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Abstract: Mobile healthcare social networks (MHSNs) have emerged as a promising
next-generation healthcare system, which will significantly improve the quality of life.
However, there are many security and privacy concerns before personal health information
(PHI) is shared with other parities. To ensure patients’ full control over their PHI, we
propose a fine-grained and scalable data access control scheme based on attribute-based
encryption (ABE). Besides, policies themselves for PHI sharing may be sensitive and may
reveal information about underlying PHI or about data owners or recipients. In our scheme,
we let each attribute contain an attribute name and its value and adopt the Bloom filter to
efficiently check attributes before decryption. Thus, the data privacy and policy privacy can
be preserved in our proposed scheme. Moreover, considering the fact that the computational
cost grows with the complexity of the access policy and the limitation of the resource
and energy in a smart phone, we outsource ABE decryption to the cloud while preventing
the cloud from learning anything about the content and access policy. The security and
performance analysis is carried out to demonstrate that our proposed scheme can achieve
fine-grained access policies for PHI sharing in MHSNs.

Keywords: privacy; attribute-based encryption; bloom filter; mobile healthcare
social networks
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1. Introduction

With the rapid development of sensor systems, mobile computing and wireless communication
technologies, mobile healthcare social networks (MHSNs) [1,2] have attracted tremendous attention
from both industry and academia. Compared to the traditional electronic healthcare system [3,4],
in MHSNs, patients can walk outside, moving freely by wearing body sensors to continuously monitor
their personal health information (PHI) [5]. Smartphones can then be used to aggregate the monitored
PHI via Bluetooth or ZigBee and transmit PHI data to the remote healthcare center via 2G/3G/4G
networks. In this way, it extends the traditional centralized e-health system to a decentralized,
self-organized way that the authorized mobile patients (i.e., those holding the same symptoms and
constituting a social group) are allowed to search, recognize and socially interact with each other in
close proximity.

In such mobile social networks, it is more likely for patients with the same health conditions to share
their health conditions and medical experience for mutual support and comfort [3]. However, security
and privacy concerns are the stumbling blocks that must be cleared before this could happen.

Specifically, we must address the following issues.

• Since PHI contains sensitive information, patients should be able to control the sharing of their
PHI. This means that even under a random and anonymous condition, the PHI owner should decide
how to encrypt his/her files and with which set of users to share the PHI [6].
• In MHSNs, it is not only the identity, but also the social attributes of a patient that are sensitive

and private. By tracking the identities of patients, an adversary may learn the identities of both the
source who generated PHI packets and the intermediate patients who share/forward PHI packets.
Besides, the social attributes can be inferred from the underlying PHI, the PHI owner or the PHI
recipients. Therefore, both the identity and social attributes should be protected [7].
• Health-related information may be critical to patients’ lives. Good advice from a well-known

doctor can be used to improve a patient’s health condition significantly, while inappropriate
instruction from an unqualified doctor may put the lives of patients in danger. Therefore, the
receiver should ensure/verify the correctness of the PHI used for diagnosis [8].
• Since smartphones are used not only for healthcare monitoring, but also for other applications,

we should consider the cost and efficiency of the privacy-preserving scheme. Thus, the
privacy-preserving PHI sharing scheme should be efficient and time-saving [9].

In this paper, we propose a patient-centric secure and privacy-preserving PHI sharing scheme for
MHSNs. In order to achieve patient-centric control and fine-grained access control of PHI sharing, we
adopt attribute-based encryption (ABE) as the main encryption primitive for healthcare [3,6,8,10–14].
Although ABE schemes can be directly applied to design secure access control, they usually use the
social attributes to construct the access policy, which is sensitive, as well. Thus, to protect the sensitive
social attributes of patients and to achieve efficient and anonymous ABE (Anonymous ABE means
hidden the access policy for ABE), each attribute consists of two parts: a coarse-grained attribute name
and its fine-grained value. We use the coarse-grained attribute name to construct the access policy while
protecting the fine-grained and sensitive attribute values from others. However, to hide the access policy
in ABE [7,15–18] and to realize the fine-grained access control in resource-limited smartphones [19,20],
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important issues, such as efficient decryption without repeating decryption attempts and energy saving,
are nontrivial to address.

1.1. Related Work

The related work can be divided in two categories: (1) secure and private health information sharing
based on ABE; and (2) the hidden access policies and outsourced decryption for ABE.

1.1.1. Secure and Private Health Information Sharing Based on ABE

Ibraimi et al. [10] proposed a multi-authority ciphertext-policy (CP)-ABE scheme to protect EMRS.
In their scheme, everyone can download the encrypted data, but only authorized users from the social
domain (e.g., family, friends or fellow patients) or authorized users from the professional domain (e.g.,
doctors or nurses) can decrypt it. Narayan et al. [11] proposed an attribute-based infrastructure for
EHR systems, where each patient’s EHR files were encrypted using a broadcast variant of CP-ABE.
Their scheme supported direct revocation of user access without re-encrypting the data by using
broadcast encryption techniques. Li et al. [3] proposed a novel framework to achieve patient-centric
and fine-grained data access control with a cloud computing environment by adopting multi-authority
attribute-based encryption (MA-ABE). A refined version of [3] has been given in [6], which extended the
usage of MA-ABE in the public domain and offered a revocable MA-ABE scheme. Akinyele et al. [12]
designed and implemented self-protecting electronic medical records (EMRs) based on ABE on mobile
devices. They used ABE to achieve fine-grained access control for different items of EMRs, which can
either be stored on cloud servers or mobile devices, so that the EMR could be accessed when the health
provider is offline. Huang et al. [13] proposed a novel mobile cloud data processing framework. In their
proposed framework, each mobile device was treated as a service node (SN), which was mapped to one
or more extended semi-shadow images (ESSIs) in the cloud. Then, the mobile device can outsource
its computing and storage services to its corresponding ESSI and secure storage (SS). To protect the
privacy of outsourced data, they used identity-based signature schemes and attribute-based encryption
schemes to achieve authentication and data access control, respectively. Liang et al. [8] proposed
two attribute-oriented authentication and transmission schemes for secure and privacy-preserving health
information sharing in health social networks (HSNs). The attribute-oriented authentication scheme
can achieve sensitive attributes anonymity, and the attribute-oriented transmission scheme can enable
fine-grained PHI sharing by using ABE. Liu et al. proposed [14] a new approach for fine-grained access
control and secure sharing of signcrypted data for PHR in cloud computing scenarios. They named
the proposed algorithm ciphertext-policy attribute-based signcryption (CP-ABSC), which combined
the merits of digital signature and encryption to provide confidentiality, authenticity, unforgeability,
anonymity and collusion resistance. Finally, we list the differences of related works in Table 1.

Different from these existing schemes, we focus on realizing access policy hidden in ABE
and efficient decryption on the resource-constrained mobile devices, which outsource the most
time-consuming decryption to the cloud.
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Table 1. Comparison of related works.

Multi-Authority Broadcast Cloud Computing Mobile Device

[10]
√

[11]
√

[3]
√ √

[12]
√

[13]
√ √

[8]
√

[14]
√

1.1.2. Hidden Access Policies and Outsourced Decryption for ABE

ABE was introduced by Sahai and Waters [21] to enable a public key based on one-to-many
encryption, and a scalable and fine-grained access control system was realized. There are two kinds
of ABE schemes: key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE) schemes. Both
achieve access control over encrypted data using access policies and ascribed attributes associated with
private keys and ciphertexts. Although CP-ABE can realize flexible and fine-grained access control,
some disadvantages of CP-ABE also were discovered, as we discuss in the following.

In traditional CP-ABE schemes, an access structure is sent along with a ciphertext explicitly.
Therefore, anyone who obtains the ciphertext is able to know the associated access structure. However,
it is not only the data, but also the policies for sharing the data that are sensitive. To hide the access
structure, Nishide et al. [15] proposed their scheme, where the admitted access structures are expressed
as AND gates on multi-valued attributes with wildcards. Following their work, Li et al. [16] studied the
problem of user accountability. Recently, Lai et al. [17] proposed a fully-secure CP-ABE scheme with
partially-hidden access structures. However, their scheme only supports restricted access structures as
in [15,16]. In [7], Lai et al. first proposed a new model for CP-ABE with partial hidden access structures
in which each attribute consists of two parts: an attribute name and the corresponding value. They tried
to hide the specific attribute values of the access structure. However, to hide the access policy [7,15–17],
a user knows whether the attributes and the policy match or not only after repeating decryption attempts.
Moreover, the computational overhead of each decryption is high, since the computational cost grows
with the complexity of the access policy, which usually requires many pairing computations in most of
the existing ABE schemes. As a result, this direct decryption method in anonymous ABE schemes
will suffer a drawback of efficiency. To overcome this problem, Zhang et al. [18] proposed their
match-then-decrypt into the decryption of their anonymous ABE, in which a matching phase was
added before the decryption phase. However, their scheme has the following disadvantages: (1) the
access policy only supports AND gate; and (2) the access policy only supports all attributes in the
universe. These two disadvantages make the scheme in [18] unattractive in practice. Finally, we list
the computational overhead for each scheme for repeating decryption attempts in Table 2 where Mul is
denoted as the time to perform one point multiplication over G1, Pair is the time to execute a pairing
operation and n is the number of attributes.
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Table 2. The computational overhead for repeating decryption.

Computation Overhead

[15] (n + 1)Pair + 1Mul

[16] > 4nPair + nMul

[17] (n + 1)Pair + 1Mul

[18] 3Pair + (2n + 3)Mul

To realize the fine-grained access control, the access policy in CP-ABE is complex. This leads to
the computational burden in the decryption phase, since its computational overhead grows with the
number of attributes specified in the access policy. The drawback appears to be more serious for
resource-constrained equipment, such as mobile devices and sensors. Green et al. [19] proposed a
solution to this problem by introducing the notion of ABE with outsourced decryption, which largely
eliminated the decryption overhead for users. However, the scheme provided no guarantee on the
correctness of the transformation done by the cloud server. In the cloud computing setting, cloud service
providers may have strong financial incentives to return incorrect answers, if such answers require less
work and are unlikely to be detected by users. To achieve the verifiability of outsourced CP-ABE
decryption, Lai et al. [22] proposed their scheme. However, they did not consider hiding attributes
of the access policy.

1.2. Contributions

The main contributions of this paper are listed below:

• We propose an efficient and privacy-preserving PHI sharing scheme for smartphones in MHSNs
by using anonymous ABE to achieve user-centric and fine-grained access control.
• To avoid sensitive attribute leakage and unnecessary repeating decryption attempts in anonymous

ABE, we use the Bloom filter to realize partial access policy hidden from intended users and
conduct the access policy matching before decryption.
• Considering the resource and energy limitation of smartphones, we outsource ABE decryption to

the cloud without leaking private information and verify the correctness of partial decryption.
• Security analysis and performance evaluation have been carried out and show that the

proposed PHI sharing scheme can effectively protect patients’ privacy and is suitable for
resource-limited smartphones.

The rest of this paper is organized as follows: Section 2 presents the system model and preliminaries.
We describe the detail of our efficient and privacy-preserving PHI sharing scheme in Section 3. We
conduct the security and privacy analysis in Section 4. Section 5 provides the performance evaluation of
our scheme. Finally, Section 6 concludes this paper.

2. System Model and Preliminaries

In this section, we present the system model and preliminaries in our scheme.
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2.1. System Model

We give the system model in Figure 1. According to [1], the mobile patients possessing the same
symptoms (i.e., suffering from the same disease) and/or living in the neighborhood can constitute a
social group. Based on the premise, we first divide the system into different groups, each of which has
an attribute authority (AA). The AA is a trustable and powerful entity located at the healthcare center
and is mainly responsible for managing the group, such as initializing the system, equipping proper body
sensor nodes (BSNs) and key materials to medical users. BSNs and the smartphone periodically collect
PHI and report to the AA. Patients belonging to the same AA can securely share the PHI or their own
medical experience with each other using the system parameters of the AA and the secure information.

Mobile Patient

Mobile Patient

AP

Attribute authority

Data access and analysis

Medical treatment

Physician

PHI storage

Healthcare  center

Figure 1. The system model for mobile healthcare social networks (MHSNs).

Without loss of generality, we will not consider the possibility of sharing a secret with others, because
this type of active attack cannot be prevented in almost all security systems.

2.2. Security Requirements

1. Patient-centric access control: This means a patient can decide which set of users can gain access
to his or her own PHI in MHSNs.

2. Fine-grained access control: Unauthorized users who do not possess enough attributes to meet
the access policy cannot decrypt the PHI. Fine-grained access control means different users are
authorized to read different sets of PHI.

3. Patient’s privacy preservation: Privacy is one of the most important concerns from a patient’s
perspective. Both the identity and attributes are sensitive during the PHI sharing process and
should be well protected.

4. PHI integrity, source authentication and non-repudiation: All sharing PHI should be delivered
unaltered, and the origin of the messages should be authenticated by the healthcare center. To
ensure non-repudiation, the patient cannot refute the validity of the PHI afterward.
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5. Resistance to collusion attacks: A collusion attack is launched by multiple eavesdropping
attackers. They are fully collaborative and share every secret they have to obtain confidential
information, which should be prevented during the PHI sharing process.

2.3. Bilinear Pairing

Let G be a multiplicative cyclic group of prime order p, generated by element g ∈ G. Let GT be a
multiplicative cyclic group of the same order p, such that there exists a pairing e: G×G→ GT with the
following properties [23]:

• Bilinearity: e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zn;
• Non-degeneracy: e(g, g) 6= 1;
• Computability: For all P,Q ∈ G, e(P,Q) is efficiently computable.

2.4. Linear Secret Sharing Scheme

Definition 1. (Linear secret-sharing scheme, LSSS [24]). A secret sharing scheme A over a set of parties
P is called linear (over Zp) if:

1. the shares for each part form a vector over Zp;
2. there exists a matrix M with l rows and n columns called the share-generating matrix for A. For

all i = 1, · · ·, l, the i-th row of M is labeled by a party ρ(i) (ρ is a function from {1, · · ·, l} to
P ). When we consider the column vector v = (s, r2, · · ·, rn), where s ∈ Zp is the secret to be
shared and r2, · · ·, rn ∈ Zp are randomly chosen, then Mv is the vector of l shares of the secret s
according to A. The share (Mv)i belongs to party ρ(i).

It is shown in [24] that every linear secret-sharing scheme according to the above definition also
enjoys the linear reconstruction property, defined as follows. Suppose that a linear sharing structure
A = (M, ρ) can be satisfied by an attribute set S, as shown in Figure 2, where M is a l × n matrix and
ρ is an injective function from {1, · · ·, l} to any attribute. Let I = {i|ρ(i) ∈ S}. Therefore, there
exist constants {wi ∈ Zp}, such that

∑
i∈I wiMi = (1, 0, · · ·, 0), where Mi is the i-th row of matrix M.

On the other hand, if S does not satisfy A, those constants {wi} do not exist. These constants {wi}
can be found in the time polynomial with the size of the matrix M [24]. Moreover, the inner product
MvT = (λ1, · · ·, λl)

T can be regarded as the linear secret sharing. Given an attribute set S and its
corresponding rows I = {i|ρ(i) ∈ S} in the matrix M, finding {wi ∈ Zp} satisfying

∑
i∈I wi · λi = s is

called linear secret reconstruction.

2.5. Bloom Filter

A Bloom filter is a simple space-efficient randomized data structure for representing a set S in order
to support membership queries [25]. From the point of data storage, it is a bit array with size m. Bloom
filters have two operations: add(x) and query(x), where x is an element. The add operation consists of
hashing an element with several hash functions h1, ···, hk, which uniformly map the element to a number,
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such as hi(x) = yi ∈ [1 : m], and setting the yi-th bit in the array to one (initially, the array is filled with
zeroes). The query operation repeats the same hashing procedure and then checks if the appropriate bits
are set as one. A false positive probability p exists when determining whether an element x belongs to a
set or not because of the hash collision property. We can calculate p as follows [25]:

p = (1− (1− 1

m
)knk) ≈ (1− e

−kn
m )k, (1)

where n is the number of elements in set S. It is obvious that when k = (ln2)m
n

, the false positive
probability p is minimal, i.e., (0.6185)

m
n .

1

1

Boolean function:A

AND

OR a3

a1 a2

1

1

Attribute set S={a1, a3}

S satisfies A

LSSS (M, p)
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{Mi}, where , can be linearly
combined to obtain (1, 0, , 0)

Ii

Figure 2. An attribute set satisfying a linear secret-sharing scheme (LSSS).

2.6. Hidden Access Policy for ABE With Efficient Decryption by the Bloom Filter

In our construction, each attribute includes two parts: the attribute name and its value according
to [7], as Figure 3 shows. Without loss of generality, we assume that there are n categories of attributes
(attribute name) in the universe of attributes U = {an1, an2, · · ·, ann}, and each attribute has multiple
attribute values, where Si = {vi,1, vi,2, · · ·, vi,ni

} is the multiple values set for ani and |Si| = ni. A
user’s UA attribute set has n attribute values, each of which belongs to a different attribute name and is
expressed as AUA

= (s1, s2, · · ·, sn), where si = vi,t is the value of attribute i for a user.
We express an access policy as (M, ρ, Γ), where M is an l × n share-generation matrix, ρ is a map

from each row of M to an attribute name (i.e., ρ is a function from {1, · · ·, l} to {1, · · ·, n}), Γ can be
parsed as (tρ(1), · · ·, tρ(l)) and is the value of attribute ρ(i) specified by the access policy.

Using our notations, user UA’s attribute set AUA
= (s1, · · ·, sn) satisfies an access policy (M, ρ, Γ) if

and only if there exist I ⊆ {1, · · ·, l} and constants {wi}i∈I , such that:

Σi∈IwiMi = (1, 0, · · ·, 0) and sρ(i) = tρ(i) for ∀i ∈ I, (2)

where Mi is the i-th row of M. In our construction to be presented below, the specific attribute values
(i.e., Γ) of an access policy (M, ρ, Γ) are hidden, while other information about the access policy (i.e.,
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(M, ρ)) is sent along with the ciphertext explicitly. As Figure 4 shows, we do not give the LSSS of the
access policy, which can be found in Figure 2.

Advocate 
Lutheran 

General Hospita

Barnes-Jewish 
Hospital 

Abbott 
Northwestern 

Hospital, part of 
Allina Health

Abbott 
Northwestern 

Hospital, part of 
Allina Health

Hospital Attribute Name

 Attribute Value

Acute 
Assessment Unit

Central Sterile 
Services 

Department

Emergency 
Department

Medical Records 
Department

Department

Name

Age

Sex

SSN

Personal InformationHospital DepartmentPersonal Information

Conditions

 Allergies

Medications

Prescriptions

Medical History

Figure 3. The attribute names and values of personal health information (PHI).

AND

AND OR

v1,5 v2,3 v3,4 v4,6

AND

AND OR

an1 an2 an3 an4

Access Policy Access Policy

+

Bloom Filter

x1

x2

0 1 00 1 1 1 00 1 1 0

x2=H(v1,5||v2,3||v4,6)

x1=H(v1,5||v2,3||v3,4)

Figure 4. An access policy consisting of attribute values can be expressed by an access
policy consisting of attribute names and a Bloom filter consisting of attribute values.

For the decryption process, even though attribute names of the receiver meet the access policy (M, ρ),
it cannot ensure that he/she decrypts the ciphertext and gets the plaintext. Since each attribute contains
many values, the receiver only can check all possible attribute values that satisfy

∑
i∈I wiMi = (1, 0, · ·

·, 0) where I ⊆ {1, · · ·, l} to decrypt the ciphertext and get the plaintext [7]. It is obvious that this
will cause excessive unnecessary computational overhead. To overcome this drawback, we adopt the
Bloom filter BF to load all hash values h(ΓI) where ΓI = (tρ(1), · · ·, tρ(i)) for I ⊆ {1, · · ·, l} satisfies
Equation (2) and h(·) is a hash function. During decryption, the receiver extracts the corresponding
attribute values according to (M, ρ), and computes h(ΓI) for all

∑
i∈I wiMi = (1, 0, · · ·, 0). Then, the

receiver verifies [BF [h1(h(ΓI))] = 1] ∧ [BF [h2(h(ΓI))] = 1] · · · ∧[BF [hk(h(ΓI))] = 1] to decrypt the
ciphertext, where h1(·), h2(·), · · ·, hk(·) are hash functions. If it is satisfied, then the corresponding secret
keys can be used to decrypt the ciphertext. There are two decryption approaches that can be adopted
to get the plaintext: (1) decrypting on one’s own smartphone; and (2) outsourcing the decryption to the
cloud. For decryption on one’s own smartphone, the receiver directly decrypts the ciphertext by using
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the corresponding secret keys; while for outsourcing decryption, the receiver outsources most decryption
work to the cloud without leaking the plaintext. After getting the partial decryption result from the cloud,
the receiver is able to get the plaintext with one simple exponentiation operation.

3. Proposed Schemes

In this section, we will introduce our PHI sharing scheme. First, we give an overview of our scheme
with different scenarios. Then, we will describe the details of our scheme.

3.1. Overview

The main goal of our scheme is to provide patient-centric secure and privacy-preserving PHI sharing
in MHSNs. First, the system can be divided into different groups (e.g., by hospitals), each of which has
an AA to manage its patients and implements the PHI sharing process. After the group is formed, the
AA initializes the PHI sharing process by generating system parameters. The patients register with the
AA and get the attribute-based secret keys from the AA according to their profiles.

Then, patients can launch the PHI sharing process. Before sharing PHI, the identity and group should
be verified, which ensures that the validity of a passing-by person has the same medical software for PHI
sharing or communication. In the PHI sharing phase, the patient-centric fine-grained PHI access control
is achieved by using ABE, and the receiver can get the PHI when his/her attribute values meet the hidden
access policy. Furthermore, in view of the computational cost growing with the complexity of the access
policy, resource, as well as energy limitation of smartphones, we shift the heavy computational overhead
to the cloud.

Considering the poor performance for repeating decryption attempts of the existing hidden access
policy in ABE [7,15–17], we adopt the match-then-decrypt in decryption in anonymous ABE, in which
a matching phase based on the Bloom filter is added before the decryption phase.

3.2. Hidden Access Policy Based on the Bloom Filter

We introduce EPPS in three steps: first, in the initialization phase, the AA generates the public
parameters and secret keys for the users; second, an authentication scheme is presented to enable users to
authenticate identity and group while preserving their privacy; third, a fine-grained PHI sharing scheme
is proposed to allow users to achieve PHI sharing according to the hidden access policy. Moreover, an
outsourced decryption for sharing PHI is also proposed. Due to space limitations, we omit the description
of the authentication phase, which can be found in [9,20]. In the following, we present the details of
each step.

3.2.1. System Initialization

The AA is in charge of the whole system bootstrap. As is commonly done, the AA first generates
the public parameters (p,G,GT , e) where G and GT are multiplicative cyclic groups of prime order p.
The attribute universe is described as U ⊆ Z∗p. For each attribute i ∈ U , the AA chooses a random
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value ui ∈ Z∗p. Next, it picks g, u ∈ G and α, a ∈ Z∗p uniformly at random. Finally, it chooses a
collision-resistant hash function H(). The public parameters PP are published as:

PP = (G,GT , e, g, g
a, e(g, g)α, H(), Ti = gui∀i), (3)

and the master secret key MSK is:
MSK = α. (4)

When user UA wants to join MHSNs, he/she should register with an AA. UA sends his/her personal
health profile containing different attributes and symptom characteristics to the AA. After verifying the
validity of UA’s health profile, the AA chooses the corresponding body sensor nodes to establish personal
BSNs and then installs the necessary medical software in the smartphone.

To prevent the privacy of users during the PHI sharing process, the AA also generates a family
of unlinkable pseudo identities PIDUA

={pid1UA
, pid2UA

, · · ·}, where each pidjUA
is computed by

pidjUA
=Encmk(UA||rjUA

), where rjUA
is a random number and mk is the master key of the AA, and

the corresponding private key is skj
UA

=mk ·H(pidjUA
).

For UA, who has attribute values AUA
= (s1, · · ·, sn), the AA generates the security key according to

AUA
. The AA randomly chooses t ∈ Z∗p and computes the secret key SKUA

=(K,K ′, Ki{1≤i≤n}) as:

K = gαgat, K ′ = gt, Ki = T t
i . (5)

3.2.2. PHI Sharing

For user UA, who wants to share his/her PHI, he/she should execute Algorithm 1 to realize
fine-grained access control of PHI. Here, M is an l × n matrix, ρ is a map from each row Mi of M
to an attribute name, Γ = (tρ(1), · · ·, tρ(l)) ∈ Zl

p and C2 = SigskjUA

(C1) is the signature of C1 with skj
UA

.

Algorithm 1 Encrypt messages by UA.

Require: Shared PHI message MES and (A, ρ,Γ).
1: UA chooses a random vector v = (s, r2, · · ·, rn) ∈ Zn

p .
2: UA also chooses rx ∈ Zp, for 1 ≤ x ≤ l.
3: UA computes:

C1 =



Ĉ = uH(MES);

C̃1 = MES · e(g, g)αs;

C ′1 = gs;

C1,x = gaMi·v(T
H(tρ(x))

ρ(x) )−rx ;

D1,x = grx ;

4: UA computes C2 = SigskjUA

(C1).

5: For each I ⊆ {1, · · ·, l}, which satisfies
∑

i∈I wiMi = (1, 0, · · ·, 0), extract the corresponding
attribute values ΓI = (tρ(1), · · ·, tρ(i)).

6: Compute H(ΓI) for all I ⊆ {1, · · ·, l}.
7: Construct the Bloom filter BF by using H(ΓI).
8: UA broadcasts message C =< BF, (M, ρ), C1, C2 >.
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When UB receives message C and the corresponding Bloom filter, the receiver first verifies the
signature C2. If the signature is valid, then the receiver will decrypt C1 according to SKUB

and
S = (s1, · · ·, sn). During the process of decryption, the receiver extracts the corresponding attribute
values according to (M, ρ) and computes H(ΓI) for all

∑
i∈I wiMi = (1, 0, · · ·, 0). Then, the receiver

verifies [BF [h1(h(ΓI))] = 1] ∧ [BF [h2(h(ΓI))] = 1] · · · ∧[BF [hk(h(ΓI))] = 1]. If it is satisfied, two
decryption approaches can be adopted to get the plaintext: (1) decrypting on one’s own smartphone; and
(2) outsourcing the decryption to the cloud. We describe them as follows:

(1) Decrypting on one’s own smartphone: The receiver computes:

e(C ′1, K)

(
∏

i∈I(e(C1,i, K ′) · e(D1,i, Kρ(i)))wi)
=

e(gs, (gαgat))

(
∏

i∈I(e(g
aMi·vT−rxρ(x) , g

t) · e(grx , Tρ(x)
t))wi)

=
e(g, g)αse(g, g)as∏
i∈I e(g, g)aMi·v·wi

= e(g, g)αs = C1.

(6)

Then, the receiver computes:

C̃1

C1

=
MES · e(g, g)αs

e(g, g)αs
= MES. (7)

(2) Outsourcing the decryption to the cloud: In this situation, the smartphone first generates the
transformation key TKUB

for the cloud before it outsources the decryption and then obtains SK′UB
. To

generate TKUB
and SK′UB

, UB chooses a random value z ∈ Zp and computes the transformation key
TKUB

as:

TKUB
= ((gαgat)1/z, (gt)1/z, (T t

i )1/z), (8)

and outputs the secret key SK′UB
= z. Note that we let the user himself generate the transformation key,

which is more flexible. Then, the receiver sends C̃1, C
′
1, C1,x, D1,x{1≤x≤l} and TKUB

to the cloud for
outsourced decryption.

The cloud computes:

e(C ′1, K
1/z)

(
∏

i∈I(e(C1,i, K ′1/z) · e(D1,i, K
1/z
ρ(i)))

wi)
=

e(g, g)αs/ze(g, g)ats/z

(
∏

i∈I e(g, g)atMi·v·wi/z)
= e(g, g)αs/z = C ′. (9)

then sends C ′ to the user UB. After receiving C ′, UB computes:

C̃1

C ′z
=

MES · e(g, g)αs

e(g, g)(αs/z)z
=

MES · e(g, g)αs

e(g, g)αs
= MES. (10)

Finally, if uH(MES) = Ĉ, UB outputs the message MES; otherwise, UB outputs ⊥.

3.3. Extension

Obviously, our EPPS cannot resist the collusion attack on the access policy. To resist this attack, we
add some additional requirements for our scheme under the same situation as in [18]. We describe the
changes of our scheme as follows: each access policy is expressed with n attribute values in the form
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of “(v1,i and v2,j and · · · and vn,k)”, where vi,j is the j-th value of the i-th attribute name. If a user
belongs to several groups, he/she can have several forms of “(v1,i and v2,j and · · · and vn,k)”. Then,
during the key generation process, the AA will issue the private keys according to the number of groups
to which the user belongs and use its secret key to sign the hash value of his/her group attribute values
as gi=SigskAA

(h(v1,i, v2,j , · · ·, vn,k)). During the PHI sharing process, UA, who wants to share the PHI,
does not need the access policy A, and the Bloom filter is generated as h1(h(ΓI ||gi)), h2(h(ΓI ||gi)), · · ·,
hk(h(ΓI ||gi)).

4. Security Analysis

Patient-centric access control: It is obvious that after the system initialization, UA gets the security key
according to his/her attribute values. During the PHI sharing process, UA encrypts the shared PHI by the
security key according to the construction access policy under ABE. Thus, the user can completely decide
with whom to share the PHI in MHSNs, which fulfills the purpose of patient-centric access control.

Fine-grained access control: During the PHI sharing, UA adopts ABE to encrypt the shared PHI,
which realizes fine-grained access control by constructing the access policy. When other users receive
the encrypted shared PHI, only the authorized users who satisfy the access policy can decrypt the PHI.
In this way, EPPS can achieve fine-grained access control.

Patient’s privacy preservation: The proposed scheme can ensure users’ identity privacy. During the
PHI sharing process, we use a set of unlinkable pseudo identities instead of their real identities. These
pseudo identities pidjUA

=Encmk(UA||rjUA
) are generated from the identity of UA, a random number rjUA

and the master key s of the AA. Without the master key s or rjUA
, it is impossible to infer the real identity

of UA. We use the coarse-grained attribute name to construct the access policy, while protecting the
fine-grained and sensitive attribute values from others. During the whole PHI sharing process, others
only know the attribute name; thus, the specific attribute values are protected. In this way, both the
identity and attribute privacy are protected during the PHI sharing process.

PHI integrity, source authentication and non-repudiation: For message C, we use the IBE-based
signature C2 to ensure the integrity, source authentication and non-repudiation. Since the correctness of
health-related information is very critical in protecting patients’ privacy, we use the Ĉ = uH(MES) to
verify the decrypted result. This is significantly important for outsourced decryption, since we cannot
ensure the correctness of the cloud decryption.

Resistance to collusion attack: There are two important contents that should be protected against
collusion attacks: attribute values and the shared PHI. For attribute values, we hide the decrypted attribute
values by hashing attribute values, then hide them in the Bloom filter. For attackers, they are fully
collaborative and share every secret they have obtained during decryption. Attribute values are hidden
by the hash function, which is easy to compute, but hard to invert. Moreover, we use the Bloom filter to
prevent attackers from getting the hash values. By combining the hash function and Bloom filter, we can
resist collusion attacks. For the shared PHI, even if attackers have the attribute values for decryption,
they cannot get the plaintext. For user UA with attribute values S = (s1, s2, · · ·, sn), the corresponding
secret key is (K = gαgat, K ′ = gt, Ki = T t

i ). For different users, t is different, which makes colluding
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attackers unable to decrypt the ciphertext. Therefore, the proposed scheme can effectively resist the
collusion attacks.

5. Performance Analysis

In order to evaluate the practicality of our proposed EPPS, we first implement the outsourced
decryption process without considering the match process on smartphones to show the efficiency of
our scheme. Then, we compare the match process with existing schemes. The performance analysis is
in terms of asymptotic complexity and actual implementation time. Notice that, since our EPPS focuses
on sharing the PHI among smartphones, meanwhile hiding the access policy, we do not compare our
scheme with other existing PHI sharing schemes [3,4,6,8].

5.1. The Efficiency of Outsource Process

5.1.1. Asymptotic Complexity Comparison

Asymptotic complexity is measured in terms of communication overhead and computational overhead
listed in Table 3. Here, |G|, |GT | and |Zq| denote the cardinalities of G, GT and Zq, respectively. The
Pair denotes the pairing operation; Exp denotes the exponentiation operation in G; Mul denotes the
multiplication operation in G; and ExpGT

represents the exponentiation operation in GT .

Table 3. The comparison of the computational overhead. ABE, attribute-based encryption.

(TKUB ) SK′
UB

ABE Ciphertext Cloud Decryption Final Decryption

Size (n+ 2)|G| |Zq| |G|T + 2l|G| |G|T + 2l|G| |G|T
Computation (n+ 2)Exp 0 (4Exp+ 2Mul)l (2l + 1)Pair + lExp ExpGT

5.1.2. Implementation

To evaluate the performance of our scheme, we implement EPPS in software based on the libfenc
library [26] and JPBC library [27]. We compile the libfenc library on the VMware machine with Ubuntu
13.10 OS, 2.20 GHz Intel Core2 Duo CPU (T6600) and 1 GB RAM as the cloud server. Then, we
program the final decryption process after partial decryption on an Android smartphone with 1200 MHz
ARM-based HUAWEI Ascend G6 with 1 GB RAM running Android 4.3 OS by using the JPBC library.
In our implementation, the bilinear map is Type A pairing (l = 512) with a level of 1024-bit DLOG
security [28]. Note that we omit the Bloom filter checking process (We give the communication and
computational overhead of this process in the match comparison section), since it only contains several
hash operations, which is negligible compared to pairing operations.

The detail of the code is described as follows. Since we use the libfenc library, our implementation
also adopts the key encapsulation mechanism as [19], where the ABE ciphertext is the encryption of
a symmetric key k = e(g, g)αs, and the message is encrypted by using k under the AES scheme.
Moreover, in our implementation, we omit components C̃1 in C1 by using the hash values of e(g, g)αs.
The access policy is expressed as (v1,i and v2,j and · · · and vn,k), where vi,j is the j-th value of the
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i-th attribute and n is increasing from 1–100. To assess the practicality of the outsourcing decryption,
we program the final decryption process by JPBC [27] and use file input/output to simulate the
communication process between the cloud and the smartphone. For each access policy, we repeat our
implementation 50 times on the VMware machine and 20 times on the smartphone.

In Figure 5, we give the simulation results. Figure 5a,b gives the size of standard ABE ciphertext and
the partially-decrypted ciphertext, respectively. Figure 5c shows the standard ABE decryption time on
the VMware machine. Figure 5d indicates the time of transformation key generation. Figure 5e gives
the time of transforming the ABE ciphertext. Figure 5f shows the time of decrypting the transformed
ciphertext on the VMware machine and the smartphone. Notice that we do not show the standard ABE
decryption time and the transformation key generation time on the smartphone, since many pairing and
exponentiation operations should be executed for these two processes, which are time-consuming by
JPBC [29].
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Figure 5. The performance of our ABE with outsourced decryption. (a) ABE ciphertext
size; (b) partially-decrypted ciphertext size; (c) decryption time; (d) transformation keygen;
(e) partial decryption time for the cloud; (f) final decryption time.

As described in Figure 5a,c,e, the ciphertext size and decryption/cloud decryption time increase with
the number of attributes for the ciphertext policy. Encryption under a ciphertext policy with 100 attributes
results in almost a 28.5-KB file size of ABE ciphertext, and it takes about 4.5 s for the VMware machine
to decrypt this ciphertext. The time for cloud decryption is almost the same as the decryption on the
VMware machine, since we use the VMware machine as the cloud outsourced decryption platform, and
the computation operations are the same as the VMware machine decrypting this ciphertext.

Outsourcing obviously reduces both the ciphertext size and decryption time for the partially-decrypted
ciphertext. Each partially-decrypted ciphertext has a fixed 128-byte size, regardless of the number of
attributes in the original ciphertext policy. Furthermore, the final decryption requires only about 4.5 ms
on the VMware machine and approximate 1.1 s on the smartphone. Thus, outsourced decryption can
provide a noticeable decryption time advantage for ciphertexts with a complex access policy.
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Figure 5d illustrates the transformation key generation time with the number of user attributes on the
VMware machine. The time is approximately linear with the number of attributes. It only takes about
0.5 s to generate transformation keys with 100 attributes. This process can be done offline.

Notice that we did not compare the decryption time of our scheme with other hidden access policy
schemes [7,15–17], since the match processes are independent of the ABE decryption process.

5.2. The Efficiency of the Match Process

In this subsection, we compare our scheme with the scheme proposed by Zhang et al. [18], the first
match-then-decrypt scheme to enhance the decryption efficiency, in terms of asymptotic complexity and
actual implementation time. Both of these two schemes are under the same application condition.

5.2.1. Asymptotic Complexity

Asymptotic complexity is measured in terms of communication overhead and computational overhead.
Communication overhead: The communication overhead is (5 + 2n)|G| bits for the scheme by

Zhang et al. [18]. For our scheme, we assume that the number of h(ΓI ||gi) is the same as that of
the attribute name n, the number of elements in the Bloom filter. Let k = 5 denote the number of hash
functions used in Bloom filter. Thus, we can get m = b nk

ln2
c = b 5n

ln2
c. In our implementation, the bilinear

map is Type A pairing (l = 512) with a level of 1024-bit DLOG security [28]. Thus, the elements in G
are of 1024 bits. Therefore, the communication overhead of our scheme is much less than the scheme by
Zhang et al.

Computational overhead: The computational overhead consists of two parts: the generation process
and the match phase. We give the comparison results in Table 4, where HG denotes the operation of
mapping a bit-string to an element G and H represents the hash operation. Obviously, the computational
overhead is much less than that in [18].

Table 4. The comparison of the computational overhead.

Scheme in [18] Our Scheme

Generation phase (4 + n)Exp + nHG + Mul + Pair 5nH

Match phase 2(n + 1)Mul + 2Mul + 3Pair 5nH

5.2.2. Implementation

To demonstrate the efficiency of our scheme in practice, we implement our scheme and the scheme
in [18] on smartphones with the same platform as before. The number of n increases from 1–100. For
each access policy, we repeat our implementation 10 times on the smartphone. As Figure 6a shows, the
generation time of both schemes increases linearly with the number of policy attributes. The total time
is 185.3 s for [18] and 26 ms for our scheme when the number of policy attributes is 100. As for the
match time, the time for [18] increases slowly with the number of policy attributes, while the relation
between the match time and the number of policy attributes for our scheme is linear. The total match
time is 23.1 s for in [18] and 22 ms for our scheme when the number of policy attributes is 100, as
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shown in Figure 6b. It can be found that our scheme is significantly more efficient than [18]. The reason
is that the computation cost of attribute matching detection increases with the number of fundamental
cryptographic operations. The work in [18] needs exponentiation and multiplication operations, while
our scheme just needs the hash operations. The exponentiation and multiplication operations are much
more expensive than the hash operation. Notice that we do not compare the computational overhead of
the match process with [15,16]. As in [18], the number of pairing operations for matching detection
in [15,16] linearly grows with the number of n, and the pairing operation costs much more than the
exponentiation and multiplication operations.
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Figure 6. The performanceof match schemes. (a) the generation time for matching; (b) the
match time.

6. Conclusions

In this paper, we proposed EPPS, which could achieve efficient and privacy-preserving PHI sharing in
MHSNs by using ABE. To hide the sensitive access policy, we let each attribute contain an attribute name
and its corresponding values, used the Bloom filter to realize partial access policy hidden and conducted
the access policy checking before decryption. Moreover, we outsourced most of the time-consuming
ABE decryption to the cloud, while preventing the cloud from learning anything about the plaintext
and access policy. Through security and performance analysis, we found that our EPPS could achieve
fine-grained access control, hidden access polices for PHI sharing and could be easily implemented in
resource-constrained mobile devices.
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