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Abstract: More measurements are generated by the target per observation interval, when 

the target is detected by a high resolution sensor, or there are more measurement sources 

on the target surface. Such a target is referred to as an extended target. The probability 

hypothesis density filter is considered an efficient method for tracking multiple extended 

targets. However, the crucial problem of how to accurately and effectively partition the 

measurements of multiple extended targets remains unsolved. In this paper, affinity 

propagation clustering is introduced into measurement partitioning for extended target 

tracking, and the elliptical gating technique is used to remove the clutter measurements, 

which makes the affinity propagation clustering capable of partitioning the measurement in 

a densely cluttered environment with high accuracy. The Gaussian mixture probability 

hypothesis density filter is implemented for multiple extended target tracking. Numerical 

results are presented to demonstrate the performance of the proposed algorithm, which 

provides improved performance, while obviously reducing the computational complexity. 

Keywords: multiple extended target tracking; measurement partitioning; affinity propagation 

clustering; probability hypothesis density filter; elliptical gating 
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1. Introduction 

Multi-target tracking involves estimating the current state (e.g., position, speed, etc.) of targets 

using the measurements from multiple targets. Many approaches have been proposed for solving this 

problem [1,2]. In most target tracking cases, it is assumed that at most one measurement is produced by 

the target per scan, but this is not true in some cases, e.g., more measurements per scan are potentially 

generated by the target when it is detected by a high resolution sensor, or there are more than one 

measurement source on the target surface. This is denoted as an extended target. 

The Random Finite Sets (RFS) theory has been proposed to solve the problem of multi-target 

tracking [3]. Mahler proposed the probability hypothesis density (PHD) filter [4], which is a first order 

moment approximation in the RFS framework, and has been shown to be a computational alternation. 

Then Mahler presented an extension of the PHD filter to tackle the problem of multiple extended target 

tracking, which is called the extended target PHD (ET-PHD) filter [5]. Granstrom proposed an 

application for the ET-PHD filter with the linear Gaussian assumption [6,7], which is referred to as the 

extended target GM-PHD (ET-GM-PHD) filter. 

The PHD filter for multiple extended target tracking has drawn considerable attention [8,9]. 

However, the problem of how to partition the measurements of multiple extended targets is a crucial 

problem. In a multiple extended targets scene, it is very difficult to obtain the relationship between 

measurements and targets, and divide measurements from one target into the same partition. To 

address the difficulty of measurement partitioning for multiple extended target tracking, Granstrom 

proposed a partitioning method based on the distances between measurements [6,7], Zhang proposed 

an algorithm using the fuzzy ART model [10], and Yang used a spectral clustering algorithm for 

partitioning [11]. However, the problem of how to accurately and effectively partition the 

measurements of the extended target with clutter remains unsolved. A novel measurement partitioning 

algorithm based on affinity propagation clustering for multiple extended target tracking is proposed in 

this paper. Firstly, the elliptical gating technique is introduced to remove the clutter measurements, and 

then the affinity propagation clustering algorithm is used to partition the measurements, and finally the 

ET-GM-PHD filter is implemented for tracking multiple extended targets. Numerical results are 

provided to demonstrate the effectiveness and performance of the proposed algorithm, which obviously 

reduces the computational complexity, while obtaining improved performance. 

The reminder of this paper is organized as follows: in Section 2, the measurement partitioning problem 

and the conventional methods are described. In Section 3, the ET-GM-PHD filter is summarized, and 

then the novel measurement partitioning algorithm for multiple extended target tracking based on 

affinity propagation are proposed in Section 4. Numerical simulations are presented in Section 5.  

The conclusions are drawn in Section 6. 

2. Problem Statement and State-of-the-Art Methods 

2.1. Measurement Partitioning 

Measurement partitioning is a matter of importance for extended target tracking, since the target 

potentially generates more measurements per scan. The purpose of measurement partitioning is to 

collect measurements from one target into the same partition. In a dense target and clutter environment, it 
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is hard to partition the measurements efficiently and accurately. In order to illustrate the process of 

measurement partitioning, let us assume there are three measurements in the measurement set 

1 2 3{ , , }=Z z z z . The measurement set can be divided into five potential partitions: 
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where j
iW  denotes the i-th cell of the partition j . 

All the potential partitions are required to update the current states of targets in the original  

ET-PHD filter. As the cardinality of the measurement set grows, the number of potential partitions 

grows very quickly. In a dense target and clutter environment, this makes the ET-PHD filter 

computationally intractable. 

2.2. State-of-the-Art Methods of Partitioning 

As a crucial problem, measurement partitioning has drawn considerable attention in multiple 

extended target tracking studies. In [6] Granstrom proposed a distance-based partitioning method. 
Given a set Z  of measurements and a distance threshold set 1{ } dN

i id =  with 1i id d +< , and the distance is 

the Mahalanobis distance between two measurements. For each threshold id , the measurement set can 

be divided into a unique partition, in which the distance between all pairs of measurements in the same 
cell are less than 1id + . Therefore, dN  different distance thresholds can generate dN  measurement 

partitions. Note that as the id  increases, each partition contains fewer cells, while the cells contain 

more measurements. Because the Mahalanobis distance between the measurements is 2χ  distribution, 

using the inverse 2χ  distribution, a distance threshold 
GPδ  can be computed for a given probability 

GP . However, each distance threshold generates a unique measurement partition, so it needs a suitable 

threshold set to generate lots of potential partitions including the correct partition. The simulation 
results show when set distance thresholds 

L UP Pd< <δ δ , with 0.3LP =  and 0.8UP = , extended target 

tracking obtains good results. 

In [10] Zhang proposed an algorithm using the fuzzy Adaptive Resonance Theory (ART) model to 

solve the difficulty in measurement partitioning. Different vigilance values can generate alternative 
partitions of the measurements in ART, thus VN  alternative partitions are generated by VN  different 

vigilance values { } 1

VN

l l=
ρ , where 1l l+ = + Δρ ρ , and Δ  is a vigilance gain. Large gain generates fewer 

alternative partitions, whereas small gain generates more alternative partitions. A bad choice of gain 

will generate extra partitions and computation time. 

In [11] Yang proposed the spectral clustering algorithm for partitioning. Firstly, a similarity matrix 

is built by calculating the Euclidean distance between each pair of measurements, then an eigen matrix 

is constructed by using the eigenvectors corresponding to the K  largest eigenvalues, finally,  

K-means++ clustering is used to partition the measurements. K  is the cluster number with 
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( , )L UK K K∈ , the minimum cluster number is 
2

G
L

N
K

 =  
 β  and the maximum cluster number is 

UK M= , where GN  is the number of measurements, and β  denotes the measurement rate 

conforming to the Poisson distribution. M  is an integer between the number of targets and 

measurements, however, it is very difficult to accurately estimate the number of targets before the 

tracking process. 

2.3. Existing Problems of State-of-the-Art Methods 

Although the measurement set can be partitioned by the state-of-the-art methods, they are not 

efficient and accurate enough. In the Distance Partitioning algorithm, each distance threshold only can 

produce a unique partition. In order to get the correct partition, lots of distance thresholds are needed to 

generate enough partitions, and the distance thresholds are empirical values. As the number of targets 

increases, this makes the extended target tracking process computationally intractable. Although the 

fuzzy ART model and spectral clustering method reduce the computational burden, the partitioning 

results would become rather bad in a cluttered dense scene, and the results are also dependent on the 

selection of the cluster parameters. In order to tackle the problem of the efficiency and accuracy of 

partitioning method, a novel measurement partitioning algorithm is proposed based on affinity 

propagation clustering. Compared with the state-of-the-art partitioning methods, affinity propagation 

clustering retrieves the number of partition iteratively, so we do not have to set clustering parameters, 

and it always achieves better partitioning results with less computational cost. 

3. ET-GM-PHD Filter 

Mahler expanded the PHD filter for extended target tracking in [5], which is called ET-PHD filter. 

Granstrom introduced the Gaussian mixture model to the ET-PHD filter, and a proximate solution is 

proposed, which is referred to as the ET-GM-PHD filter. The ET-GM-PHD filter is summarized as 

follows, and detailed descriptions can be found in [5,12–15]. 

More measurements are potentially generated by the extended target per scan. Assuming the number 

of extended measurements is a Poisson distribution, the probability of at least one measurement 

generated by the i-th target generated is given as:  
( )( )1
i

ke−− xγ  (1)

where ( )( )i
kxγ  denotes the expected number of measurements, which are generated by the i-th  

extended target at time step k , and 
( )( )i
ke− xγ  is the probability that the i-th target will not generate 

extended measurements. 
The i-th target is detected with the probability ( )( )i

D kP x , and the effective probability of detection is 

then given as:  
( )( ) ( )(1 ) ( )
i

k i
D ke P−− x xγ  (2)

The target state ( )i
kx  is modeled using the linear Gaussian dynamics model, and the measurements 

are also assumed to follow the linear Gaussian model. The extended measurements are modeled as the 

spatial probability distribution [16], and the number of extended measurements is a Poisson distribution. 
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The clutter has a Poisson distribution and its intensity can be described as ( )k k kc zλ , where kλ  and 

( )k kc z  are the mean number and the space distribution of the clutter measurements, respectively. 

Assuming that 1| 1( )k k− − xυ  is the intensity of extended targets at time step 1k − , the prediction 

equations of the ET-GM-PHD filter are given as: 

| 1 , | 1( ) ( ) ( )k k S k k k− −= +x x xυ υ γ  (3)

where , | 1( )S k k − xυ  is the predicted intensity of the survived targets, and ( )k xγ  is the spontaneous birth 

target with RFS form. 

The update formulas for the ET-GM-PHD filter are given by: 

| | |( ) ( ) ( , )
k

ND D
k k k k k k

p W p

W
∠ ∈

= +  
Z

x x xυ υ υ  (4)

where the Gaussian mixture | ( )ND
k k xυ  tackles the no detection cases, and | ( , )D

k k Wxυ  tackles the detected 

target cases. p  denotes a potential partition of the measurement set kZ , W  denotes the cell of the 

partition p . 

4. Affinity Propagation Clustering of Measurement Set 

4.1. Clutter Removal 

In the multiple extended targets environment, the sensor not only receives measurements which are 

generated by the targets, but also receives a set of clutter measurements, which are not generated by 
any target. The clutter is modeled as a Poisson distribution with intensity ( )k k kc zλ , where ( )k kc z  is 

the space distribution, and it is assumed as a uniform distribution over the surveillance region. The 

discrete distributed clutter measurements are mixed with the target-generated measurements. The 

efficiency and accuracy of partitioning are sensitive to the clutter, as dense clutter leads to a wrong 

partitioning result, and the corresponding sketch is shown in Figure 1a. To solve this problem, the 

elliptical gating technique as applied in the traditional tracking algorithm is introduced to remove 

partial clutter measurements. The sketch of clustering after measurement gating is shown in Figure 1b. 

The elliptical gating defined by a validation region on the basis of the set of predicted measurements 

is used to remove clutter measurements. The residual error vector is defined as: 
( ) ( ) ( )

| 1
ji i j

k k k k −= −ε z H m  (5)

where ( )i
kz  is i-th measurement at time step k , and ( )

| 1
j

k k k −H m  denotes the j-th predicted measurement. 

The covariance matrix of residual error is: 
( ) ( )j j T
k k k k k= +S H P H R  (6)

where kH  is the measurement matrix, 
( )j

kP  is the predicted covariance matrix of x , and kR is the 

covariance matrix of measurement noise. 

In the case of linear Gaussian system, the elliptical gate is the maximum likelihood gate [17], and it 

can be defined by: 
( ) ( ) 1 ( )( ) ( )ji T j ji

k gT− ≤ε S ε  (7)
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(a) 

 
(b) 

Figure 1. Influence of clutter measurements in partitioning (a) Partitioning before clutter 

removal (b) Partitioning after clutter removal. 

If gP  is the probability of a target-generated measurement falling in the validation region, the  

2-dimensional validation threshold 2 ln(1 )g gT P= − −  is used to eliminate the clutter measurements in 

kZ , and then the new measurement set ,k TZ  is obtained. In ,k TZ , most of the measurements are  

target-generated measurements. Only a few clutter measurements which are close to the target-generated 

measurements are not removed by the elliptical gate, but the measurement partitioning is not seriously 

restricted by these clutter measurements (see Figure 1b). 

4.2. Affinity Propagation Clustering for Measurement Partitioning 

Affinity propagation is a clustering algorithm, messages between data points are exchanged to find 

a subset of exemplar points that best describe the date points [18], a set of similarities between pairs of 

data points are given, and the goal of the algorithm is to minimize the overall sum of similarities 

between data points and their exemplars. 
Let the measurements in ,k TZ  being the data points, and then we define the negative squared 

Euclidean distances between each pair of measurements as the similarities, given by: 
2( ) ( )( , ) ,i j

k ks i j = − z z  (8)

where kz  is the measurement in the validation region at time step k , and ,k k T∈z Z . 

The similarity matrix C  of measurement set { }, 1, ,
Zk T N=Z z z  is: 
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(1,1) (1, )

( ,1) ( , )

Z

Z Z Z

s s N

s N s N N

 
 =  
 
 

C


  


 (9)

where ZN  is the number of the measurements in ,k TZ . 

All the measurements have the same opportunity to be chosen as an exemplar measurement in the 

affinity propagation clustering algorithm, that is, it does not have to set the initial cluster centers,  

so the preference parameters ρ  of any measurements are set to the same value. 
The affinity propagation algorithm exchanges two messages between measurements. ( , )r i j  is 

referred to as “responsibility”, which is the message sent from measurement i  to the candidate 
exemplar measurement j , and it denotes how well-suited measurement j  is to be the exemplar for 
measurement i . ( , )a i j  is referred to as “availability”, which is the message sent from exemplar 

measurement j  to measurement i , and it denotes how appropriate it would be for measurement i  to 
serve as the exemplar of measurement j . The update formulas for ( , )r i j  and ( , )a i j  are given by: 

{ }
. .

( , ) ( , ) max ( , ) ( , )
j s t j j

r i j s i j a i j s i j
′ ′≠

′ ′← − +  (10)

{ }
. .

( , ) min 0, ( , ) max 0, ( , )
i s t i j

a i j r j j r i j
′ ′≠

 
′← + 

 
  (11)

{ }
. .

( , ) max 0, ( , )
i s t i j

a j j r i j
′ ′≠

′←   (12)

According to the above-mentioned procedure, the messages exchanged between measurements are 

updated until an appropriately set of exemplars and partitions. 

The proposed algorithm of affinity propagation clustering for extended target tracking using  

ET-GM-PHD filter can be summarized as following steps: 

(1) Assuming that 1| 1( )k k− − xυ  is the intensity in RFS form of extended targets at time step 1k − ; 

(2) The prediction of the extended target intensity | 1( )k k − xυ  is calculated by Equation (3); 

(3) Remove the clutter measurements: 
Given a threshold 2 ln(1 )g gT P= − − , an elliptical region is defined with linear Gaussian 

assumption as follows: 
1

| 1 | 1( , ) { : [ ] [ ] }T
g k k k k k k k k k gk T d T−

− −Ω = = − − ≤z z Hm S z Hm  (13)

where ( , )gk TΩ  denotes the validation region at time step k . 

The meaurements falling in the elliptical region can be obtained by: 

, { | }k T k k k gd T= ∈ ≤Z z Z  (14) 

The measurements out of the validation region can be removed as the clutter measurements; 

(4) Measurements partitioning: 

Calculate the similarity matrix C  using the negative Euclidean distance between each pair of 
the measurements in ,k TZ ; 

All the target-generated measurements have the same opportunity to be chosen as an exemplar. 

In our study, the preferernce parameters are set to the mean value of the similarities, given by: 
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{ ( , )}mean s i j=ρ  (15)

All the resonsibilities r  and availabilities a  are set to 0 initially, and then the “responsibility” 
( , )r i j  and “availability” ( , )a i j  are updated iteratively, until they reach a specified value using 

Equations (10)–(12). The affinity propagation clustering retrieves the number of partitions 
iteratively, and then the optimal measurement partition kP  is obtained without setting the 

parameters of the number of clusters; 

(5) The predicted intensity | 1( )k k − xυ  can be updated to | ( )k k xυ  using the new measurement partition 

kP  and Equations (3) and (4). Because partial clutter measurements are removed by the elliptical 

gating, the clutter intensity ( )k k kc zλ  should be revised. The non-removed clutter in the validation 

region is also modeled as Poission distribution with ( ) /k k k k kc V=zλ λ , where kV  is the volume 

of the validation region; 

(6) The Gaussian component merging and pruning process are similar to the GM-PHD filter for 

standard targets tracking described in [13], and the state estimation of the extended targets also 

involves the estimation of target number and the extracting of the Gaussian mixture 

components with the highest weights from the posterior intensity as the state estimates. 

4.3. Computational Complexity Analyses 

In order to analysis the computational complexity of the partitioning algorithm, we define kN  as the 

number of measurements at time step k . Before inputting to the affinity propagation clustering, 
creating the similarity matrix requires ( 1)k kN N× −  operators, and then in the clustering algorithm,  

the message passing requires 2 logk kN N  operators. Because only the measurements located in the 

validation region defined by the elliptical gating are used for extended target tracking, the number of 
measurements input to the clustering algorithm is much less than kN . Therefore, the worst case 

complexity of proposed partitioning is approximated as 2( )kO N . 

For the distance partitioning method, in order to obtain the correct partition, lots of partitions are 
generated, so its complexity is much greater than 4( )kO N  [19]. 

For the ART partitioning method, the computational complexity involves creating the normalized 

measurement vectors, computing a category choice, and updating the weight vectors. The worst case 
complexity is approximated as 2( )kO N  [10]. However, in ART partitioning, the vigilance gain is an 

empirical value, and a bad choice of the gain will generate more extra partitions with more additional 

computation time. 

For the spectral clustering partitioning method, the computational complexity involves creating the 

similarity matrix, calculating the Laplacian matrix, normalizing the similarity matrix and a K-means 
clustering. The worst case complexity is approximated as 3( )kO N . 

5. Numerical Simulations 

In order to present the performance improvements achieved with the proposed algorithm, we 
consider the case in which four targets with crossing a certain region of the [ 100,100] [ 100,100]− × −   

plane. The sampling period is 1T =  s . Four targets are within the surveillance region in 1~40 s,  
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1~40 s, 10~35 s, 15~30 s, respectively. This means that two targets are always in the surveillance 

region, and the other two targets enter at 10 s, 15 s, and leave at 35 s, 30 s, respectively. 

The dynamics model and measurement model are described as linear Gaussian models, the probability 
of target survival ,S kp  is 0.99 and the probability of target detection DP  is 0.9 . The clutter is modeled 

as a Poisson RFS with the mean 50=λ  and uniform density over the measurement space. The number 
of extended measurements is a Poisson distribution with the mean 10=γ . Figure 2 shows the 

simulated scenario with true target trajectories (solid line) together with measurements (star) generated 

by the targets and clutters of 40 scans. 
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Figure 2. True trajectories and measurements. 

The RFS of spontaneous birth target is the Poisson distribution with intensity 
4

1

( ) 0.1 ( ; , )i i
k

i=

=x x m Pγ γγ  , where 1 [ 30,0,60,0]T= −mγ , 2 [30,0,50,0]T=mγ , 3 [ 50,0,0,0]T= −mγ , 

4 [0,0, 25,0]T=mγ , and [5,1,5,1]T=Pγ . 

The elliptical gating is equipped with 0.95gP = , which ensures target-generated measurements can 

fall in the validation region rather than clutter measurements. The pruning threshold T  is 510− , the 
merging threshold U  is 4 , and the maximum of Gaussian components maxJ  is 200 . The numerical 

simulations are implemented on a computer equipped with an Intel Core2 Quad 2.66 GHz CPU and  

4 G RAM. 

Figure 3 shows the ET-GM-PHD filter with the proposed affinity propagation clustering 

partitioning algorithm provides an accurate extended target tracking performance. The proposed filter 

not only successfully detects and tracks four extended targets, but also accurately detects the 

spontaneous birth and disappearance of targets. 
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Figure 3. True trajectories and estimates using the proposed algorithm. 

In order to evaluate the performance of the proposed algorithm, 100 Monte Carlo numerical 

simulations are performed and two metrics are used, one is the estimate of the target number, the other 

is the optimal sub-pattern assignment (OPSA) distance [20]. 
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Figure 4. Target number estimates. 

Figure 4 shows the number of estimates of extended targets of the four different methods, where it 

is clear that the proposed method obviously outperforms the others every time. The proposed algorithm 

obtains the most accurate number of estimates and it is the most similar one to the truth of the four 

methods. Figure 5 shows the OSPA distance, compared with the conventional methods, the proposed 

algorithm has the smallest OSPA distance, this is because that the performance of conventional 

partitioning algorithms are dependent on the selection of the cluster parameters and sensitive to the 
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clutter measurements, but the proposed affinity propagation partitioning algorithm removes the clutter 

measurements by the elliptical gate, all the target-generated measurements have the same opportunities 

to be chosen as a cluster center, and retrieves the number of partition iteratively. 
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Figure 5. OSPA distance. 

Figure 6 shows the comparison of the partition number and Figure 7 shows the running time 

comparison. The proposed algorithm has the most similar partition number to the truth and the 

computational cost is much smaller than that of the three conventional methods. The reason is that most 

of the clutter measurements are removed by the elliptical gating and the affinity propagation clustering 

retrieves the number of partition iteratively, while presenting outstanding computational complexity. 
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Figure 6. Partition number. 
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Figure 7. Running time of partitioning. 

6. Conclusions 

The affinity propagation clustering is introduced into measurement partitioning for extended target 

tracking for the first time, and the elliptical gating technique is used to remove the clutter measurements, 

which makes the affinity propagation clustering being capable of partitioning the measurement in a 

densely cluttered environment with high accuracy. The numerical results show a considerable 

performance improvement of the proposed algorithm both in the state estimate accuracy and the 

computational cost compared to the conventional methods. 
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