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Abstract: This paper presents an algorithm and a system for vertical infrastructure
inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and
shared autonomy. Inspecting vertical structures such as light and power distribution poles
is a difficult task that is time-consuming, dangerous and expensive. Recently, micro
VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in
research, military and even public domains. The unmanned, low-cost and VTOL properties
of these platforms make them ideal for situations where inspection would otherwise be
time-consuming and/or hazardous to humans. There are, however, challenges involved
with developing such an inspection system, for example flying in close proximity to a
target while maintaining a fixed stand-off distance from it, being immune to wind gusts
and exchanging useful information with the remote user. To overcome these challenges, we
require accurate and high-update rate state estimation and high performance controllers to
be implemented onboard the vehicle. Ease of control and a live video feed are required for
the human operator. We demonstrate a VTOL platform that can operate at close-quarters,
whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two
approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended
Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use
monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor
or GPS-impaired environments. We extensively compare the performances of PBVS and
IBVS in terms of accuracy, robustness and computational costs. Results from simulations
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and indoor/outdoor (day and night) flight experiments demonstrate the system is able to
successfully inspect and circumnavigate a vertical pole.

Keywords: aerial robotics; pole inspection; visual servoing, shared autonomy

1. Introduction

This paper presents an inspection system based on a vertical take-off landing (VTOL) platform
and shared autonomy. The term “shared autonomy” indicates that the major fraction of control is
accomplished by a computer. The operator’s interventions for low-level control are prohibited but
the operator provides supervisory high-level control commands such as setting the goal position. In
order to perform an inspection task, a VTOL platform should fly in close proximity to the target object
being inspected. This close-quarters flying does not require global navigation (explorations of large
known or unknown environments) but instead requires local navigation relative to the specific geometry
of the target, for instance, the pole of a streetlight. Such a system allows an unskilled operator to
easily and safely control a VTOL platform to examine locations that are otherwise difficult to reach.
For example, it could be used for practical tasks such as inspecting for bridge or streetlight defects.
Inspection is an important task for the safety of structures but is a dangerous and labor intensive job.
According to the US Bureau of Transportation Statistics, there are approximately 600,000 bridges in the
United States and 26% of them require inspections. Echelon, an electricity company, reported that there
are 174.1 million streetlights in the US, Europe, and UK [1]. These streetlights also require inspections
every year. These tasks are not only high risk for the workers involved but are slow, labour intensive and
therefore expensive. VTOL platforms can efficiently perform these missions since they can reach places
that are high and inaccessible such as the outsides of buildings (roof or wall), high ceilings, the tops of
poles and so on. However, it is very challenging to use these platforms for inspection because there is
insufficient room for error and high-level pilot skills are required as well as line-of-sight from pilot to
vehicle. This paper is concerned with enabling low-cost semi-autonomous flying robots, in collaboration
with low-skilled human operators, to perform useful tasks close to objects.

Multi-rotor VTOL micro aerial vehicles (MAVs) have been popular research platforms for a number
of years due to advances in sensor, battery and integrated circuit technologies. The variety of
commercially-available platforms today is testament to the fact that they are leaving the research labs and
being used for real-world aerial work. These platforms are very capable in terms of their autonomous
or attitude stabilized flight modes and the useful payloads they can carry. Arguably the most common
use is for the collection of aerial imagery, for applications such as mapping, surveys, conservation and
infrastructure inspection. Applications such as infrastructure inspection require flying at close-quarters to
vertical structures in order to obtain the required images. Current regulations require the MAV’s operator
to maintain visual line-of-sight contact with the aircraft, but even so it is an extremely challenging task
for the operator to maintain a safe, fixed distance from the infrastructure being inspected. From the
vantage point on the ground it is hard to judge the stand-off distance, and impossible to do so once the
aircraft is obscured by the structure. The problem is exacerbated in windy conditions as the structures
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cause turbulence. The use of First-Person View (FPV) video streamed live from the platform can help
with situational awareness, but flying close to structures still requires great skill and experience by the
operator and requires a reliable low-latency high-bandwidth communication channel. It has been found
that flight operations near vertical structures is best performed by a team of three people: a skilled pilot,
a mission specialist, and a flight director [2]. For small VTOL MAVs to truly become ubiquitous aerial
imaging tools that can be used by domain experts rather than skilled pilots, their level of autonomy must
be increased. One avenue to increased autonomy of a platform is through shared autonomy, where the
majority of control is accomplished by the platform, but operator input is still required. Typically, the
operator is relieved from the low-level relative-control task which is better performed by a computer, but
still provides supervisory high-level control commands such as a goal position. We employ this shared
autonomy approach for the problem of MAV-based vertical infrastructure inspections.

It is useful for an operator to be able to “guide” the MAV in order to obtain the required inspection
viewpoints without the cognitive workload of “piloting” it. We provide the additional autonomy needed
by implementing visual plus inertial-based pole-relative hovering as well as object circumnavigation
shown in Figure 1. By tracking the two edges of the pole in the image and employing Position-Based
Visual Servoing (PBVS) or Image-Based Visual Servoing (IBVS), the platform is able to maintain a user
specified distance from the pole and keep the camera oriented towards the pole. The operator is also able
to control the height and yaw of the platform. Since the pole is kept centred in the image, a yaw rate
control command results in an orbit about the pole. A cylindrical workspace around the pole is therefore
available to the operator for manoeuvres.

Figure 1. The vertical take-off and landing (VTOL) platform used for our pole inspection
experiments. It includes a front-facing camera, downward-facing ultrasonic sensor and an
onboard inertial measurement unit (IMU) for attitude control. All processing occurs onboard
using a quad-core Acorn Risc Machine (ARM) Cortex-A9 processor.

1.1. Related Work

1.1.1. Climbing Robots for Inspection Tasks

As mentioned before, inspecting structures, such as light and power distribution poles is a
time-consuming, dangerous and expensive task with high operator workload. The options for inspecting
locations above the ground are rather limited, and all are currently cumbersome. Ladders can be used up
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to a height of 10–15 m but are quite dangerous: each year 160 people are killed and 170,000 injured in
falls from ladders in the United States [3]. Cherry pickers require large vehicle access, sufficient space
to operate and considerable setup time.

Robotics and mechatronics researchers have demonstrated a variety of climbing robots. Considerable
growth in sensor and integrated circuit technology has accelerated small and lightweight robotics
development. Typically, these robots are inspired by reptiles, mammals and insects, and their type of
movement varies between sliding, swinging, extension and jumping.

The flexible mechatronic assistive technology system (MATS) robot has five degrees of freedom
(DOF) and a symmetrical mechanism [4]. The robot shows good mobility features for travel, however,
it requires docking stations that are attached to the wall, ceiling, or anywhere the robot is required to
traverse. The bio-mimicking gekko robot, StickyBot [5], does not require docking stations since it has
hierarchical adhesive structures under its toes to hold itself on any kind of surface. It has, however,
limitations for payload and practical applications. A bridge cable inspection robot [6] is more applicable
than the StickyBot in terms of its climbing speed and payload carrying ability. It climbs the cables by
means of wheels which remain in contact with the cable for traction. A climbing robot with legged
locomotion was developed by Haynes et al. [7]. This robot was designed for high-speed climbing of a
uniformly convex cylindrical structure, such as a telephone or electricity pole. NASA’s Jet Propulsion
Laboratory recently demonstrated a rock climbing robot utilizing a hierarchical array of claws (called
microspines) to create an attachment force of up to 180 N normal to the surface [8]. This robot also can
drill a hole with a self-contained rotary percussive drill while it is attached to the surface.

Since climbing robots are in contact with the surface they can perform contact-based high-precision
inspection with high performance sensors. They are also able to perform physical actions on the surface,
not just inspections [9]. These climbing robots could not only replace a worker undertaking risky tasks in
a hazardous environment but also increase the efficiency of such tasks. Climbing robots, however, require
complex mechanical designs and complicated dynamic analysis. Their applications are also limited to
structures with specific shapes and surface materials. They require setup time and climb slowly, so the
inspection task can be time-consuming.

1.1.2. Flying Robots for Inspection Tasks

VTOL platforms on the other hand offer a number of advantages when used for infrastructure
inspection. They have relatively simple mechanical designs (usually symmetric) which require a simple
dynamic analysis and controller. VTOL platforms can ascend quickly to the required height and can
obtain images from many angles regardless of the shape of the structure. Recent advanced sensor,
integrated circuit and motor technologies allow VTOL platforms to fly for a useful amount of time while
carrying inspection payloads. Minimal space is required for operations and their costs are relatively low.
The popularity of these platforms means that hardware and software resources are readily available [10].

These advantages have accelerated the development of small and light-weight flying robotics for
inspection. Voigt et al. [11] demonstrated an embedded stereo-camera based egomotion estimation
technique for the inspection of structures such as boilers and general indoor scenarios. The stereo vision
system provides a relative pose estimate between the previous and the current frame and this is fed into an
indirect Extended Kalman Filter (EKF) framework as a measurement update. The inertial measurements
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such as linear accelerations and rotation rates played important roles in the filter framework. States,
(position, orientation, bias, and relative pose) were propagated with IMU measurements through a
prediction step and the covariance of the predicted pose were exploited to determine a confidence region
for feature searching in the image plane. This allowed feature tracking on scenes with repeating textures
(perception aliasing), increased the total number of correct matches (inliers), and efficiently rejected
outliers with reasonable computation power. They evaluated the proposed method on several trajectories
with varying flight velocities. The results presented show the vehicle is capable of impressively accurate
path tracking. However, flights tests were performed indoors in a boiler mock-up environment where
disturbances are not abundant, and using hand-held sequences from an office building dataset. Based
on this work, Burri et al. [12] and Nikolic et al. [13] show visual inspection of a thermal power
plant boiler system using a quadrotor. They developed a Field Programmable Gate Array (FPGA)
based visual-inertial stereo Simultaneous Localization and Mapping (SLAM) sensor with state updates
at 10 Hz. A model predictive controller (MPC) is used for closed loop control in industrial boiler
environments. In contrast to their work, we aim for flights in outdoor environments where disturbances
such as wind gusts are abundant and the scenes include natural objects.

Ortiz et al. [14] and Eich et al. [15] introduced autonomous vessel inspection using a quadrotor
platform. A laser scanner is utilized for horizontal pose estimation with Rao-Blackwellized particle
filter based SLAM (GMapping), and small mirrors reflected a few of the horizontal beams vertically
downwards for altitude measurement. These technologies have been adopted from the 2D ground vehicle
SLAM solution into aerial vehicle research [16] and often incorporated within a filter framework for fast
update rates and accurate state estimation [17]. While such methods are well-established and optimized
open-source software packages are available, one of the main drawbacks is the laser scanner. Compared
to monocular vision, a laser scanner is relatively heavy and consumes more power, which significantly
decreases the total flight time. Instead, we propose a method using only a single light-weight camera, a
geometric model of the target object, and a single board computer for vertical structure inspection tasks.

1.2. Contributions and Overview

This paper contributes to the state-of-the-art in aerial inspections by addressing the limitations of
existing approaches presented in Section 1.1 with the proposed high performance vertical structure
inspection system. In this paper, we make use of our previous developed robust line feature tracker [18]
as a front-end vision system, and it is summarized in Section 2.2. A significant difference to our previous
works [19–21] in which different flying platforms had been utilized is the integration of both PBVS and
IBVS systems on the same platform. By doing so, we are able to compare both systems quantitatively.
We also conduct experiments where a trained pilot performs the same tasks using manual flight and
with the aid of PBVS and IBVS and demonstrate the difficulty of the tasks. For evaluation, motion
capture systems, a laser tracker, and hand-annotated images are used. Therefore, the contributions of
this paper are:

• The development of onboard flight controllers using monocular visual features (lines) and inertial
sensing for visual servoing (PBVS and IBVS) to enable VTOL MAV close quarters manoeuvring.
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• The use of shared autonomy to permit an un-skilled operator to easily and safely perform
MAV-based pole inspections in outdoor environments, with wind, and at night.

• Significant experimental evaluation of state estimation and control performance for indoor and
outdoor (day and night) flight tests, using a motion capture device and a laser tracker for ground
truth. Video demonstration [22].

• A performance evaluation of the proposed systems in comparison to skilled pilots for a pole
inspection task.

The remainder of the paper is structured as follows: Section 2 describes the coordinate system
definition used in this paper, and the vision processing algorithms for fast line tracking. Sections 3 and 4
present the PBVS and IBVS control structures which are developed for the pole inspection scenario, and
with validation through simulation. Section 5 presents the use of shared autonomy and we present our
extensive experimental results in Section 6. Conclusions are drawn in Section 7.

2. Coordinate Systems and Image Processing

2.1. Coordinate Systems

We define three right-handed frames: world {W}, body {B} and camera {C} which are shown in
Figure 2. Note that both {W} and {B} have their z-axis downward while {C} has its z-axis (camera
optical axis) in the horizontal plane of the propellers and pointing in the vehicle’s forward direction. We
define the notation aRb which rotates a vector defined with respect to frame {b} to a vector with respect
to {a}.

y
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x

z
{B}

y
x z
{C}

WRB, t0

BRC , t1

Camera

{W} = World frame

{B} = Body frame

{C} = Camera frame

tn = Translation

Rn = Rotation

Figure 2. Coordinate systems: body {B}, world {W}, and camera {C}. Transformation
between {B} and {C} is constant whereas {B} varies as the quadrotor moves. CRB rotates a
vector defined with respect to {B} to a vector with respect to {C}.

2.2. Image Processing for Fast Line Tracking

Our line tracker is based on tracking the two edges of the pole over time. This is an appropriate
feature since the pole will dominate the scene in our selected application. There are many reported line
extraction algorithms such as Hough transform [23] and other linear feature extractors [24] but these
methods are unsuitable due to their computational complexity. Instead we use a simple and efficient line
tracker inspired by [25]. The key advantage of this algorithm is its low computation requirement. For
320× 240 pixel images every iteration is finished in < 16 ms and uses only 55% of the CPU quad-core
ARM Cortex-A9.
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2.2.1. 2D and 3D Line Models

A 3D line can be described using various parameterizations including two 3D points, the intersection
of two 3D planes, closest point with direction or two projections. These representations vary in terms of
their properties including completeness, reprojection characteristics with a perspective camera and the
number of internal constraints [26]. Plücker coordinates [27] have been widely used in the computer
vision and the robotic community for 3D line reconstruction [28], line based visual servoing [29] and
SLAM [30]. Plücker coordinates describe a line joining the two 3D points WA and WB ∈ R3 in the
world frame according to

WL = WÃWB̃T − WB̃WÃT (1)

where WL is a Plücker matrix ∈ R4×4. The tilde denotes the homogeneous form of the point (∈ P3).
Consider a perspective projection represented by a camera matrix (intrinsic and extrinsic)

C(ξC) ∈ R3×4

C(ξC) =



fx 0 u0

0 fy v0

0 0 1







1 0 0 0

0 1 0 0

0 0 1 0


 ξ−1C (2)

= KP0ξ
−1
C

where ξC ∈ SE(3) is the camera pose with respect to the world coordinate frame, fx and fy are focal
lengths, u0 and v0 are the coordinates of the principal point.

The 3D line WL is projected to a 2D line on the camera image plane by

[`]× =C(ξC) WL C(ξC)T (3)

where [`]× is a skew-symmetric matrix and ` = (`1, `2, `3) is the homogeneous line equation on the
image plane

`1u+ `2v + `3 = 0 (4)

where u and v are the horizontal and vertical image plane coordinates respectively (see Figure 3). We
reparameterize the line as

` = [α, β]T , where α =
`1
`2
, β =

−`3
`2

(5)

and α is the slope and β is the x-axis intercept (in pixels), see Figure 3b. Note that this parameterization
is the π

2
rotated form of the conventional 2D line equation, in order to avoid the singular case for a vertical

line. There is a singularity for a horizontal line (`2 = 0) but we do not expect this in our application.

2.2.2. Line Prediction and Tracking

We use a linear feature velocity model for line prediction

ˆ̀
k+1 = `k + ∆ ˙̀

k (6)
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where k is the timestep, ˆ̀k+1 is the predicted line in the image plane, ˙̀
k is the feature velocity, `k is the

previously observed feature and ∆ is the sample time. In order to calculate feature velocity, we compute
an image Jacobian, Jl, which describes how a line moves on the image plane as a function of camera
spatial velocity ν = [C ẋ, C ẏ, C ż, Cωx,

Cωy,
Cωz]

T [31].

˙̀
k = Jlkνk (7)

This image Jacobian is the derivative of the 3D line projection function with respect to camera pose,
and for the line parameterization of Equation (5) Jl ∈ R2×6.
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Figure 3. (a) Perspective image of a line WL in 3D space. a and b are projections of the
world point and ` is a line on the image plane; (b) Image plane representation of slope (α)
and intercept (β).

The line tracker has two phases: bootstrapping and tracking. The computationally expensive Canny
edge detection and Hough transform are utilized only once for bootstrapping. The tracking phase is
invoked while the vehicle is flying. There are two steps in the tracking phase: line searching and line
model fitting. Horizontal gradient (Sobel kernel) images are computed which emphasise vertical lines
in the scene. We sample at 60 points uniformly distributed vertically along the predicted lines. We then
compute maxima along a fixed-length horizontal scan line centred on each of these points, see Figure 4a.
The horizontal scan line length is empirically set to 24 pixels. These maxima are input to a line fitting
algorithm using RANSAC [32], to update the line model for the next iteration.

For vision-based control methods it is critical to have feature tracking that is robust to agile camera
motion and lighting condition changes. To handle agile motion we make use of inertial measurements,
acceleration and angular velocity in the body coordinate frame, to predict where the feature will be in the
image plane for the next frame. Figure 4 shows an example of the prediction result. At this moment, the
camera had an acceleration of 1.7 m/s2 and rotation rate of 19 ◦/s. The yellow and red lines in Figure 4a
denote the cases without and with prediction respectively, and shows qualitatively that the red line is
closer to the true edge than the yellow line.
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Figure 4. (a) The image at time k is shown with the tracked line from time k − 1

(without prediction case in yellow) and the predicted line from time k − 1 (with prediction
case in red). We search for maxima along 60 horizontal search lines (cyan), and each is
24 pixels wide; (b) The predicted line is close to the maxima whereas there is 4.5 pixel
offset without prediction.

Figure 4b shows the statistical result over multiple search lines in a single frame. We measure pixel
gradient magnitude along fixed length horizontal search lines (the cyan lines in Figure 4a) and then plot
them against image u coordinates in Figure 4b. The red predicted line is closer to the maxima whereas
there is an offset in the yellow line. This offset varies with motion of the camera. More details and
experimental results for the line tracker and prediction is presented in [18].

Although we implemented enhancements such as sub-pixel interpolation and feature prediction to
improve tracking performance, the line tracker still suffered (tracking failures and noisy tracking) in
both indoor and outdoor environments for a variety of reasons. In some cases, man-made structures
caused tracking of the pole edges to fail because of other strong vertical edge features in the scene.
In other cases the tracker was still able to track the pole edges but the tracking was noisy due to the
background scene complexity (for example because of trees in the background).

This reveals the limitations of a naive gradient magnitude-based tracker. Robust and accurate object
detection algorithms can be utilized to address this challenge. The tracker only searches within the
region-of-interest (ROI) determined by the algorithms. However, we have to scarify update rates or
agility of the flying robot due to onboard computational limits.

3. Position Based Visual Servoing (PBVS)

PBVS uses measured visual features, camera calibration parameters, and prior knowledge about the
target in order to determine the pose of a camera with respect to the target. We use an Extended Kalman
Filter for state estimation with a Plücker line representation as shown in Figure 5. State estimation and
control are performed in SE(3). This section presents details of the horizontal and vertical Kalman Filter
frameworks shown in Figure 6 and simulation results.
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Figure 5. Position-based visual servoing diagram. f is a feature vector. TξC and Tξ∗C are
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Figure 6. Block diagram of horizontal plane state estimator and control used for the PBVS
approach. uφ and uθ denote control inputs for roll and pitch commands. `1 and `2 are tracked
2D lines and Bam is onboard inertial measurement unit (IMU) acceleration measurement.

3.1. Horizontal Plane EKF

The position and velocity of the vehicle in the horizontal plane is estimated using monocular vision
and inertial data. These sensor modalities are complementary in that the IMU outputs are subject to drift
over time, whereas the visually acquired pole edge measurements are drift free and absolute with respect
to the world frame, but of unknown scale.

3.1.1. Process Model

Our discrete-time process model for the flying body assumes constant acceleration [33].

WX̂〈k + 1|k〉 = AWX̂〈k|k〉+ Bbk + v (8)

where WXk =
[Wxk,Wyk,W ẋk,W ẏk, φk, θk

]T . There is an ambiguity for Wy and yaw angle (ψ), as both
result in the target appearing to move horizontally in the image. Although these are the observable
states by both the camera and the IMU, it is a challenge to decouple them with our front-facing
camera configuration and without using additional sensors. Therefore, we omit yaw (heading) angle
estimation in the EKF states and assume it is controlled independently, for example using gyroscope
and/or magnetometer sensors.
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X̂〈k + 1|k〉 is the estimate of X at time k + 1 given observations up to time k.

bk =
[
W ẍk,

W ÿk, φ̇k, θ̇k

]T
represents the sensor-observed motion of the vehicle. A and B describe the

evolution of a state vector and are given by

A =




1 0 ∆t 0 0 0

0 1 0 ∆t 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,B =




1
2
∆t2 0 0 0

0 1
2
∆t2 0 0

∆t 0 0 0

0 ∆t 0 0

0 0 ∆t 0

0 0 0 ∆t




(9)

It is worth mentioning that accelerometers measure the difference between the actual acceleration of
a robot and the gravity vector in {B} [34,35]. Therefore, accelerations in {W} are

Wa =



W ẍ
W ÿ
W z̈


 = WRBBam − g (10)

where g is gravitational acceleration, [0, 0, g]T and Bam is the accelerometer measurement. Process noise
v is assumed to be Gaussian in nature:

v ∼ N (0,Q) (11)

Q = diag
[
σ2

Wx σ2
Wy σ2

W ẋ σ2
W ẏ σ2

φ σ2
θ

]

where Q is the covariance matrix of the process noise. N (0,Q) denotes a zero-mean Gaussian noise
process, and σ is the standard deviation of the corresponding states. The covariance propagation step
follows the standard Kalman Filter procedure.

3.1.2. Measurement Model

Four points ∈ R3 that lie on the two sides of the pole are defined in {W}. Two Plücker lines, WL1

and WL2, are formed and projected onto the image plane as shown in Figure 7.
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We partition the measurement into two components: visual zcam and inertial zIMU. The measurement
vector is

Zk =




`1k
`2k
φk

θk


 =

[
zcam

zIMU

]
(12)

where `ik ∈ R2 are the 2D line features from the tracker as given by Equation (5). The projected line
observation is given by the nonlinear function of Equation (3)

zcam =

[
hcam(WL1,W x̂k,

W ŷk, φ̂k, θ̂k,w)

hcam(WL2,W x̂k,
W ŷk, φ̂k, θ̂k,w)

]
(13)

=

[
C(W x̂k,

W ŷk, φ̂k, θ̂k)
WL1C(W x̂k,

W ŷk, φ̂k, θ̂k)
T

C(W x̂k,
W ŷk, φ̂k, θ̂k)

WL2C(W x̂k,
W ŷk, φ̂k, θ̂k)

T

]
(14)

Note that the unobservable states Wzk and ψ are omitted. w is the measurement noise with
measurement covariance matrix,R

w ∼ N (0,R) (15)

R = diag
[
σ2
α1 σ2

β1 σ2
α2 σ2

β2 σ2
φ σ2

θ

]
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We manually tune these parameters by comparing the filter output with Vicon ground truth. We
generated the run-time code for Equation (14) using the MATLAB Symbolic Toolbox and then exporting
the C++ code. This model is 19 K lines of source code but computation time is just 6µs.

The update step for the filter requires linearization of this line model and evaluation of the
two Jacobians

Hx =
∂hcam

∂x
|X̂(k), Hw =

∂hcam

∂w
(16)

where Hx is a function of state that includes the camera projection model. We again use the MATLAB
Symbolic Toolbox and automatic code generation (58 K lines of source code) for Hx. It takes 30µs to
compute in the C++ implementation with the onboard CPU quad-core ARM Cortex-A9.

The remaining observations are the vehicle attitude, directly measured by the onboard IMU (zIMU) and
reported at 100 Hz over a serial link. The linear observation model for the attitude is

zIMU =

[
φk

θk

]
= HIMU

WX̂ (17)

HIMU =

[
0 0 0 1 0 0

0 0 0 0 1 0

]
(18)

The measurements zcam and zIMU are available at 60 Hz and 100 Hz respectively. The EKF is
synchronous with the 60 Hz vision data and the most recent zIMU measurement is used for the filter
update. Inputs and outputs of the horizontal plane EKF are presented in Figure 5.

3.1.3. Simulation Results

In order to validate the EKF line model and Jacobian, we create a virtual camera observing four points,
Pi ∈ R3 and move the camera with sinusoidal motion in 4 DOF (Wx,Wy, φ, θ) using the simulation
framework of [36]. To emulate the errors in line measurements we set the measurement uncertainties to
be σα = 1◦ and σβ = 4 pixels in the line parameters, α and β, from Equation (5). Estimation results, their
confidence boundary and noise parameters are shown in Figures 8–10. Most of the states are within 3σ

confidence level. The total simulation time is 10 s, with a sampling rate of 100 Hz. We see good quality
estimates of position and velocity in the horizontal plane, whilst decoupling the effects of attitude on
the projected line parameters. We see that the x-axis forward estimation is noisier than the y-axis since
image variation due to change in camera depth is much less than that due to fronto-parallel motion.
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Figure 8. Simulation results for Position Based Visual Servoing (PBVS) tracking: position
estimation. W x̂ and W ŷ with 3σ confidence boundary.
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3.2. Kalman Filter-Based Vertical State Estimation

Various options exist to determine altitude. For instance a downward-looking camera with an
object of known scale on the ground and/or vertical visual odometry on the target object (pole) using
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the forward-facing camera. Due to onboard computational limits we opt, at this stage, to use a
sonar altimeter. We observe altitude directly using a downward-facing ultrasonic sensor at 20 Hz,
but this update rate is too low for control purposes and any derived velocity signal has too much lag.
Therefore we use another Kalman Filter to fuse this with the 100 Hz inertial data which includes vertical
acceleration in {B}. The sonar sensor is calibrated by least square fitting to ground truth state estimates.
The altitude and z-axis acceleration measurement in {B} are transformed to {W} using φ̂ and θ̂ angles
and Equation (10). WXalt is the vertical state,

[Wz,W ż
]T and the process model is given by

WX̂alt
〈k+1|k〉 =Aalt

[
W ẑ〈k|k〉
W ˆ̇z〈k|k〉

]
+ BaltW z̈ + valt (19)

where

Aalt =

[
1 ∆t

0 1

]
, Balt =

[
1
2
∆t2

∆t

]
(20)

and where valt is the process noise vector of Wz and W ż. The covariance matrices of the process and
measurement noise, Qalt and Ralt, are defined as Equations (12) and (16). The observation matrix is
Halt =

[
1 0

]
.

4. Image Based Visual Servoing (IBVS)

Image based visual servoing (IBVS) omits the pose estimation block of Figure 5 and the control is
computed directly from image-plane features as shown in Figure 11. It is a challenging control problem
since the image features are a non-linear function of camera pose, and the controller generates desired
velocities which the non-holonomic platform cannot follow. In this section we present the relation
between camera and image motion, the image Jacobian for line features and an IMU-based de-rotation
technique. Simulation results are also presented.

Feature
extraction

IBVS
control

Image���������	
��������������������  sequences

-+
camera

`

`⇤

!

⌫⇤
xz

Figure 11. Image-based visual servoing diagram. We model an ordinary camera which has
3 mm focal length, 320 × 240 image resolution. ν∗xz is the computed desired translational
velocity and ω is used for de-rotation in the Imaged-Based Visual Servoing (IBVS)
control block.

4.1. Line-Feature-Based IBVS

IBVS has been exploited in a wide range of robotic applications mainly due to its simplicity and
robustness to control error [31,37,38]. Point-feature-based IBVS systems are used commonly because
point features are fundamental, general and visually distinct in the image. State-of-the-art scale and
rotation invariant feature tracking techniques have been used to demonstrate robust and accurate IBVS.
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By comparison line-feature-based IBVS implementations are relatively rare, yet lines are distinct
visual features in man-made environments, for examples the edges of roads, buildings and power
distribution poles.

4.1.1. Image Jacobian for Line Features

The homogeneous equation of a 2D line is au + bv + c = 0 with coefficients (a, b, c). Although any
line can be represented in this form it does not have a minimum number of parameters. The standard
slope-intercept form v = mu + c where m is slope and c is intercept is problematic for the case of
vertical lines where m = ∞. We therefore choose (ρ, θ) parameterization as the 2D line representation
as shown in Figure 12

u sin θ + v cos θ = ρ (21)

where θ ∈ [−π
2
, π
2
) is the angle from the u-axis to v-axis in radians, and ρ ∈ [−ρmin, ρmax] is the

perpendicular distance in pixels from the origin to the line. This form can represent a horizontal line
(θ = 0) and a vertical line (θ = −π

2
).

For a moving camera, the rate of change of line parameters is related to the camera velocity by

˙̀ =

[
θ̇

ρ̇

]
= J lν (22)

where θ̇ and ρ̇ are the velocity of a line feature, and are analogous to optical flow for a point feature.
These line parameters are simply related to the line parameters introduced earlier by

θ = tan−1 α, ρ = β cos θ (23)

The matrix Jl is the Image Jacobian or Interaction matrix and given by Equation (29) [39]. The lines
lie on the equation of a plane AX +BY +CZ +D = 0 where (A,B,C) is the plane normal vector and
D is the distance between the plane and the camera. The camera spatial velocity in world coordinates is

ν =
[
vx, vy, vz | ωx, ωy, ωz

]T
(24)

=
[
νt | ω

]T

where νt and ω are the translational and angular velocity components respectively.
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Figure 12. An example of the (ρ-θ) representation for two lines, `. Signs of the two
parameters, ρ and θ, are shown for the corresponding positive or negative quantities. {u0, v0}
is the principle point and {W,H} denotes the width and the height of the image plane. The
origin of the pixel coordinate frame is at the top-left of the image plane by convention.

For the case of N line features we can stack these equations. The left hand side is a 2N × 1 matrix,
while the stacked Jacobian is 2N × 6. In this paper, we consider the N = 2 case where the two lines are
the vertical edges of the pole, which yields




θ̇1

ρ̇1

θ̇2

ρ̇2


 =

[
J l1
J l2

]
ν (25)

We can solve for the camera motion required in order to move the image features to the desired value

ν = J+
l
˙̀ (26)

where J+
l denotes the pseudo-inverse of J l. Given the desired feature vector, `∗, the desired feature

velocity is

˙̀∗ = λ(`∗ − `) (27)

where ` represents the two tracked line features, `∗ is the desired feature positions in the image plane,
and λ is a positive scalar for a simple linear controller. Substituting Equation (27) into Equation (26)
yields the desired camera velocity:

ν∗ = λJ+
l (`∗ − `) (28)

It is important to note that we do require some a priori Cartesian knowledge about the scene: the
distance from the camera origin to the plane in which the vertical lines lie and the approximate orientation
of that plane. This information is encoded in the parameters of the plane which is required to compute
the image Jacobian in Equation (29). We know A,B,C because the plane is vertical and orthogonal to
the camera x-axis (A=0, B=0, and C=1). Since we are interested in flying close to the target, we choose
a reasonable value for D. We will discuss this point further in Section 4.2.



Sensors 2015, 15 22020

J l =

[
λθ sin θ λθ cos θ −λθρ −ρ sin θ −ρ cos θ −1

λρ sin θ λρ cos θ −λρρ −(1 + ρ2) cos θ (1 + ρ2) sin θ 0

]
(29)

where λρ =
Aρ sin θ +Bρ cos θ + C

D
, λθ =

A cos θ −B sin θ

D

4.1.2. Unobservable and Ambiguous States with Line Features

Depending on the number of lines and their orientation it may not be possible to recover all camera
velocity elements. Some velocities may be unobservable, that is, camera motion in that direction causes
no change in the image. Some observed motion may be ambiguous, that is, the same image motion
might be caused by two or more different camera velocities. In order to recover all elements of the
camera velocity we need to observe at least 3 non-parallel lines. These limitations can be found from
examining the null-space of the Jacobian and its dimensions give the number of ambiguous states [40],
and are summarised in Table 1. The unobservable velocities could be estimated by alternative sensors
such as gyroscopes, magnetometers, or perhaps a downward looking camera that served as a visual
compass. These alternative estimates could also be used to resolve ambiguities.

For the case of two vertical lines considered in this paper, the vertical velocity is unobservable and
there is ambiguity between a sideways motion (camera x-axis) and a rotation about camera y-axis.
Another manifestation is the case where a change in more than one state causes the same feature motions
in the image. For example a sideways motion (camera x-axis) and a rotation about camera y-axis.

Table 1. Unobservable and ambiguous velocity components.

# of lines Rank Unobservable Ambiguities Condition

1 2 vy vx ∼ vz ∼ ωy, ωx ∼ ωz Line not on the optical axis
2 4 vy vx ∼ ωy —
3 6 (Full) — Lines are not parallel

4.1.3. De-Rotation Using an IMU

VTOL platforms such as a quadrotor or a hexarotor are underactuated and cannot translate without
first tilting the thrust vector in the direction of travel. This rotation immediately causes the image features
to move and increases the image feature error, causing poor performance with a simple linear controller
like Equation (28). Instead we use IMU measurement of this rotation which we subtract from the
observed feature motions, often called image de-rotation [41]. The displacements of line features in
θ and ρ are a function of a camera rotation about the x, y and z axes in the world coordinate: roll, pitch
and yaw. We rewrite Equation (25) in partitioned form [37] as

˙̀ =
[

1
D
J t | Jω

] [ νxz

ω

]

=
1

D
J tνxz + Jωω (30)
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where ˙̀ is a 4 × 1 optical flow component, 1
D
J t and Jω are 4 × 2 translational and 4 × 3 rotational

components. They are respectively columns {1, 3} and {4, 5, 6} of the stacked Jacobian,
[
J l1 ,J l2

]T
.

Note we omit column {2} which corresponds to the unobservable state, vy. The reduced Jacobian is
slightly better conditioned (smaller condition number) and the mean computation time is measured
at 30µs which is 20µs faster than for the full size Jacobian. Thus νxz contains only two elements,[
vx, vz

]T
, the translational camera velocity in the horizontal plane. This is input to the vehicle’s

roll and pitch angle control loops. The common denominator, D, denotes target object depth which is
assumed, and ω is obtained from an IMU. We rearrange Equation (30) as

νxz = DJ+
t ( ˙̀− Jωω) (31)

and we substitute Equation (27) into Equation (31) to write

ν∗xz = DJ+
t (λ(`∗ − `)− Jωω︸︷︷︸) (32)

The de-rotation term is indicated, and subtracts the effect of camera rotation from the observed
features. After subtraction, only the desired translational velocity remains.

0 20 40 60 80 100
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time(s)

Ve
lo

ci
ty

(m
/s

)

Vehicle translational velocity with derotation

 

 

ẋ
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Figure 13. Simulation results for IBVS regulation: velocity response. (a) with de-rotation;
(b) without.

4.2. IBVS Simulation Results

In order to validate the IBVS system and de-rotation method, we use a simulation framework
from [36] for a quadrotor dynamic model equipped with a front-facing perspective camera. We
implement the mentioned IBVS system with two vertical lines and the de-rotation block in the IBVS
control block which yields the required translational velocity, ν∗xz.

The vehicle is initially located at (x, y) = (−1.0, 0.5) m and the goal position is (−2.5, 0) m in
the world coordinate frame. Figure 14 shows the results of the position changes in x and y and the
normalized feature errors over time. There are two parameters, λ = 0.3 and D = 1 which are
respectively a positive gain and a depth for this simulation.
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Figure 14. Simulation results for IBVS (with de-rotation): position response. (a): vehicle
position (x, y) versus time showing the vehicle achieves its goal (x = −2.5, y = 0) at around
60 s; (b) the normalized root mean squared feature error (`∗ − `) for the same period.

We ran simulations with and without the de-rotation block for comparison. Although the vehicle
converges to the goal position slower with de-rotation enabled (≈38 s versus ≈60 s) as shown in
Figure 13, the de-rotation yields smoother velocity commands and less oscillation of the y velocity.

Computing Equation (29) requires knowledge of the plane normal vector and D, the distance from
the camera image plane to the plane on which the lines lie [42]. In the literature, many approaches have
been demonstrated for depth estimation, e.g., 3D reconstruction of a scene using vision techniques [43],
a Jacobian matrix estimator using the kinematics of an arm-type robot and image motion [44] or an
Unscented Kalman Filter based estimator using point features and inertial sensor data [45]. These
approaches are applicable to our problem however we lack sufficient computational power on our
onboard computer to implement them in real time.

Instead we used a fixed value of D (denoted Dfixed), and set this to a value that is reasonable for the
pole inspection task (for example 1.5 m). IBVS uses Dfixed in Jacobian calculation Equation (29) and it is
neither the true depth nor current camera pose.

To investigate the control sensitivity to incorrect values of Dfixed, we ran simulations with different
values of Dfixed and the results are plotted in Figure 15. The figure shows how the camera Euclidean
distance error (in SE(3), between the goal and current position) changes over time for a variety of values
of Dfixed. The true value of D at t = 0 was 1.5 m. The plot shows that Dfixed effectively acts as a proportional
gain, with higher values of Dfixed causing faster convergence (for example when the true value of D is
1.5 m, a value of Dfixed = 5 m results in convergence after 10 s compared to 70 s for Dfixed = 1 m). Since
Dfixed acts as a proportional gain, there is the potential for the system to become unstable if the difference
between Dfixed and D is too large. Figure 15, however, shows that the system is stable for a relatively
large variation in Dfixed values, indicating that using a fixed value for D instead of estimating it online is
appropriate for our application.
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Figure 15. Simulation results for IBVS regulation: error response as a function of time for
different assumed constant target object depths.

5. Shared Autonomy

A typical attitude-stabilized multi-rotor has four user-controllable degrees of freedom (DOF), namely
horizontal position (x,y), height (z), and heading (ψ). These are usually controlled indirectly with
joysticks where the stick positions are mapped to rates (e.g., the “throttle” stick position is mapped to
climb rate), or to angular velocity in the case of yaw. These commands are in the body coordinate frame,
making it hard for an operator to control position in the 3-dimensional Cartesian world coordinate frame.

We propose reducing the operator’s cognitive load and level of skill required by reducing the DOFs
that the operator must control, see Figure 16, and letting the system control the remaining DOFs
automatically. Additionally, some of the DOFs are controlled in a more direct, intuitive manner rather
than indirectly via rate or velocity commands. Since the proposed system can self-regulate the stand-off
distance and keep the camera pointed at the target, the operator is left with only two DOFs to control,
namely height and yaw rate. Height control is simplified: from the operator providing rate control
commands to providing height set-points.

Yaw rate commands are used to induce a translation around the pole, allowing the operator to inspect
it from different angles. Changing yaw angle makes the quadcopter circle around the pole (red bar
indicates the front rotor). References for the x and y position controllers are dx and 0 respectively. The
robot hovers by keeping dx distance at time t. The operator sends a yaw command and the vehicle rotates
by the angle γ which induces a lateral offset dy at time t + 1. The vision-based controller moves the
robot to the right to eliminate dy and keeps dx distance at time t + 2—the result is motion around the
target object.
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Figure 16. (left) illustration of how vehicle induces yaw motion. γ is an angle for
the yaw motion and dx and dy are distances between the pole and the robot in x-, and
y-axis; (right) reduced dimension task space for operator commands which is sufficient for
inspection purposes.

6. Experimental Results

The experiments we present are summarised in Figure 17 and can be considered with respect to many
categories: autonomous or manual, PBVS or IBVS control, hovering or circumnavigation, indoor or
outdoor, day or night. The manual pilot experiments pit two human pilots, with different skill levels,
against the autonomous system for the tasks of hovering and circumnavigation. Figure 18 shows some
sample images from the onboard front-camera captured during various experiments. The demonstration
video is available from the following link [22].
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Hovering
- Control performance
- State estimation  
  (position and velocity)
  performance

Circum-navigation
- Control performance
- 3D trajectory plot

Autonomous flying experiments Manual pilot experiments
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Figure 17. Overview of experiments. There are two categories: autonomous flying
with shared autonomy (left) and manual piloting with only attitude stabilization (right);
Autonomous flying consists of PBVS (top) and IBVS (bottom). Two pilots were involved in
the manual piloting experiments. Each box with grey denotes a sub-experiment and describes
key characteristics of that experiment.
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Figure 18. Sample onboard images from the three hovering test environments: indoor
(left), day-time outdoor (mid) and night-time outdoor (right) respectively. The top row
contains the raw images while the bottom row contains the corresponding gradient images
with overlaid lines corresponding to the goal line positions (green) and the tracked pole
edges (red).

6.1. Hardware Configuration

Our research hexarotor platform, an Ascending Technologies Firefly, is fitted with a front-facing
camera and a quad-core 1.7 GHz ARM Cortex-A9 computer which performs all the processing
onboard. It runs Ubuntu Linux, and the Robot Operating System (ROS) [46] is used as the underlying
software framework.

The front-facing camera is a low-cost high-speed Playstation EyeToy connected via USB. This
CMOS camera has a rolling shutter which is problematic on a moving platform [47]. We thus set
essential camera options (such as selecting low-resolution 320 × 240 images, using fixed exposure
and gain and the fastest frame rate available) in order to minimize rolling shutter effects. The IMU
provides angular velocity as well as orientation (roll, pitch, yaw) and the 3-axis acceleration through the
High-Level-Processor (HLP) and Low-Level-Processor (LLP) of the hexarotor platform [48]. Altitude
measurements are obtained from a downward-facing ultrasonic sensor. For night time flying a
high-powered LED is mounted to the front to illuminate the scene for the onboard camera.

All our experiments are ground truthed. The indoor flights are conducted inside a Vicon motion
capture environment and we attach reflective markers to the vehicle which allows us to measure position
and attitude at 100 Hz. Outdoors we attach a single corner reflector and use a Leica TS30 laser tracking
theodolite which provides position only measurments at 5 Hz shown in Figure 19. Each ground truth
system can provide position measurements with sub-millimeter accuracy [49]. We take considerable
care to synchronise the clocks of the flying vehicle and the tracking systems to avoid time skew when
comparing onboard estimates with ground truth.
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Figure 19. Experimental setup for outdoor flights. The VTOL platform is shown pointing
towards the pole. An actuated surveying laser tracks a reflective beacon on the aircraft for
position ground truth.

Software Configuration

We implemented PBVS and IBVS using ROS and Figures 20 and 21 show the sensor and software
configurations for PBVS and IBVS control respectively. Different colors denote different sampling rates
and arrows denote data flow from the sensors to the software components where processing occurs. Each
box is an individual ROS node implemented using C++. Precision Time Protocol (PTP) is utilized for
time synchronization between the onboard computer and the external ground truth data logger.
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Figure 20. Sensor and software system diagram for PBVS experiments. Different colors
denote different sampling rates. The software is implemented using ROS and all computation
for a full update cycle happens within 16.6 ms (60 Hz) on average. The line tracker utilizes
55% of the CPU. The Extended Kalman Filter (EKF) includes line model and Jacobian
calculations and these steps take 6µs and 30µs respectively. Note that only one ground truth
source is used at time. The Vicon system is used for indoor ground truth while the Leica
laser tracker is used outdoors.
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Figure 21. Sensor and software system diagram for IBVS experiments. Different colors
denote different sampling rates. All software is implemented using a Robot Operating
System (ROS). Note that only one ground truth source is used at time. The Vicon system is
used for indoor ground truth while the Leica laser tracker is used outdoors.

6.2. Position-Based Visual Servoing (PBVS)

In this section, hovering and circumnavigation experimental results are presented with
4 sub-experiments. During the hovering experiments, no human inputs are provided. Only yaw rate
commands are sent to the flying robot for the circumnavigation experiments. We evaluate control
performance by comparing the goal and ground truth position. The evaluation of state estimation is
presented with ground truth states and onboard estimator outputs. Figure 22 summarizes the position
control and state estimation performance for the indoor and outdoor environments.
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6.2.1. PBVS Indoor Hovering

The control performance is evaluated by computing the standard deviation of the error between the
goal position (x, y and z) and ground truth as measured by the Vicon system. The performance of the
controller is shown in Figure 23. Interestingly, although the x-axis velocity estimation is noisy, the
control performance for this axis is not significantly worse than for the y-axis, the quadrotor plant is
effectively filtering out this noise.
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Figure 23. Experimental results for PBVS-based indoor hovering: control performance.
Goal (black) and ground truth states (blue). The desired position for W x̂, W ŷ and W ẑ is
−0.7 m, 0 m and 0.7 m. We compute standard deviation of errors for each state over the
interval 15 s∼63 s: σx = 0.048 m, σy = 0.024 m, and σz = 0.011 m.
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Figure 24. Experimental results for indoor PBVS-based hovering. All states are shown
at the same scale. The performance evaluation of the state estimator is summarised in
Figure 22. (a) Position estimation (red) with ground truth (blue). Note that z-axis is inverted
for visualization; (b) Velocity estimation (red) with ground truth (blue), W ˆ̇x, W ˆ̇y and W ˆ̇z;
(c) Attitude estimation (red) with ground truth (blue), roll φ̂ and pitch θ̂.
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We estimate position and orientation except heading angle as shown in Figure 24. The robot oscillates
around 48 s–50 s when the line tracker was affected by the noisy background leading to errors in the
position estimate W x̂.
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Figure 25. Experimental results for outdoor (day) PBVS-based hovering: control
performance. Goal (black) and ground truth states (blue) . The desired position for W x̂,
W ŷ and W ẑ is −0.7 m, 0 m and 0.7 m. We compute standard deviations of errors for each
state over the interval 10 s∼50 s: σx = 0.038 m, σy = 0.028 m, and σz = 0.022 m.

6.2.2. PBVS Day-Time Outdoor Hovering

The VTOL platform was flown outdoors where external disturbances such as wind gusts are
encountered. In addition, background scenes were nosier as shown in Figure 18. Figures 25 and 26
show control performance and state estimation during day-time hovering outdoors. The proposed system
was able to efficiently reject disturbances and maintain a fixed stand-off distance from a pole (see
accompanying video demonstration 2.2). Position and velocity estimation results are shown in Figure 26
and are noisier than for the indoor case due to more complex naturally textured background scenes (see
Figure 18). Controller performance is consistent with that observed indoors. All results are within a
±0.02 m variation boundary.
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Figure 26. Experimental results for outdoor (day) PBVS-based hovering: estimator
performance. Angle estimation are omitted because the laser tracker can only provide
position ground truth of the moving target. All states are shown at the same scale. The
performance evaluation is presented in Figure 22. (a) Position estimation (red) with ground
truth (blue). Note that z-axis is inverted for visualization; (b) Velocity estimation (red) with
ground truth (blue), W ˆ̇x, W ˆ̇y and W ˆ̇z.

6.2.3. PBVS Night-Time Outdoor Hovering

We performed night-time PBVS-based hovering experiments and experienced the best control and
state estimation performance shown in Figures 27 and 28 respectively. At night there was less wind
(average wind speed was less than 1 m/s) and the pole edges were clear in the image since only the
pole in the foreground was illuminated by the onboard light. However, the EKF used for horizontal
state estimation was extremely sensitive to the measurement noise parameters, R from Equation (16).
We didn’t adapt R for night-time flights (same values as for day-time outdoor and indoor hovering)
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and this led to poor state estimation and oscillation in the x and y-axes—the worst results among
the 3 experiments. This is a potential limitation of the deterministic Extended Kalman Filter (Filter
Tuning). [50,51] exploited stochastic gradient descent in order to learn R with accurate ground truth
such as motion capture or high quality GPS. We are interested in this adaptive online learning for filter
frameworks; however, this is beyond the scope of this work.
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Figure 27. Experimental results for outdoor (night) PBVS-based hovering: control
performance. Goal (black) and ground truth states (blue). The desired position for W x̂,
W ŷ and W ẑ is −0.7 m, 0 m and 0.7 m. We compute standard deviations of errors for each
state over the interval 10 s∼50 s. σx = 0.047 m, σy = 0.043 m, and σz = 0.016 m.

6.2.4. PBVS Day-Time Outdoor Circumnavigation

The pole circumnavigation experiment is performed by placing the VTOL platform on the ground
with the camera facing the pole to be inspected and at the desired stand-off distance. The line-tracking
algorithm is initialized and the operator then commands only goal height and yaw rate to move the VTOL
platform around the pole at different heights. The system keeps the camera oriented towards the pole
and maintains the stand-off distance. Figure 29 displays different views of the trajectory for a flight
where the pole was circumnavigated. A circle with the goal radius is shown with a dashed line, and
we see the system tracks the desired stand-off distance well. At the time the average wind speed was
about 1.8 m/s blowing from left to right (See the demonstration video 2.4). The trajectory was within
±0.15 m of the goal radius for most of the circumnavigation but the error increased at around x = −0.7
and y = −0.4 due to wind gusts. Note that the laser tracker lost track of the reflective prism on the
vehicle when it was occluded by the pole at (x = −0.8∼−0.9) and (y = −0.6∼−0.2). We computed the
standard deviation of the control performance for the flight period (0–75 s) to be 0.034 m. The height
change near (x = −0.9, y = 0) is due to the box that was placed on the ground as a takeoff and landing
platform. Since the aircraft maintains a fixed height above the ground beneath it, it climbs when flying
over the box.
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Figure 28. Experimental results for outdoor (night) PBVS-based hovering: estimator
performance. Estimated angles are omitted and all states are shown at the same scale. The
performance evaluation summary of these plots is presented in Figure 22. (a) Position
estimation (red) with ground truth (blue). Note that z-axis is inverted for visualization;
(b) Velocity estimation (red) with ground truth (blue), W ˆ̇x, W ˆ̇y and W ˆ̇z.
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Figure 29. Experimental results for outdoor (day) PBVS-based circumnavigation: control
performance. (a–c) 3D views of the trajectory: Side view, Perspective view and Top view;
(d) Euclidean error (goal minus actual) trajectory versus time.

6.3. Imaged-Based Visual Servoing (IBVS)

We performed pole-relative hovering in 3 environments as shown in Figure 18: indoor (controlled
lighting), day-time outdoor and night-time outdoor. For each flight test the platform was flown for
approximately a minute and no human interventions were provided during the flight. We set λ and D
to 1.1 and 0.8 m respectively for all experiments presented in this and the following section. A
summary of the results is presented in the Table 2, while Figures 30–32 show the position results with
respect to {W}.
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Table 2. Hovering standard deviation performance summary of Figures 30–32.

State w.r.t {W} Indoor Outdoor (Day) Outdoor (Night) Unit

x 0.084 0.068 0.033 m

y 0.057 0.076 0.050 m

z 0.013 0.013 0.013 m

Duration 15∼60 15∼55 15∼70 s

Wind speed — 1.8∼2.5 less than 1 m/s
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Figure 30. Experimental results for IBVS-based hovering: control performance for indoor
IBVS-based hovering. Goal positions shown in red.
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Figure 31. Experimental results for IBVS-based hovering: control performance for outdoor
day-time IBVS-based hovering. Goal positions shown in red.

As shown in the Table 2, hovering performance for indoors is similar to that for outdoors despite the
fact that there are no wind disturbances indoors. This can be explained by the fact that the hexarotor
platform uses a yaw angle estimated from a gyro and magnetometer. Gyros are subject to drift due
to biases and vibration noise, while magnetometers are strongly influenced by magnetic perturbations
produced by man-made structures indoors. Poor yaw estimates indoors therefore yields a yaw rotation
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of the vehicle, which in turn causes a y-axis controller error in {W}. The platform moves in the body
y-axis in order to keep the camera oriented towards the target, and this maneuver also causes an x-axis
controller error in practice. Furthermore, salient vertical edges in the man-made indoor environment
affect hovering performance as well.
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Figure 32. Experimental results for IBVS-based hovering: control performance for
night-time IBVS-based hovering. Goal positions shown in red.

6.3.1. IBVS-Based Hovering

Control performance of the IBVS-based controller is shown in Figures 30–32 for indoors, outdoor
day-time and outdoor night-time flight. For the day-time outdoor hovering test the average wind speed
was 1.8 m/s with gusts of up to 2.5 m/s (See the demonstration video 1.2). The computed velocity
demand to the vehicle is shown in in Figure 33.

The yaw estimation is better outdoors but there are wind disturbances. Also, the line features are
noisier due to varying light conditions, shadows, and strong gradients from the background which make
the edge of the pole weaker. The best performance was achieved for the outdoor night-time flights.
Unlike PBVS, IBVS does not require a pose estimator and is therefore not subject to the EKF sensitivity
issue described in Section 6.2.3. As for the PBVS night-time flights, there was less wind at night (average
wind speed was less than 1 m/s) and the pole edges were well defined in the image since only the pole
in the foreground was illuminated by the onboard light.

6.3.2. IBVS Day-Time Outdoor Circumnavigation

Outdoor circumnavigation experiments were conducted using IBVS in a similar manner to the PBVS
experiments. The line-tracking algorithm was initialized and the pole edge features that were found
became the desired feature positions for the flight. Figure 34 displays the top, side, and perspective
views of the trajectory for a flight where the pole was circumnavigated twice. A circle with the goal
radius is shown with a dashed line, and we see the system tracks the desired stand-off distance well. At
the time the average wind speed was 1.8 m/s∼2.5 m/s (See the demonstration video 1.4). The stand-off
distance was maintained within 0.17 m error boundary for the entire flight as shown in Figure 34d. For
comparison with PBVS, We also computed a standard deviation of the control performance error for the
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same length of flight time (0–75 s) and obtained 0.034 m. IBVS and PBVS show similar performance
as shown in Table 3. The height change near (x = −0.6, y = −0.5) is due to the box that was placed
on the ground as a takeoff and landing platform. Since the aircraft maintains a fixed height above the
ground beneath it, it climbs when flying over the box.

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
v∗
x and ground truth vx

Time(s)

Ve
lo

ci
ty

 (m
/s

)

 

 
Vicon
v∗
x

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
v∗
y and ground truth vy

Time(s)

Ve
lo

ci
ty

 (m
/s

)

 

 
Vicon
v∗
y

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
Normalized feature RMS error

Time(s)

Fe
at

ur
e 

er
ro

r

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
v∗
x and ground truth vx

Time(s)

Ve
lo

ci
ty

 (m
/s

)

 

 
Leika vx
v∗
x

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
v∗
y and ground truth vy

Time(s)

Ve
lo

ci
ty

 (m
/s

)

 

 
Leika vy
v∗
y

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
Normalized feature RMS error

Time(s)

Fe
at

ur
e 

er
ro

r

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
v∗
x and ground truth vx

Time(s)

Ve
lo

ci
ty

 (m
/s

)

 

 
Leika vx
v∗
x

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
v∗
y and ground truth vy

Time(s)

Ve
lo

ci
ty

 (m
/s

)

 

 
Leika vy
v∗
y

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
Normalized feature RMS error

Time(s)

Fe
at

ur
e 

er
ro

r

Figure 33. Experimental results for IBVS-based hovering: control demand. v∗x (left column)
and v∗y (middle column) compared to ground truth. The first row is for indoor hovering while
the second and the third rows are for day and night-time outdoor hovering. Normalized root
mean squared (RMS) image feature errors for each are shown in the (right column).

6.4. Manually Piloted Experiments

The aim of these experiments was to determine how well a human pilot could perform the inspection
tasks, hovering and circumnavigation, that we have demonstrated autonomously. Manual piloting
requires great skill and people with this skill are quite scarce. The key skill is hand eye coordination,
adjusting the vehicle’s position by controlling roll and pitch angle joysticks. These joysticks effectively
control vehicle acceleration which is more difficult for humans to master than the more common rate,
or velocity, control inputs. The controls are effected with respect to the vehicle’s coordinate frame, and
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pilots of moderate skill level are only able to fly with a constant vehicle heading angle, typically the
x-axis away from the pilot. Circumnavigation requires the heading angle to change continuously and
this requires high-order piloting skills.
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Figure 34. Different views of ground truth trajectory with respect to {T} for a pole
inspection flight (a–c); (d) is control performance error plot, i.e., 3D Euclidian distance error
between the goal and the trajectory. An operator only commands yaw rate using the RC
transmitter during the experiment. The constant height, 0.7 m is maintained by the system.

Table 3. Circum-navigation performance comparison.

PBVS IBVS Unit

Max error margin 0.024 0.017 m

Standard deviation 0.038 0.034 m

Duration 0∼75 0∼125 s

In these experiments we use two pilots with differing skill levels. Pilot 1, one of the authors, has strong
skills for manual hovering but is unable to achieve circumnavigation. Pilot 2 is a licensed professional
UAV pilot who is able to perform manual circumnavigation flights. In both cases the pilot is making use
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of the builtin attitude stabilization capability of the vehicle, and the manually piloted experiments were
conducted outdoors during the daytime.

Figure 35 is a summary of the results. It compares the performance of the two pilots with that of
the shared-autonomy system (PBVS and IBVS control) operated by the weaker of the two pilots. The
different colors in the columns denote different experiments. We use a number of performance metrics:

Ground truth is derived from ground truth data from the laser tracker or Vicon to compute statistics
of the error with respect to goal position as we have done in earlier parts of this paper. For example,
Pilot 1 hovered for around 100 s and we computed σx = 0.079, σy = 0.069, and σz = 0.093 for the
period 25–80 s of the first trial shown in Figure 36. For the case of circumnavigation we compute error
with respect to the path’s circle and do not penalize uneven motion around the circle.

[A] is the percentage pole detection rate in the onboard camera images. If the task is performed
correctly the pole will be visible in 100% of the images.

[B] is the standard deviation of the horizontal pole centre position (pixels) in the onboard camera
images. This is a more graduated performance measure than A, and says something about the
quality of the translational and heading angle control of the vehicle. If the task is performed well
this should be 0. Note this statistic is computed over the frames in which the pole is visible.

[C] is the standard deviation of the pole width (pixels) in the onboard camera images. It says
something about the quality of the control of the vehicle position in the standoff direction, and
if the task is performed well this should be 0. Note this statistic is computed over the frames in
which the pole is visible.

Measures A, B and C are computed using a semi-automated line picking software tool (shown
in Figure 37) from the recorded image sequences (subsampled to 10 Hz). As shown in Figure 35,
autonomous flight outperformed all manual flights. Moreover, pole detection rates (A) were 100% for
shared autonomy circumnavigation however it decreased to 70%–80% for manually piloted flights. This
is due to the fact that the pilot had to control all 4 DOFs and the heading angle had to be constantly
changed during circumnavigation in order to keep the camera pointed at the pole. The cognitive load on
the pilot was very high for the circumnavigation task and the task was considered to be quite stressful.

Another interesting result was the difference in B and C for the manual hovering and
circumnavigation experiments. These increased significantly from hovering to circumnavigation for
manually piloted flights. For example, B was 13.33 pixels for Pilot 2’s first hovering trial and this
increased to 76.5 pixels for circumnavigation (See Figure 35). For Pilot 1’s shared autonomy flights
the results remained fairly consistent however (B = 12–17 pixels for PBVS, and B = 30 pixels for
IBVS). Figure 38 also illustrates this point as we see the pole width and position in the image remain far
more consistent for the shared autonomy flights (Figure 38b,c) compared to the manually piloted flight
(Figure 38a). Figure 35 shows the best hovering results were achieved by IBVS (night-time) and PBVS
(day-time) and best circumnavigation results were achieved by PBVS (day-time).
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1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial Indoor Outdoor (day) Outdoor (night) Indoor Outdoor (day) Outdoor (night)
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Metre

(Standard 
deviation)

Onboard camera based
A=100%
B=12.55px
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B=20.34px
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B=31.73px
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C=5.17px

Time
 duration 25~80(55s) 25~80(55s) 25~80(55s) 36~73 (37s) 36~73 (37s) 36~73 (37s) 15~55 (40s) 15~55 (40s) 15~55 (40s) 15~55 (40) 15~55 (40) 15~55 (40) second

# images 110 110 110 74 74 74 80 80 80 80 80 80

Onboard camera based Circumnavi ___ ___ ___
A=72.5%
B=76.5px
C=10.83px
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B=60.4px
C=10.29px
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B=65.67px
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___
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___ ___
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___

# images ___ ___ ___ 240 154 154 ___ 110 ___ ___ 110 ___

Time
 duration ___ ___ ___ 20~140 20~97 20~97 ___ 5~60 ___ ___ 5~60 ___

A= Successful pole detection rate
B= Standard deviation of pole centre position in image coordinate
C= Standard deviation of pole width in image coordinate

Hovering

Evaluation method UnitPilot1 manual Pilot2 manual Pilot1 shared autonomy using PBVS Pilot1 shared autonomy using IBVSTask
σ x = 0.079
σ y = 0.069
σ z = 0.093

σ x = 0.167
σ y = 0.106
σ z = 0.086
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σ z = 0.049

Figure 35. Performance evaluation of manual pilot and autonomous flights.



Sensors 2015, 15 22041

30 35 40 45 50 55 60 65 70 75 80

0.6

0.8

1
Ground truth position during manual pilot

Time(s)

Po
si

tio
n 

x 
(m

)

 

 
Leica x

30 35 40 45 50 55 60 65 70 75 80
−1

−0.8

−0.6

Time(s)

Po
si

tio
n 

y 
(m

)

 

 
Leica y

30 35 40 45 50 55 60 65 70 75 80
1.2

1.4

1.6

Time(s)

Po
si

tio
n 

z 
(m

)

 

 
Leica z

Figure 36. Experimental results for Pilot 2 during manual hovering: position versus time.

u (pixels)

v 
(p

ix
el

s)

RGB image

50 100 150 200 250 300

50

100

150

200

Figure 37. User interface of tool for generating performance metrics. The four yellow points
are manually picked to define the pole edges (two green lines). The red point and star denote
the calculated pole centre and width in the image coordinates respectively.
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Figure 38. Experimental results for circumnavigation: pole width (blue) and offset of the
pole centre from the image edge (red) versus time. Comparison of Pilot 2 manual flight (a),
and Pilot 1 shared autonomy flights using IBVS and PBVS (b,c respectively). Since the
image width is 320 pixels, a value of 160 for “Pole centre” indicates the pole was centred in
the image. Zero values are for frames where the pole didn’t appear in the image. (a) Pilot 2;
(b) IBVS; (c) PBVS.
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Figure 40. Experimental results for Pilot 2 during manual circumnavigation, 3D views. The
magenta triangle indicates where the pilot was standing. (a) Perspective view; (b) Top view;
(c) Side view.
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Figures 39 and 40 shows 3D position versus time for three circumnavigation trials by Pilot 2. The
magenta triangle denotes the standing position of Pilot 2 during the circumnavigation experiments. The
trajectory is elliptical in shape with its major axis passing through the standing position. We believe
there are two reasons for this: firstly, it is most challenging to estimate distance along the optical axis
when the only visible cue is slight change in apparent size, and secondly, the pole occluded the vehicle
from the pilots’s line-of-sight at this position.

In summary the shared autonomy system allowed a less skilled pilot to achieve better task
performance than our best human pilot, and at a much lower level of cognitive load and stress.

6.5. Limitations and Failure Cases

The proposed system has limitations which we plan to address. For example, the line tracker failed
on occasion when the user commanded a large yaw rate causing the pole to leave the camera field of
view (FOV). This can be addressed by either using a wider FOV lens (currently 75◦) or by limiting
the yaw rate.

Another limitation is the susceptibility of the line tracker to the real-world lighting effects when
operating outdoors. If the sun appears in the image it leads to severe flaring and failure of the line
tracker. Laser scanners are however also adversely affected when looking at the sun. Shadowing and
uneven illumination in both indoor and outdoor environments, (see for example Figure 41), can create
an intensity gradient on the surface of the pole and this may be falsely detected and tracked as the pole
edge. To avoid these challenges our experiments were conducted in the absence of direct sunlight (early
morning, late afternoon or cloudy), and we will improve the robustness to these effects in the future.

(a) (b) (c) (d)

Figure 41. Challenging images for indoor (a) and outdoor (b–d) scenes.

We also experienced failures when strong lines were present in the background as shown in
Figure 41d. A telecommunication tower produced strong lines and the line tracker failed to track
the pole.

The sonar only works reliably up to 2 m and is very noisy on grass or gravel outdoors. We therefore
plan to develop a height estimator which combines other sensing modalities such as a barometer,
scale from a downward looking camera or vertical visual odometry from the front camera on the pole
being inspected.

Figure 42 shows real-world vertical structures such as power line and street light poles. They are
not white in colour or have the homogeneous uniform shape that we assume in this paper. Perceptual



Sensors 2015, 15 22044

aliasing caused from identical poles placed in a row represents a common real world problem. The
proposed method does not present a straightforward way of resolving these issues however the results
obtained from the simplified setup we use do demonstrate its potential.

(a) (b) (c) (d)

Figure 42. Sophisticated (a), curved (b), perceptual aliased real world power line (c) and
street light pole (d) variants.

7. Conclusions

We have presented a VTOL platform-based pole-relative navigation system using PBVS, IBVS
and shared autonomy. The target application is aerial inspection of vertical structures such as poles.
The pole-relative navigation increases the autonomy of the system and facilitates the use of shared
autonomy where the operator is relieved of the cognitive load of controlling all degrees of freedom. By
self-regulating its stand-off distance from the pole, height, and keeping the camera facing the pole the
system only requires height set points and yaw rate commands (which induce an orbit around the pole).

A common element of all the systems is an efficient and high-performance line tracker which provides
estimates of the Plücker coordinate parameters of the observed lines. A key to high performance tracking
on such an agile platform is feature prediction which we achieve using an image feature Jacobian and
IMU measurements. For PBVS control these tracked features and IMU measurements are fed into a
pose estimator of PBVS (Extended Kalman Filter) and we designed a controller based on the estimated
states. IBVS control is performed directly using information from only two vertical lines (the pole edges)
which leads to some unobservable and also ambiguous vehicle motions. We presented a line-feature
based IBVS system which uses IMU data to eliminate the effect of body rotation and directly commands
velocity in the horizontal plane.

The IBVS and PBVS systems demonstrated good pole-relative hovering and circumnavigation
performance, maintaining position to within 20 cm of the goal position even in the presence off
light wind.

The controllers formed part of a shared autonomy system in which the operator is no longer flying
the vehicle but providing setpoints in a low DOF object-relative coordinate frame. Experimentally we
showed that this allows a less skilled pilot to achieve better task performance than our best human pilot,
and at a much lower level of cognitive load and stress. This sets the scene for operation of small VTOL
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platforms to perform cost-effective single person inspection jobs, rather than the three person crews that
are currently the norm.

Finally, even though both systems demonstrate good performance, we prefer IBVS over PBVS for
two reasons. Firstly, PBVS requires a pose estimator which takes image features as input and computes
the metric pose of a camera. Development of a robust vision-based pose estimator that can be used
in varying environments is difficult. Secondly, IBVS is relatively easy to implement since it omits the
pose estimation step, and utilize the image features directly. Although IBVS can degrade observability
and be poorly conditioned due to a linearization of a highly non-linear model, it works on our pole
tracking application.
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