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Abstract: Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical 

systems for decomposing organic materials and converting chemical energy into electricity. 

The main challenge for this technology is that the low power and voltage of the devices 

restricts the use of MFCs in practical applications. In this paper, a power management system 

(PMS) is developed to store the energy and export an increased voltage. The designed PMS 

successfully increases the low voltage generated by an individual MFC to a high potential 

of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 

data transmission modules. With the PMS, MFCs can intermittently power the sensor for 

data transmission to a remote receiver. It is concluded that even an individual MFC can 

supply the energy required to power the sensor and telemetry system with the designed PMS. 

The presented PMS can be widely used for unmanned environmental monitoring such as 

wild rivers, lakes, and adjacent water areas, and offers promise for further advances in  

MFC technology. 

Keywords: microbial fuel cells (MFCs); power management system (PMS); sensors; charge 

pump; microcontroller unit (MCU); boost converter; DC-DC 
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1. Introduction 

With increasing attention being paid to global warming and the depletion of fossil fuels, substantial 

investment and effort has been aimed toward developing renewable energy technologies. Microbial fuel 

cells (MFCs) represent a novel alternative power source, utilizing organic energy for the production of 

electricity. Energy generation based on MFCs offers bright prospects as an environmentally friendly 

energy source because of their mild reaction conditions and the wide availability of suitable fuel [1]. 

Although reactors based on MFCs can develop an open circuit voltage of approximately 1.1 V [2], a 

more typical voltage is 0.5 V, which is insufficient to drive most practical sensors and electrical 

components. Nevertheless, some researchers have designed energy harvesting circuits that can be 

powered by the lower output of MFCs [3,4]. Gong et al. have use super capacitors and a boost converter 

to power the oxygen and temperature sensor; however, this system requires an additional battery [5]. 

Hatzell et al. have used multiple MFCs connected in series to increase the output voltage [6]; however, 

this method is rather complex for practical applications because multiple cascaded MFCs are difficult to 

construct and may result in voltage reversal [7–9]. Therefore, the study presented in this paper used an 

individual MFC as the power source to drive the load with the help of the designed circuit. 

In this paper, a power management system (PMS) is designed to harvest energy based on a charge 

pump with the help of a supercapacitor as an energy storage element. When the PMS starts operating, 

the supercapacitor accumulates energy in small increments during the charge period, and discharges it 

to a DC-DC boost circuit during the discharge period. The DC-DC boost circuit generates a 5 V voltage 

to simultaneously power a temperature and humidity sensor. With the assistance of the cyclical operation 

of this PMS, an external load can be powered by an individual MFC.  

For this study, a wireless sensor is added at the load end of an nRF24L01 data transmission module. 

A PMS is needed to export the 5 V output voltage from an individual MFC to enable the sensors to 

capture the temperature and humidity data. Microcontroller units (MCUs) obtain the data and transmit 

them using a wireless module. Computers can acquire the information from the sensors at the receiving 

end using serial ports. The computers use a serial port software based on a virtual instrument, enabling 

the display and storage of data and the communication between the MCUs and computers. 

This study demonstrates that the designed circuit has realized the function of gathering the steadily 

accumulating energy produced from an individual MFC and using this energy to drive the sensor and 

telemetry system. To confirm functionality, a remote sensing of temperature and humidity experiment 

was conducted using a DC-DC boost circuit with the aim of increasing the voltage and power 

availability. The circuit shown in this article will allow wider adoption of MFCs and should find wide 

application in the unmanned environmental monitoring field. 

2. Materials and Methods 

Sections 2.1–2.4 describe the operational mechanism of MFCs, the proposed PMS, the sensor and 

telemetry system used to test the functionality of the PMS, and the sensor’s program design, respectively. 
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2.1. Operational Mechanism of MFCs 

2.1.1. Mechanism of Electricity Production by MFCs  

Dual-chamber MFCs are commonly used in the laboratory; they consist of an anode chamber and a 

cathode chamber separated by a proton exchange membrane (PEM). The anode chamber provides an 

anaerobic environment that is beneficial to the growth of microorganisms. The metabolism of the 

microorganisms oxidizes the organic substance and transfers electrons to the anode; these electrons then 

traverse the external load to the cathode resulting in the production of a current. At the same time, protons 

from which water is produced from the reaction of oxygen with the protons pass through the PEM to the 

cathode. As has been found in many surveys, the electrode materials, the space between the electrodes, 

and the density of the substrate all affect the efficiency of electricity production by MFCs [10–16]. 

2.1.2. MFC Setup and Operation. 

For this study, the dual-chamber cubic MFC was used, with each chamber having an empty volume 

of 27 mL. Both the anode and cathode employed a carbon felt material, each with a projected surface 

area of 9 cm2 (3 cm  3 cm), as electrode materials upon which microorganisms can easily adhere, thus 

producing more electrons with more rapid migrations to the electrodes. The reason for selecting the large 

area of the electrodes is that the large area allows a more convenient transfer of electrons, and the internal 

resistance is reduced accordingly.  

The MFC was inoculated with an anaerobic mixed culture collected from a wastewater treatment 

plant. The anode chamber was filled with artificial wastewater containing CH3COONa (with density of 

0.823 g/L), Na2HPO4·12H2O (with density of 11.46048 g/L), and NaH2PO4·2H2O (with density of 

2.80818 g/L). A phosphate-buffered K3[Fe(CN)6] solution containing K2HPO4·3H2O (with density of 

7.3 g/L), KH2PO4 (with density of 2.44 g/ L), and K3[Fe(CN)6] (with density of 16.46 g/L) was used as 

a catholyte to minimize the cathode effects on system performance.  

To start the MFC, 5 mL of inoculum and 20 mL of artificial wastewater was injected into the anode 

chamber using a syringe. Originally, the reactor is run in a batch-fed mode and is manipulated until 

repeatable voltages are achieved at the external resistor of 1 kΩ, for the MFC at room temperature. 

Subsequently, the reactor is run in a continuous-flow operation by exchanging 20 mL of fresh artificial 

wastewater with 20 mL of depleted anolyte in each MFC. 

2.2. Design of the PMS 

The proposed PMS shown in Figure 1 is composed of a charge pump, a supercapacitor, a switch, and 

a DC-DC converter. The charge pump is used to store the energy produced by the MFCs in the 

supercapacitor until sufficient electricity has been accumulated to provide an initial voltage for the boost 

circuit. The supercapacitor was employed as the storage component because it can store a higher energy 

density than a conventional capacitor over the short charging time. When the voltage increases to a set 

threshold value, a control signal is generated from the charge pump that closes the switch between the 

supercapacitor and the DC-DC converter, and the supercapacitor begins to discharge. The switch remains 

off until the voltage of the supercapacitor drops below another set value. In this way, the charge pump 
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acts as a switch to connect and disconnect the supercapacitor with the load. The equivalent input 

resistance of the charge pump should be proper to make the MFCs achieve reasonable electricity 

production performance. There are some reports on harvesting energy at the MFC’s maximum power 

point [17–19]. However, all the reported maximum power point tracking circuits require batteries as an 

additional power supply. To drive sensors with an individual MFC without any additional power, this 

study pursues the appropriate power point by using a fixed value supercapacitor rather than the maximum 

power point tracking circuits. This study uses the 3 F value as the best value of the supercapacitor for 

achieving the desired result, based on our previous testing results. The proposed system aims to 

accumulate the energy generated from the MFCs, and then use the accumulated energy to power the 

external circuit through the DC-DC converter. 

 

Figure 1. Schematic of the PMS. 

 

Figure 2. Energy harvesting circuit based on the charge pump and supercapacitor. 

The energy harvesting circuit has been implemented using an individual MFC as the power source. 

As shown in Figure 2, the positive input of the MFC can be attached to the charge pump (S-882Z22). A 

3 F super capacitor (C1 in Figure 2) is capable of storing energy to accumulate electricity and control 

the switch. The N-channel MOSFET (Q2 in Figure 2) and P-channel MOSFET (Q1 in Figure 2) are used 

as the two switches. When the voltage of the supercapacitor’s positive electrode reaches the value of  

2.2 V, the charge pump exports 2.2 V at the OUT node, and then closes the Q2 switch when the voltage 

of Q2 drain node has been drained to almost 0 V. Because the Q1 gate node is connected to the Q2 drain 
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node, switch Q1 is also closed at this time. Therefore, the C1 supercapacitor discharges to the DC-DC 

boost circuit (L6920DB), which can increase the input voltage of 2.2 V to an output voltage of 5 V. 

When the voltage of C1’s positive electrode drops below 1.6 V, the charge pump outputs a low level, 

which opens switch Q2, resulting in the disconnect of the Q2 drain node from the ground node and a 

sudden increase in the voltage to almost 1.6 V. Subsequently, the switch Q1 opens  and the MFC again 

begins to charge the C1 supercapacitor.  

A low input voltage can satisfy the charge pump’s drive demand when using S-882Z22, which can 

operate normally with an input of 0.3 V, 0.5 mA. The functions of the charge pump’s pins are described 

in Table 1 [20]. The schematic circuit diagram of S-882Z22 is shown in Figure 3 [20]. 

Table 1. Functions of the charge pump’s pins [20]. 

Pin No Pin Name Pin Description 

1 OUT Output pin (step-up DC-DC converter connection pin) 

2 VSS GND pin 

3 VM Step-up DC-DC converter output voltage monitor pin 

4 VIN Power supply input pin 

5 CPOUT Startup capacitor connection pin 

The schematic circuit diagram of S-882Z22 is shown in Figure 3. The power supply is connected to 

S-882Z22 through the pin Vin, and the external supercapacitor CCPOUT is used as the energy storage 

element [20]. In this study, discharge start voltage and stop voltage are 2.2 V and 1.6 V respectively, the 

VM pin is connected to the VSS pin to ensure that the charge pump circuit operates all the time, 

preventing malfunction of the PMS.  

The L6920DB is a high efficiency monolithic step-up switching converter integrated circuit (IC) 

especially designed for battery-powered applications. The start-up voltage of the L6920DB is 0.8 V, and 

its input voltage can be as high as 5.5 V, with current as high as 750 mA. The output voltage can be 

adjusted, ranging from 1.8 to 5 V. The pin description for the L6920DB is shown in Table 2 [21]. 

  

(a) (b) 

Figure 3. Schematic of S-882Z22. (a) Principle of charging mode; (b) Principle of 

discharging mode. 
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Table 2. Pins description for L6920DB [21]. 

Pin No. Pin Name Pin Description 

1 FB 
Output voltage selector. Connect FB to GND for Vout = 5 V or to OUT for Vout = 3.3 V. Connect 

FB to an external resistor divider for adjustable output voltage 

2 LBI 
Battery low voltage detector input. The internal threshold is set to 1.23 V. 

A resistor divider is needed to adjust the desired low battery threshold. 

3 LBO 

Battery low voltage detector output. If the voltage at the LBI pin drops below the internal 

threshold typ. 1.23 V, LBO goes low. The LBO is an open drain output and so a pull-up resistor 

(about 200 KΩ) has to be added for correct output setting 

4 REF 
1.23 V reference voltage. Bypass this output to GND with a 100 nF capacitor for filtering high 

frequency noise. No capacitor is required for stability 

5 SHDN 
Shutdown pin. When pin 5 is below 0.2 V the device is in shutdown, when pin 5 is above 0.6 V 

the device is operating. 

6 GND Ground pin 

7 LX Step-up inductor connection 

8 OUT Power OUTPUT pin 

The switches used in the circuit are N-channel MOSFET (Si3460) and P-channel MOSFET (Si3499), 

with thresholds between 0 and 0.6 V. The working threshold changes with the temperature, with a 

threshold of approximately 0.6 V at a room temperature of 25 °C.  

2.3. Sensor and Telemetry System 

One transmitter and one receiver, shown in Figure 4, constitute the sensor and telemetry system. The 

energy produced from the MFCs has been administered by the PMS so as to increase a low potential to 

a high potential with a value of 3.3 or 5 V, which can drive the transmission system. The temperature 

and humidity sensors and the microcontroller unit (MCU) require a working voltage of 5 V, whereas the 

wireless transmitting module nRF24L01 requires 3.3 V. The function of the MCU is to obtain and 

transmit the data from the sensor. It is necessary for the receiver to use serial ports, through which the 

data can appear on a computer monitor while also storing the data in the computer.  

 

Figure 4. Schematic of the sensor and telemetry system driven by the MFCs. 
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2.3.1. Transmitter of the Sensor and Telemetry System 

The hardware of the transmitter consisted of sensors, a microcontroller unit (MCU), a wireless 

module, and the connections at communication interfaces among the different kinds of circuit modules. 

In this study, an 8-bit low power MCU (STC89C52) was used to obtain and transmit the data from 

the temperature and humidity sensor. The DHT11 temperature and humidity sensor used in this study 

can be connected to the MCU with only one data line, which conserves the interface resources. The pins 

description of DHT11 is shown in Table 3 [22]. The circuit scheme is shown in Figure 5. 

Table 3. The pins description of DHT11 [22]. 

Pin No. Pin Name Pin Description 

1 VDD 3 V to 5 V, powered directly 

2 DATA Serial data lines, signal bus 

3 NC Untapped pin, suspended 

4 GND Power negative ground 

 

Figure 5. Application circuit of the temperature and humidity sensor. 

This work used a wireless transmission module (nRF24L01) as the transceiver, which works in the 
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Table 4. Pins description of nRF24L01 [23]. 
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Sensor DHT11 can capture the temperature and humidity data from the ambient environment, and the 

MCU detects the data for transmission. A serial peripheral interface (SPI) is used to transmit data with 

the wireless module nRF24L01. Because there is no hardware SPI in the MCU STC89C52, the IO (input 

and output) port of the MCU was used to simulate the timing sequence of the SPI. In this way, the data 

communication between the MCU and wireless module can be achieved.  

2.3.2. Receiver of the Sensor and Telemetry System 

The hardware of the receiver consisted of a MCU, wireless receiver module, voltage converter circuit, 

and the connections among communication circuits between the MCU and computer. In this study, 

conversion between USB and the serial port is implemented by a conversion module CH340T. CH340T 

is a full speed USB interface device, the peripheral components of which require only capacitors and a 

crystal oscillator. CH340T is also a full duplex communication serial interface with a built-in transceiver 

buffer. The communication Baud rate ranges from 50 bps to 2 Mbps. The power supply voltage is either 

5 V or 3.3 V. The pins description of CH340T is shown in Table 5 [24]. 

Table 5. The pins description of CH340T [24]. 

Pin No. Pin Name Pin Description 

3 TXD Transmitting data  

4 RXD Receiving data 

6 UD+ USB data line D+ 

7 UD- USB data line D- 

9 XI Linking with 12M crystal oscillator 

10 XO Linking with 12M crystal oscillator 

The supply voltage of the wireless module is 3.3 V; however, the voltage generated from an individual 

MFC is increased by the DC-DC booster converter (AMS117) to 5 V. AMS117 is a low dropout voltage 

regulator that can implement the conversion between 5 and 3.3 V.  

2.4. Program Design of the Wireless Sensor  

The software design of the MFC energy harvesting system also consists of transmitting and receiving 

parts. In the transmitter part, the sensor DHT11 detects the temperature and humidity data and sends the 

data through the wireless module nRF24L01 to the MCU, which reads the data from the sensor. In the 

receiver part, the data can be stored in a buffer prepared for the communication between the MCU and 

computer. The flow diagram of the program is described in Figure 6. 
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Figure 6. Flow diagram of the program. 
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2.4.2. The Program Design of the Wireless Module 

The nRF24L01 can be configured in four main modes of operation: TX, RX, power down, and 

standby. The mode of operation depends on the registers CE, PWR_UP, and PRIM_RX, as shown in 

Table 6. By setting the PWR_UP bit in the CONFIG register to 1, the device enters standby-I mode. Standby-

I mode is used to minimize average current consumption while maintaining short start up times. In this mode, 

only part of the crystal oscillator is active. Change to active modes only occurs if CE is set high; when CE is 

set low, the nRF24L01 returns to standby-I mode in both the TX and RX modes. In standby-II mode, 

additional clock buffers are active and more current is used compared to standby-I mode. The nRF24L01 

enters standby-II mode if CE is maintained high on a PTX device with an empty TX FIFO (first in first out). 

If a new packet is uploaded to the TX FIFO, the PLL (Phase Locked Loop) immediately begins operation, 

and the packet is transmitted after the normal PLL settling delay of 130 μs. The RX mode is an active mode 

in which the nRF24L01+ radio is used as a receiver. To enter this mode, the nRF24L01 must have the 

PWR_UP bit, PRIM_RX bit, and tCE pin set high. The TX mode is an active mode for transmitting packets. 

To enter this mode, the nRF24L01 must have the PWR_UP bit set high, PRIM_RX bit set low, a payload 

in the TX FIFO, and a high pulse on the CE for more than 10 μs. Therefore, reasonable adoption of these 

different modes can reduce the power consumption of the whole circuit. 

Table 6. Operation modes configuration [24]. 

Mode CE PWR_UP PRIM_RX Register FIFO (First In First Out) 

TX mode 1 1 0 
Data in TX FIFOs.  

Will empty all levels in TX FIFOs a 

TX mode Minimum 10 μs high pulse 1 0 
Data in TX FIFOs.  

Will empty one level in TX FIFOs b 

RX mode 1 1 1 / 

Standby-I 0 1 / No ongoing packet transmission 

Standby-II 1 1 0 TX FIFO empty 

Power down / 0 / / 

a in this operating mode, if the CE is held high, all TX FIFOs are emptied and all necessary ACK and possible 

retransmits are conducted. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is 

empty and the CE is still high, nRF24L01+ enters standby-II mode. In this mode the transmission of a packet 

is initiated as soon as the CSN is set high after an upload (UL) of a packet to TX FIFO; b In this operating 

mode, the CE pulses high for at least 10 μs. This is the normal operating mode, which allows one packet to be 

transmitted. After the packet is transmitted, the nRF24L01+ enters standby-I mode. 

There are two methods for handling the data packet from nRF24L01: ShockBurst mode and enhanced 

ShockBurst mode. ShockBurst mode is typically used for simplex communications. Enhanced 

ShockBurst mode has the advantage of offering two-way transmission. The format of the data packet 

used in this study is shown as follows: 

Preamble 1 byte Address 3–5 byte  Data 1–32 byte CRC 1–2 byte 

The preamble is a bit sequence used to detect 0 and 1 levels in the receiver. An address ensures that 

the correct packet is detected by the receiver. The width of the cyclic redundancy check (CRC) can be 

set to 0, 1, or 2 bytes. The 1-byte CRC method has a higher data transmission efficiency. However, the 
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2-byte CRC method has better data integrity. In general, the data transmission speed via the wireless 

module is different from the MCU. The data handling speed of the MCU STC89C52 is less than the data 

transmission speed of the wireless module nRF24L01. Therefore, the transmitted signals from the lower 

MCU must be written in the wireless module FIFO to achieve the transportation of the data between the 

low-speed devices and the high-speed devices.  

The entire configuration of nRF24L01 is in a register configured as a SPI, which is a full-duplex 

communication interface that transmits the data synchronously. The maximum transfer speed of a 

standard SPI is 10 Mbps. The SPI enables serial communication among various pieces of peripheral 

equipment and the MCU. In general, the interface uses four lines: Serial Clock (SCK), Master 

Input/Slave Output (MISO), Master Output/Slave Input (MOSI), and Slave Selected (NSS). The internal 

hardware of the SPI used in this study consisted of two shifting registers, and the SPI can transmit the 

8-bit data. There are two working modes for the SPI: master mode and slave mode. The communication 

method between the master device and the slave device is shown in Figure 7. This study used the MCU 

as the master device and the wireless nRF24L01 as the slave device. In the master mode, the SPI requires 

data transmission through the NSS and SCK lines, and the slave device receives data in the NSS and 

SCK lines. The register should be set to the initial value before the SPI begins data transmission.  

 

Figure 7. Communication method between the master device and the slave device. 

 

Figure 8. The nRF24L01 data transmission process. 
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In the nRF24L01 data transmission program, the wireless module remains in the transmitting mode 

when the CE is set to a high level and maintained for at least 10 s. The pins of the nRF24L01 data lines 

are set as input. The humidity data detected by the sensors is written through MOSI. Subsequently, the 

data is written in the TX_FIFO register of nRF24L01 and the CE setting changes from the high level to 

a low level. The wireless module goes into the ShockBurst mode of transmitting the data. The nRF24L01 

data transmission process is shown in Figure 8.  

In the nRF24L01 receiver program, CE was set to 1, and PWR_UP was also set to 1. The configured 

CRC, the width of the address, the channel, and the transfer speed of the receiver should all be equal to 

those of the transmitter. The nRF24L01 data reception process is shown in Figure 9. 

 

Figure 9. The nRF24L01 data reception process. 
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In general, after starting the MFC, the open-circuit voltage (OCV) was measured by a digital 
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by the same digital multimeter, as shown in Figure 10. From this procedure, it could be concluded that 
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mL; subsequently, approximately 0.59 V of output voltage from the MFC could be achieved in a few 

minutes. With 0.59 V as the output voltage and 6.5 h as the average time of every period, the current, 

power, and energy can be calculated as follows: 

Current: I = U/R = 0.59 V/1 kΩ = 0.59 mA 

Power:  P = U2/R = (0.59 V)2/1000 Ω = 0.35 mW 

Energy: W = P × t = 0.35 mW × 6.5 × 3600 s = 8.19 J 

 

Figure 10. Three continuous flow cycles showing voltage variation at the external resistance of 1 kΩ. 

3.2. Energy Harvesting Test Results 

Figure 11 shows the voltage and current input through the charge pump. As can be seen from the 

figure, the voltage remained at approximately 0.658 V after an initial drop. The current maintained a 

steady value of 0.395 mA. Using the charge pump, this energy was transferred from the individual MFC 

where it was generated to the supercapacitor for storage.  

Figure 12 shows that it required approximately 49.5 hours to increase the voltage from 0 to 2.2 V in the 

first period. The second period started at 1.6 V and charged to 2.2 V in 23 h, close to the time required 

during the first period to charge the voltage from 1.6 to 2.2 V. The discharging time required to reduce the 

voltage from 2.2 to 1.6 V is indicated in Figure 12 by the red dotted circle; this is when the voltage was 

boosted to 5 V to drive the load. The average current of MFC during charge period is about 0.2 mA. 

Supposing that Q1 is electrical charge produced from an individual MFC, Q2 is electrical charge stored in 

the supercapacitor, and E is the energy efficiency of the circuit, these values could be calculated as follows:  

Q1 = I × t = 0.2 × 10−3 × 49.5 × 3600 s = 35.64 C 

Q2 = C × U = 3 F × 2.2 V = 6.6 C 

E = Q2 / Q1 = 6.6 / 35.64 = 18.518%  

The efficiency of the boost converter is 85%–90% according to the datasheet of the boost converter [21]. 

So that the energy efficiency of designed PMS is about 15.7%–16.7%, higher than 5.33% reported on 

reference [25]. To illustrate this cyclical charging and discharging process in detail, the turning points 

between the charging and discharging of the supercapacitor, and vice versa, are shown in Figure 13. 
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When the supercapacitor discharged, the curve fell immediately. On the contrary, the voltage rose 

quickly when the supercapacitor was in the charging state. 

6  

(a) 

 

(b) 

Figure 11. Voltage and current input through the charge pump. (a) Current input of charge 

pump; (b) Voltage input of charge pump. . 

 

Figure 12. Charging and discharging curves of the 3 F supercapacitor. 
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(a) 

 

(b) 

Figure 13. Turning points between charging and discharging and vice versa. (a) Turning points 

between charging and discharging; (b) Turning points between discharging and charging. 

3.3. Application of the Designed PMS to Drive the Sensor and Telemetry System 

The entire experimental setup consisted of an individual MFC, a collecting and storing energy circuit, 

and the wireless sensing transmitter. The 3 F supercapacitor stored the energy generated from the MFCs 

by means of the proposed PMS. The elevated voltage (5 V) discharged from the supercapacitor could be 

conducted as the power to the wireless sensor. The current and voltage inputting the MCU were  

21.9 mA and 5.2 V, respectively; these input curves are shown in Figure 14. The operation time of the 

sensor depended on the storage capacity of the supercapacitor. In this case, the 3 F supercapacitor could 

power the sensor for 5 s. 

At the end of the receiver, the data emitted from the sensor could be accepted through serial ports. 

During the 5 s of the sensor’s operation, 30 data points were detected from the transmitter, and the results 

are shown in Figure 15. The temperature was 28 °C, and the relative humidity was 0.58, relative to vapor 

saturation in the air. At the same time, the system was shown to be capable of storing and displaying the 

data points using the serial port of the virtual instrument.  
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(a) 

 

(b) 

Figure 14. Voltage and current inputting the MCU. (a) Voltage inputting the MCU;  

(b) Current inputting the MCU. 

 

Figure 15. Received temperature and relative humidity data. 
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From the test, it can be concluded that the application of the method–first for storing energy, and then 

for boosting voltage—enabled the actuation of the low-power devices with the intermittent output energy 

from the MFCs. 

4. Conclusions 

An energy harvesting circuit based on an individual MFC, a charge pump, and a supercapacitor has 

been implemented in this paper. The proposed PMS uses a supercapacitor to store energy to accumulate 

electricity. When the voltage at the supercapacitor’s node reaches 2.2 V, the charge pump produces a 

control signal allowing the switch to be on, and the supercapacitor starts to discharge. The discharge can 

be increased to 5 V with the help of a DC-DC boost circuit. The transmitter of the wireless sensing 

system can operate while capturing temperature and humidity data. The computer at the receiving end 

can store and display the data using serial ports.  

According to the testing performed in this study, the energy efficiency of designed PMS is about 

15.7%–16.7%. The time interval between two samples is approximately 23 h. With the 3 F 

supercapacitor as the energy harvester, the sensor and transmitter system could work normally for 5 s, 

and 30 samples could be detected and transmitted during each sampling period. The time interval can be 

shortened if fewer samples are required from each sampling period. In theory, if only one sample was 

needed per period, the time interval could be reduced to approximately 50 min by using the 3 F 

supercapacitor as the energy harvester.  

MFCs are a promising technology that may contribute toward sustainable energy production and 

energy savings in wastewater treatment. However, the low power and voltage produced by an individual 

MFC cannot satisfy the demands of practical devices. Although multiple MFCs can be directly linked in 

series, the overall voltage of these cascaded MFCs cannot be sustainably increased because of voltage 

reversal, which decreases the stack voltage. This study certifies that it is feasible to use an individual 

MFC along with the designed PMS, as the power supply for a sensor and telemetry system that can 

collect one sample per hour. This sample period is useful for environmental monitoring where time based 

changes to temperature and humidly are small. In addition, with minor improvements to efficiency and 

cell capacity, this sample rate could easily approach 4–5 samples per hour. 
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