17 0.370390 
Figure 18 0.361930 
Figure 19 0.373811 

5. Conclusions 

In this paper, the sources of FPN and noise characteristics of TDI-CIS were analyzed, and then a 

FPN correction method based on gray value compensation was proposed. Experimental results based 

on a 128-stage TDI-CIS show that, both RFPN and CFPN in the output image are eliminated 

effectively and both image visual effect and objective evaluation indexes are improved; finally, the 

image quality becomes better. The proposed method is suitable for TDI-CIS, and is able to correct 

FPN with useful information content of the original image well preserved. 
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