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Abstract: The case of large azimuth misalignment angles in a strapdown inertial navigation 

system (SINS) is analyzed, and a method of using the adaptive UPF for the initial alignment 

is proposed. The filter is based on the idea of a strong tracking filter; through the introduction 

of the attenuation memory factor to effectively enhance the corrections of the current 

information residual error on the system, it reduces the influence on the system due to the 

system simplification, and the uncertainty of noise statistical properties to a certain extent; 

meanwhile, the UPF particle degradation phenomenon is better overcome. Finally, two kinds 

of non-linear filters, UPF and adaptive UPF, are adopted in the initial alignment of large 

azimuth misalignment angles in SINS, and the filtering effects of the two kinds of nonlinear 

filter on the initial alignment were compared by simulation and turntable experiments. The 

simulation and turntable experiment results show that the speed and precision of the initial 

alignment using adaptive UPF for a large azimuth misalignment angle in SINS under the 

circumstance that the statistical properties of the system noise are certain or not have been 

improved to some extent. 

Keywords: strapdown inertial navigation system (SINS); large misalignment angle; initial 

alignment; unscented particle filter (UPF); adaptive UPF 
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1. Introduction 

The initial alignment is a key technology in SINS, and the alignment precision and the alignment time 

are two important indexes which affect the overall system performance. With the application field of 

navigation systems continuing to expand, most application environments cannot meet the condition that 

the initial misalignment angle is a large angle and the noise is a Gaussian white noise, so continuing to 

use the traditional linear navigation system model and Kalman Filter (KF) will produce a greater model 

error and estimation error, which make the navigation parameters unbelievable [1]. According to this 

situation, research is mainly divided into two aspects; one is the research on a nonlinear model of the 

inertial navigation system [2–10], the initial alignment is usually divided into two stages of coarse 

alignment and fine alignment, as the strict mathematical error model of the inertial navigation system is 

a set of nonlinear differential equations, there must be some modeling error when using a linear model 

to approximate a nonlinear model. The small misalignment angle linear model is satisfied only under the 

condition of assuming that the various error sources are minor. However, the actual initial misalignment 

angles are large in many cases and, therefore, directly adopting a nonlinear model can reflect more truly 

the error propagation characteristics. In [3], the initial alignment error model of an inertial navigation 

system is established with the use of a disturbance approximation method, in which the azimuth 

misalignment angle is large and the horizontal misalignment angles are small, however, the model limits 

that the horizontal misalignment angles are small, affecting its scope of application. Reference [4] 

unified two processes of coarse alignment and fine alignment, and the universal SINS initial alignment 

nonlinear error models are established by using three status to describe the Ψ  angle; and in [5] a three 

misalignment angles non-linear error mode expressed by multiplicative quaternion is derived, where the 

derivation process is without linearization to ensure the accuracy of the model. The other is the study of 

non-linear filters [11–13]. In the commonly-used methods of nonlinear filtering, there are the extended 

Kalman Filter (EKF), unscented Kalman Filter (UKF), particle filter (PF), and UKF-PF (UPF). The most 

famous algorithm to solve the problem of nonlinear filtering is the extended Kalman Filter (EKF) [1]. 

This filter, based upon the principle of linearizing the process and observation models using Taylor series 

expansions, has been successfully implemented in some nonlinear problems. Since the high-order terms 

above the second-order term are discarded during the linear process, the EKF can only be suitable for 

the estimation of poor nonlinear objects, and the stronger the nonlinear characteristics of the estimated 

object are, the greater the estimation error is, which can even cause divergence. Unlike EKF, UKF is 

based on the covariance matrix of the estimation vector and the measurement vector to determine the 

optimum gain matrix, the covariance matrix is calculated based on the reproducible double sigma sample 

points, where these sample points are determined according to the system equation and the measurement 

equation. Therefore, during the process of calculating the optimum gain matrix, no additional conditions 

are imposed on the system equation and the measurement equation in UKF, so the algorithm is not only 

suitable for linear objects, but also for non-linear objects. However, UKF is an approximate form of 

linear minimum variance estimation, while the standard Kalman filter is a precise linear minimum 

variance estimation, so only under nonlinear conditions can UKF fully reflect its superiority.  

The conditional mean is calculated by PF directly according to the probability density, and the 
probability density is determined by the EKF or UKF approximately, the estimated value ˆ

kX  at thK  time 

is determined by the weighted average value of multitudinous sample values (particles) that have 
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different distributions. EKF or UKF must be completed once when each particle is calculated, so PF is 

suitable for the condition that the system and measurement are nonlinear, and the estimated accuracy is 

higher than the accuracy of using EKF or UKF alone, but the calculation level is much higher than EKF 

and UKF and it can be invalid when the sensor is very accurate or the data experience abrupt changes. 

The core of PF is choosing a reasonably recommended probability density, so the closer the 

recommended density selected is to the true density, the better the filter effect is, otherwise it will be 

worse, or even divergent. If we combine PF with UKF, the recommended density is determined by UKF, 

which can not only solve the problem of the degradation of particles, but also enable particles to get the 

latest a posteriori information of the measurement vector when they update, which is helpful for particles 

to move toward the area with higher likelihood ratio. PF combined with UKF is called UPF. For the 

condition that the treated object is non-linear and the white noise does not obey the Gaussian distribution, 

the highest estimation accuracy is achieved by UPF, then PF, UKF follows, and EKF follows it again. 

Above all, to a certain extent, the use limitations of UPF are less, and the filtering result is better than 

that of the other kinds of algorithms.  

This paper, based on the UPF filtering algorithm, aims at improving the deficiencies of UPF. An 

approach based on a covariance matching criterion is adopted to judge the convergence and divergence 

situation of the filter, the covariance of the prediction error is revised and the filter gain is adjusted by 

an approach of introducing an adaptive attenuation factor, then achieving the goal that restrains and 

eliminates the divergence phenomenon in the filter and further improves the filter capability of fast 

tracking. To some extent, it reduces the influence on the system due to system simplification, the uncertain 

statistical properties of the noise, meanwhile, better overcome the UPF particle degradation phenomenon.  

The rest of this paper is organized as follows: the nonlinear error model of SINS based on Euler 

platform error angles is established in Section 2. Then the detailed adaptive UPF filtering algorithm is 

designed in Section 3. In Section 4, the factors that influence the adaptive UPF filter are analyzed.  

In Section 5, two kinds of filtering algorithms are used for the simulation experiment. In Section 6, a 

turntable experiment for the proposed method with a certain type of SINS is carried out by contrast with 

that of initial alignment of large azimuth misalignment angle in SINS based on UPF. Finally, conclusions 

are drawn in Section 7. 

2. Nonlinear Error Model of SINS  

For the case of SINS with a large misalignment angle, the error caused by the rotation order cannot 

be ignored and the error model of SINS must be re-established according to the large misalignment 

situation. Euler platform error angles are used to indicate the misalignment angle between the ideal 

navigation coordinate and calculated navigation coordinate, and the rotation order of the group error 

angles should be considered. The corresponding nonlinear error model of SINS is established. 

This paper follows the coordinate system selection: 

1. i frame—geocentric inertial coordinate, the origin is at the center of the Earth , the xi axis points 

at equinox, the zi axis is along the Earth’s axis of rotation, the yi axis and the xi axis, the zi axis 

constitute the right-handed coordinate system; 

2. e frame—the Earth coordinate, the origin is at the center of the Earth, the xe axis passes through 

the intersection of the prime meridian and the equator, the ze axis passes through the North Pole 
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of the Earth, and the ye axis passes through the intersection of the eastern longitude 90° meridian 

and the equator; 

3. n frame—the navigation coordinate, here we select the “East-North-Up (ENU)” geographic 

coordinate system as the navigation coordinate; 

4. b frame—“Right-Front-Up” coordinate for the SINS coordinate. 

n frame has followed through three Euler angles rotation to b frame, the three Euler angles are 
denoted by the heading angle (   ]π πΨ ∈ − , pitch angle [ / 2  / 2]θ π π∈ − , and roll angle (   ]γ π π∈ − , and the 

rotation transformation relationship between the n frame and b frame can be described by the attitude 
matrix n

bC  [10,14]. 

2.1. Attitude Error Equation 

In the actual navigation system there exist various disturbances and measurement errors, so a 

rotational error usually exists between the SINS calculation platform coordinate (n' frame) and the ideal 

navigation coordinate (n frame). The n frame requires one to rotate three angles successively in a certain 

order and then it can coincide with the n' frame, and now it is assumed that three rotations are 
successively rotated around the z-axis, x-axis, y-axis, and the turned angles denoted as zϕ , xϕ  and yϕ , so 

their vector expression form is [     ]T
x y zϕ ϕ ϕ ϕ= . Three rotations corresponding with the attitude 

transformation matrix follow as 
z

Cϕ , 
x

Cϕ  and 
y

Cϕ , so the transformation matrix from the n frame to the 

n' frame can be expressed as: 

ϕ ϕ ϕ
′ =

y x z

n
nC C C C

 (1)

where 
cos sin 0

sin cos 0

0 0 1
z

z z

z zCϕ

ϕ ϕ
ϕ ϕ

 
 = − 
  

,
1 0 0

0 cos sin

0 sin cos
x x x

x x

Cϕ ϕ ϕ
ϕ ϕ

 
 =  
 − 

 and 

cos 0 sin

0 1 0

sin 0 cos
y

y y

y y

Cϕ

ϕ ϕ

ϕ ϕ

 −
 =  
  

 

If it is assumed that the angular velocity of the n' frame relative to the n frame is n
nnω ′

′ , the differential 

equation for the Euler platform error angles is: 
1

ωϕ ω ′−
′= n

nnC
 (2)

where 1

cos( ) cos( ) 0 sin( ) cos( )
1

sin( ) sin( ) cos( ) cos( ) sin( )
cos

sin( ) 0 cos( )

y x y x

y x x y x
x

y y

Cω

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

ϕ
ϕ ϕ

−

 
 = − 
 − 

 

From [10] the SINS attitude error equation can be obtained as follows: 
1 ˆ[( ) ]ωϕ ω δω δω′ ′ ′−= − + − n n n n n b

n in n in b ibC I C C C (3)

2.2. Velocity Error Equation 

In the navigation frame, the velocity differential equation of SINS is [10,14,15]: 

(2 )ω ω= − + × +n n b n n n n
b sf ie env C f v g

 (4)

However, the velocity differential equation contains errors in the actual system, so now the SINS 

velocity differential equations should be as follows: 
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(2 )ω ω′= − + × +    n b n n n n
b sf ie env C f v g

 (5)

where n n nv v vδ= + , b b b
sf sf sff f fδ= + , n n n

ie ie ieω ω δω= + , n n n
en en enω ω δω= + , n n ng g gδ= + , and b

sffδ  is the 

accelerometer measurement error. The velocity error equation of SINS can be obtained directly by means 

of Equation (5) minus Equation (4): 

[ ( ) ] ( ) (2 )

          (2 ) (2 )

δ δω δω

ω ω δ δω δω δ δ

′ ′ ′ ′= − + − + ×

− + × + + × +

 

 

n n T n b n T n b n n n
n b sf n b sf ie en

n n n n n n n
ie en ie en

v I C C f C C f v

v v g  (6)

The calculation parameters error n
ieδω  and n

enδω  in Equations (3) and (6) can be specifically expressed as: 

0

ˆ [cos cos( )]

[sin sin( )]

δω ω ω ω δ
ω δ

 
 = − = − − 
 − − 

 
 

n n n
ie ie ie ie

ie

L L L

L L L
 (7)

cos ( )cos( )

sin ( )sin( )

δ

δω ω ω λ λ δλ δ

λ λ δλ δ

− 
 

= − = − − − 
 

− − −  

    
    

n n n
en en en

L

L L L

L L L
 (8)

where L L Lδ= +  and λ λ δλ= + . 

2.3. Initial Alignment Error Model of Large Azimuth Misalignment Angle in SINS 

It is assumed that the two horizontal misalignment angles are both small angles; assuming the gyro 
measurement errors b

ibδω  are mainly composed of the constant drift error bε  and zero mean Gaussian 
white noise b

gw , the accelerometer measurement error b
sffδ  are mainly the constant bias error b∇  and zero 

mean Gaussian white noise b
aw , the gravity error term ngδ  is ignored, n nv vδ=  holds under the static 

base, then the state equation of the initial alignment filtering model is obtained [10]: 

1[( ) ] ( , , )

[ ( ) ] ( ) (2 ) ( )  ( , , )

0 ( , , )

0 ( , , )

ωϕ ω δω δω
δ ω ω δ
ε

′ ′ ′−

′ ′ ′ ′ ′ ′

 = − + − =


= − + ∇ − + × + =


= =
∇ = =

 
  




n n n n n b
i n in n in b ib

n n T n b n T n b n n n n T n b
i n b sf n b ie en n b a

b
i
b
i

C I C C C i x y z

v I C C f C C v C C w i x y z

i x y z

i x y z

 (9)

In this paper the state error vector can be expressed as 
Tn n b b b b b

x y z x y x y z x yX v vϕ ϕ ϕ δ δ ε ε ε = ∇ ∇  , 

and the noise vector 0 0 0 0 0b b b b b
gx gy gz ax ayW w w w w w =   . Establishing the filtering state model, 

and making the velocity error of SINS nZ vδ=  as the observation equation: 

( ) ( ) = +


= +

X f X G X W

Z HX V  (10)

The specific expressions of ( )f X  and ( )G X  can refer to Equation (9), and the matrix H is given as 
[ ]2 3 2 2 2 50 0H I× × ×= , and V is the measurement noise. 
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3. UPF and Adaptive UPF 

3.1. UPF Algorithm 

Suppose the discrete form of the system equation and the observation equation is as follows: 

1 1 1( , )

( )
− − −= +

 = +
k k k k

k k k

X f X u W

Z h X V  (11)

where kW  and kV  are the uncorrelated white Gaussian noise, whose mean value is zero and the variance 

matrix is kQ  and kR , then the specific steps of the UPF algorithm are as follows [13,14]: 

1. Initialization: k = 0; Suppose the initial state variable 0 0~ ( )x p x , the covariance matrix is 0P , we 

sample particles  from the initial probability distribution 0( )p x , for the 

simplified calculation, let ( ) ( )
0 0 0~ ( , )i i iN Pχ χ ,where ( ) ( )

0 0
i iχ χ=  and 0 0

iP P= ; 

2. The forecast and sampling of the weighted particles: k = 1, 2, …; make use of the unscented 

Kalman filtering for particles to forecast, and calculate σ sampling points: 
( ) ( )
(0) 1 1χ χ− −=i i

k k  (12)

( ) ( ) ( )
( ) 1 1 1 ( )( ) , 1, 2 ,χ χ γ− − −= + = ⋅⋅⋅i i i

j k k k jP j n
 (13)

( ) ( ) ( )
( ) 1 1 1 ( )( ) , 1, 2 , 2χ χ γ− − − −= + = + + ⋅⋅⋅i i i

j k k k j nP j n n n
 (14)

where nγ λ= + , 2 ( )n nλ α κ= + − , 410 1α− ≤ ≤ , 3 nκ = − , n is status dimension; 

Time updating is: 

( ) ( )
/ 1 1 1

2
( ) ( ) ( )
/ 1 ( ) / 1

0

2
( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) / 1 / 1 ( ) / 1 / 1 1

0

( ) ( )
( ) / 1 ( ) / 1

2
( ) ( ) ( )
/ 1 ( ) / 1

0

( , )

( )( )

( )

χ χ

χ χ

χ χ χ χ

χ

− − −

− −
=

− − − − − −
=

− −

− −
=

 =

 =



= − − +

=

=







i i
k k k k

n
i m i

k k j j k k
j

n
i c i i i i T

k k j j k k k k j k k k k k
j

i i
j k k j k k

n
i m i

k k j j k k
j

f u

W

P W Q

Z h

Z W Z










 (15)

where: 

( )
0

λ
λ

=
+

mW
n  (16)

( ) 2
0 1

λ α β
λ

= + − +
+

cW
n  (17)

( ) ( ) 1
, 1,2, , 2

2( )λ
= = = ⋅⋅⋅

+
m c

j jW W j n
n  (18)

2 ( )n nλ α κ= + − , 410 1α− ≤ ≤ , 3 nκ = − , and for the normal distribution, 2β = ; 

( )
0 ( 1, 2,3 , )i i Nχ = ⋅ ⋅⋅
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Measuring updating is: 

2
( ) ( ) ( ) ( ) ( ) ( )

( ) / 1 ( ) / 1 / 1 ( ) / 1 / 1
0

2
( ) ( ) ( ) ( ) ( ) ( )

( ) / 1 ( ) / 1 / 1 ( ) / 1 / 1
0

( ) ( ) ( ) 1
( ) / 1 ( ) / 1

( ) (
/ 1

( )( )

( )( )

( )

χ χ

χ χ

− − − − −
=

− − − − −
=

−
− −

−

= − − +

= − −

=
=





n
i c i i i i T

zz k k j j k k k k j k k k k k
j

n
i c i i i i T

xz k k j j k k k k j k k k k
j

i i i
k xz k k zz k k
i

k k k

P W Z Z Z Z R

P W Z Z

K P P
) ( ) ( )

/ 1
( ) ( ) ( ) ( ) ( )

/ 1 ( ) / 1

( )

( )
−

− −










+ −
 = −

i i i
k k k k

i i i i i T
k k k k zz k k k

K Z Z

P P K P K

 (19) 

Using the particle ( )i
kχ  generation according to the recommended density function 

( ) ( ) ( )
0 0( / ( ( ), )) ( , )i k k i i

k k kq X X i Z N Pχ≈  as the second sampling original particles;  

3. According to the weight value updating formula 
( ) ( ) ( )

( ) ( ) 1
1 ( )

0 0

( / ) ( / )

[ / ( ( ), )]

i i i
i i k k k k

k k i k k
k

p Z p
w w

q i Z

χ χ χ
χ χ

−
−= , the corresponding 

weight values of N particles are calculated and the normalization processing is performed; 

4. The original particles 
( ) ( 1, 2, , )i
k i Nχ = ⋅⋅ ⋅  are re-sampled by re-sampling algorithms to generate the 

second sampled particles 
( ) ( 1, 2, , )j
k j Nχ = ⋅⋅ ⋅  and their weight values are calculated; 

5. The optimal estimation of state variables and the corresponding covariance matrix of each 

particle are calculated according to ( ) ( )

1

ˆ
N

j i
k k k

j

X w χ
=

=  ; 

6. The particles ( )j
kχ  after re-sampling in step (4) and ( )i

kP  calculated in step (5) are substituted in 

step (2) for the iterative calculation. 

3.2. The Adaptive UPF Algorithm in This Paper 

The time-varying gradually fading factors are used to weaken the influence that the obsolete data on 

the current filtering value based on the idea of strong tracking filter, the covariance of state prediction 

error, and the corresponding gain matrix are adjusted in real-time to achieve this purpose. To some 

extent, the adaptive UPF can judge the convergence of the system in real time and improve the correction 

of the current information error to the system filter by introducing memory attenuation factor, it can also 

slow down the degradation of UPF particle and accelerate the convergence rate of the particle filter. 

The adaptive measure taken in this paper is to judge the covariance of the filter, the specific formula 

is as follows [14,15]: 

* ( ( ))≤   T T
k k k kZ Z S tr E Z Z

 (20)

where S is the setting adjustment coefficients, and generally S > 1; kZ  is the residual error array of the 

system, | 1( )k k k kZ Z h X −= − . 

When Equation (14) is not true, ( )
/ 1
i

k kP −  is needed to carry out the effective amendment, the approach 

in this paper is the introduction of the adaptive weighting coefficient kλ  of the attenuation memory 

factors, the specific definition can be expressed as: 

0 0

0

, 1

1, 1

λ λ
λ

λ
≥

=  <
k  (21)
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The correction formula is: 
2

( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) / 1 / 1 ( ) / 1 / 1 1

0

( )( )λ χ χ χ χ− − − − − −
=

= − − +
n

i c i i i i T
k k k j j k k k k j k k k k k

j

P W Q
 (22) 

where:  

0,
0 2

( ) ( ) ( ) ( ) ( )
( ) / 1 / 1 ( ) / 1 / 1

0

( )

( ( )( ) )
λ

χ χ− − − −
=

−
=

− −
k

n
c i i i i T

j j k k k k j k k k k
j

tr C R

tr W Z Z
 (23)

0, 0, 1 1 

, 1

,
1

T
k k

T
k k k k

Z Z k

C C Z Z
k

ρ
ρ

−

 =
= +

> +

 
 

 (24)

where 0 1ρ< ≤ , its main role is to enhance quick tracking capability of the filter to the system state, the 

larger it is, the larger the assigned weight value of the current information is, the impact residual error 

of the current information on the estimate of the system is also more prominent. In order to ensure that 

the system has the ability of strong tracking with slowly changing circumstances and mutational status, 
0.95ρ =  in this paper. 

In this paper, the implementation steps of the adaptive UPF are as follows: 

1. Initialization: k = 0; we sample particles ( )
0 ( 1, 2,3 , )i i Nχ = ⋅⋅⋅  from the initial probability distribution 

0( )p x , for the simplified calculation, let ( ) ( )
0 0 0~ ( , )i i iN Pχ χ ,where ( ) ( )

0 0
i iχ χ= , 0 0

iP P= ; 

2. Forecast updating: 

According to Equations (15) and (19), ( )
/ 1
i

k kχ −  and ( )
/ 1
i

k kZ −  are obtained. Then the specific 

covariance is as follows: 
2

( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) / 1 / 1 ( ) / 1 / 1 1

0

( )( )χ χ χ χ− − − − − −
=

= − − +
n

i c i i i i T
k k j j k k k k j k k k k k

j

P W Q
 (25) 

3. Judge whether Equation (21) is satisfied or not; if satisfied, skip to the fifth step, otherwise correct 
( )
/ 1
i

k kP −  in accordance with Equations (22), (23) and (24); 

4. Measurement updating: 
( ) ( ) ( )

, 1 , 1( )− −= + −i i i
k k k k k k kx x K z z

 (26) 

( ) ( )
, 1−= −i i T

k k k k zz kP P K P K
 (27) 

5. According to the weight value updating formula

( ) ( ) ( )
( ) ( ) 1

1 ( )
0 0

( / ) ( / )

[ / ( ( ), )]

i i i
i i k k k k

k k i k k
k

p Z p
w w

q i Z

χ χ χ
χ χ

−
−=

, the corresponding 

weight values of N particles are calculated and normalized; 
6. The original particles ( ) ( 1, 2, , )i

k i Nχ = ⋅⋅ ⋅  are re-sampled by re-sampling algorithms to generate the 

second sampled particles ( ) ( 1, 2, , )j
k j Nχ = ⋅⋅ ⋅  and their weight values are calculated; 

7. The optimal estimation of state variables and corresponding covariance matrix of each particle 

are calculated according to ( )

1

ˆ
N

j i
k k k

i

X w χ
=

=  ; 
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8. The particles ( )j
kχ  after re-sampling in the sixth step and ( )j

kP  calculated in the seventh step are 

substituted in the second step for the iterative calculation. 

4. Adaptive UPF Filter Influence Factors Analysis 

4.1. The Influence of the Importance Probability Density Function on the Accuracy of Adaptive UPF  

The selection of the importance probability density function embodies in the weight updating section 

of particles, namely [16,17]: 

( ) ( ) ( )
( ) ( ) 1

1 ( )
0 0

( / ) ( / )

[ / ( ( ), )]

χ χ χ
χ χ

−
−=

i i i
i i k k k k

k k i k k
k

p Z p
w w

q i Z  (28) 

The ideal importance probability density function can ensure ( ) 0j
kVar w = , namely the degradation of 

the particles can be completely eliminated. However, the optimum importance probability density 
function requires sampling from ( ) ( )

1( / , )i i
k k kp Zχ χ − , which is very difficult to carry out under the circumstance 

that the posterior probability density is a non-Gaussian case. In this paper, the specific method is: 
1

/ 1 / 1[ 0.5*( ) *( ) *( )]( )( / )χ
−

− −− − −=
T

k k k k k kZ Z R Z Zi
k kp Z e  (29)

1
/ 1 / 1[ 0.5*( ) *( ) *( )]( ) ( )

1( / )χ χ
−

− −− − −
− =

T
k k k k k kZ Z Q Z Zi i

k kp e  (30)

1
/ 1 / 1[ 0.5*( ) *( ) *( )]( ) 1

0 0( / ( ( ), ) ( ) *
−

− −− − −−=
T

k k k k k k kZ Z P Z Zi k k
k kq X X i Z P e  (31)

where ( ) ( ) ( )
1 0 0( / ), ( / ), ( ( ), )  i i i k k

k k k kp Z p q X i Zχ χ χ −  can be modified according to the actual situation, but the 

modification is intended to achieve making the weight value of a particle smaller when the difference 

between the predicted particle and the actual status is larger, when the predicted particle is in good 

agreement with the actual status, the weight value of the particle should be larger.  

4.2. Influence of Re-Sampling Algorithm on the Filtering Accuracy 

Re-sampling is raised against the degradation issue of the particle weight value. Its purpose is to remove 

the particles with small weight value, increase the particles with large weight value, while the total number 

of particles is maintained constant. There are four kinds of commonly-used and representative re-sampling 

strategies, namely polynomial re-sampling, stratified re-sampling, system re-sampling, and residual error 

re-sampling [2,18]. Merwe et al. [18] pointed out that, regardless of the re-sampling method you choose, 

the impact on the PF calculation method is not very large [2]. In this paper, simulation is done to analyze 

three kinds of methods: system re-sampling, remainder re-sampling, and polynomial re-sampling. 

5. Simulation and its Analysis 

5.1. Simulation Conditions 

Under the condition of static base, gyro constant drift is 0.01°/h, random drift is 0.001°/ h ; 

accelerometer zero bias is 100 µg (g = 9.8 m2/s), random deviation is 50 µg; the local geographic latitude 

is 32.37°, longitude is 118.22°. Simulation time is 2000 s.  
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5.2. Simulation Results and Analysis 

5.2.1. The First Experiment  

In accordance with the large azimuth misalignment angle error model, we partly use two kinds of 

filtering algorithms for the simulation experiment in the case where noise statistical properties are 
determined. Now we select the initial misalignment angle as [ ](0) 1 1 10

Tϕ = ° ° ° , the feedback correction 

is not performed during the simulation process in both cases; the simulation results of the alignment 

error are shown in Figures 1 and 2. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. The alignment errors of large azimuth misalignment angle ( [ ](0) 1 1 10
Tϕ = ° ° ° ): 

(a) Pitch errors; (b) Roll errors; (c) Heading errors. 

Table 1. Determining the statistical properties of the noise are the statistical results of the alignment. 

 
Mean/° Variance/° 

Pitch Error  Roll Error Heading Error Pitch Error Rollerror  Heading Error 

UPF 0.0209 0.0189 1.0983 0.0524 0.0567 2.3819 
Adaptive UPF −0.0181 0.0074 −0.8609 0.0555 0.0423 1.3958 
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Figure 1 shows that when the initial misalignment angle is [ ](0) 1 1 10
Tϕ = ° ° ° , and we use the adaptive 

UPF, the horizontal alignment time required less than 50 s, the azimuth alignment time required less than 

300 s; using UPF, the horizontal alignment time needs about 300 s, and the azimuth alignment time is about 

500 s based on SINS error model with large azimuth misalignment angle. The alignment time of the adaptive 

UPF is obviously superior to UPF, but alignment accuracy of both is considerable. It can be seen that to some 

extent the alignment accuracy using adaptive UPF is higher than UPF from Table 1. 

5.2.2. The Second Experiment 

In order to verify the filtering performance of the two kinds of filtering methods under the uncertain noise 

situation, we specifically add noise whose variances are all 0.02 to the acceleration of three directions to do 
experimental analysis. Take [ ](0) 1 1 10

Tϕ = ° ° ° . As it can be seen from Figure 2, when the measurement 

noise increases, the alignment of the horizontal direction will have a substantial shock after using UPF and 

the system may have been affected to some extent. The horizontal alignment time is about 700 s, the azimuth 

alignment time is about 900 s. After using the adaptive UPF, the level alignment time is significantly better 

than UPF, about 50 s, and the error curve is smooth. The azimuth alignment needs 450 s, so the alignment 

time is much shorter than UPF. From the statistical results of Table 2, the alignment accuracy using the 

adaptive UPF is significantly better than UPF. 

Table 2. The statistical properties of uncertain noise are the statistical results of alignment. 

 
Mean/° Variance/° 

Pitch Error  Roll Error Head Error Pitch Error Roll Error  Head Error 

UPF 
Adaptive UPF 

0.0454 
0.0105 

0.0278 
0.0122 

2.8174 
−0.7304 

0.0648 
0.0629 

0.0634 
0.0425 

4.9038 
2.2557 

 
(a) 

 
(b) 

Figure 2. Cont. 
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(c) 

Figure 2. The alignment errors of large misalignment angles ( [ ](0) 1 1 10
Tϕ = ° ° ° ): (a) Pitch 

errors; (b) Roll errors; (c) Heading errors. 

5.2.3. The Third Experiment 

This paper also analyzes the influence of re-sampling algorithms on the filtering effect of the adaptive 

UPF by experiment. Figure 3 shows the results of residual re-sampling, the systematic re-sampling, 

multinomial re-sampling applied with the adaptive UPF. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. The influence of different re-sampling algorithms on alignment accuracy: (a) Pitch 

errors; (b) Roll errors; (c) Heading errors. 
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Figure 3 shows the alignment accuracy of the three re-sampling algorithms is comparable after the 

alignment is finished but, initially, using a multinomial re-sampling algorithm has larger and longer time 

jitter in the horizontal and heading direction, so we can select a different re-sampling algorithm based 

on the system. 

6. Turntable Experiment 

The initial alignment of a large azimuth misalignment angle in SINS based on adaptive UPF proposed 

in this paper has been verified by a turntable experiment. The experiment was run as a semi-physical 

simulation with data collected from the turntable and SINS. 

6.1. Experiment Setup 

6.1.1. Turntable and SINS 

The turntable used in this experiment is shown in Figure 4. In the turntable, the rate controlling 

accuracy is ±0.0005°/s and angle measuring accuracy is ±0.0001°. In addition, angle information can be 

provided via a serial communication port as a response to the external time-synchronization signal. In 

the experiment, the inner, intermediate, and outer frames are used to simulate the ship’s roll, pitch, and 

yaw respectively. 

The strapdown inertial navigation system used in this experiment which is developed by Casic33s is 

shown in Figure 4. Fiber optic gyros and quartz accelerometers are used in this type of SINS. The sensor 

precision of the SINS is provided in Table 3. The update frequency of the turntable data and SINS sensor 

data are 100 Hz. 

 

Figure 4. The turntable and SINS. 

Table 3. Sensor precision of SINS. 

Gyro Accelerometer 
Constant errors 0.006°/h Constant errors 50 µg 
Random errors 0.006°/ h  Random errors 50 µg 
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The constant drift, scale factors, cross coupling coefficient, installation error angle, and so on, can be 

calculated and compensated by the exact calibration according to [16,19], so these errors all can be 

ignored in the calibration. 

6.1.2. Construction of the Experimental Environment 

As shown in Figure 5, the experimental environment consists of a turntable, IMU (FOSN), computer, 

time-synchronization signal generator, data acquisition card, local area network, serial communication 

port, and so on.  

 

Figure 5. Experimental environment. 

A time-synchronization signal of 100 Hz is introduced to make the IMU data and turntable data 

synchronous. In this experimental environment, once the time-synchronization signal is active, the current 

angle information of the turntable and the information of the IMU will be sent to the navigation computer 

via the serial communication port, then the current sensor data will be collected for navigation solution and 

data fusion and, finally, navigation parameters will be sent back to the recording data computer at 1 Hz by 

the navigation computer. Additionally, data from the SINS and the turntable should be stored in the 

recording data computer in order to evaluate different alignment algorithms. 

6.2. Experimental Results and Analysis 

During the experiment, the inner and intermediate frames of the turntable are constantly kept in a 

level status. The outer frame rotates to 10° (this value can be selected randomly); then we can consider 
the carrier theoretical attitude value as [ ]0 0 10

T° ° ° . Two alignment schemes based on UPF and adaptive 

UPF are compared through the semi-physical simulation. The experiment lasts for 2000 s. Estimation 

error curves for the misalignment are shown as Figure 6. 

From Figure 6, it can be seen that, when using the adaptive UPF, the horizontal alignment time 

requires less than 50 s, the azimuth alignment time requires about 500 s; using UPF, the horizontal 
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alignment time needs about 300 s, and the azimuth alignment time is about 700 s, based on the SINS 

error model with a large azimuth misalignment angle. The alignment time of the adaptive UPF is 

obviously superior to UPF.  

 
(a) 

 
(b) 

 
(c) 

Figure 6. Estimation error curves for misalignment angles: (a) Pitch errors; (b) Roll errors; 

(c) Heading errors. 

7. Conclusions 

Based on the established nonlinear state equation of SINS with a large azimuth misalignment error, 

the initial alignment adopts UPF and the adaptive UPF under the circumstance of the large azimuth 

misalignment in SINS, where the statistical noise characteristics are fixed or not. The simulation shows 

that when the noise statistical properties are certainly determined, using the adaptive UPF has faster 

alignment speed than UPF, while the alignment accuracy advantage is not obvious. When the noise 

statistical properties are uncertainly determined, comparing the adaptive UPF with the normal UPF, the 

speed and the accuracy of alignment has obvious advantages. In addition, it is found that the system error 

caused by a residual error re-sampling algorithm is larger than the systematic re-sampling and 

polynomial re-sampling by choosing different re-sampling algorithms, which cannot be ignored in the 

high-precision navigation systems. Turntable experiments were done to certify the feasibility and 

superiority of the initial alignment of large azimuth misalignment angle in SINS base on adaptive UPF. 
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They provide theoretical evidence and a calculation method for the initial alignment of large azimuth 

misalignment angles on a static base of SINS based on adaptive UPF in engineering, and at the same 

time provides a new idea for the initial alignment on a moving base of SINS based on adaptive UPF.  

Acknowledgments 

The research described above was supported in part by the National Natural Science Foundation of 

China (61473085, 51175082, 51375088, 61273056), Foundation of Key Laboratory of Micro-Inertial 

Instrument and Advanced Navigation Technology of Ministry of Education of China, Excellent Young 

Teachers Program of Southeast University (2015). 

Author Contributions 

Jin Sun, Xiao-Su Xu, Yi-Ting Liu and Tao Zhang conceived and designed this study. Jin Sun and  

Yi-Ting Liu performed the experiments. Jin Sun wrote the paper. Yao Li reviewed and edited the 

manuscript. All authors read and approved this manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Sun, F.; Tang, L.J. Initial alignment of large azimuth misalignment angle in SINS based on CKF. 

Chin. J. Sci. Instrum. 2012, 33, 327–333. 

2. Nie, Q. Nonlinear Filtering and Its Application in Navigation System. Ph.D. Thesis, Harbin 

Engineering University, Harbin, China, 2008. 

3. Dmitriyev, S.P.; Stepanov, O. A.; Shepel, S.V. Nonlinear filtering methods application in INS 

alignment. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 260–272. 

4. Kong, X.; Nebot, E.M.; Durrant-Whyte, H. Development of a nonlinear psi-angle model for 

large misalignment errors and its application in INS alignment and calibration. In Proceedings 

of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 

1999; pp. 1430–1435. 

5. Xia, J.; Qin, Y.; Zhao, C. Study on nonlinear alignment method for low precision INS. Chin. J.  

Sci. Instrum. 2009, 30, 1618–1622. 

6. Gong, Y.S. Researches on Particle Filtering Algorithms and Application in GPS/DR Integrated 

Navigation. Ph.D. Thesis, PLA Information Engineering University, Zhengzhou, China, 2010. 

7. Van Der Merwe, R.; Doucet, A.; De Freitas, N; Wan, E. The unscented particle filter. Adv. Neural. 

Inf. Process. Syst. 2001, 13, 584–590. 

8. Chatzi, E.N.; Smyth, A.W. The unscented Kalman filter and particle filter methods for nonlinear 

structural system identification with non-collocated heterogeneous sensing. Struct. Control.  

Health Monit. 2009, 16, 99–123. 



Sensors 2015, 15 21823 

 

 

9. Zhao, M.; Zhang, S.; Zhu, G. The Application Research of Unscented Particle Filter Algorithm to 

GPS/DR. In Proceedings of 6th World Congress on Intelligent Control and Automation, Dalian, 

China, 21–23 June 2006; pp. 8717–8721. 

10. Yan, G.; Yan, W.; Xu, D.M. Application of simplified UKF in SINS initial alignment for large 

misalignment angles. J. Chin. Inertial. Technol. 2008, 16, 253–264. 

11. Hao, Y.L.; Mu, H.W.; Jia, H.M. Application of ICDKF in initial alignment of large azimuth 

misalignment in SINS. Syst. Eng. Electron. 2013, 35, 152–155. 

12. Hao, Y.L.; Mu, H.W. Application of ACDKF in initial alignment of large azimuth misalignment in 

SINS. J. Huazhong Univ. Sci. Tech. Nat. Sci. Ed. 2012, 12, 80–84. 

13. Ding, Y.B.; Wang, X.L.; Wang, Z. Study on unscented Kalman filter applied in initial alignment 

of large azimuth misalignment on static base of SINS. J. Astronautics 2006, 6, 1201–1204. 

14. Fu, M.Y.; Deng, Z.H.; Yan, L.P. The Theory and the Application of Kalman Filter in Inertial 

Navigation System; Beijing Science Press: Beijing, China, 2010; pp. 195–199. 

15. Li, Y.; Li, Z. Adaptive unscented particle filter algorithm under unknown noise. J. Jilin Univ. Eng. 

Technol. Ed. 2013, 4, 1139–1145. 

16. Qin, Y.Y. Inertial Navigation; Beijing Science Press: Beijing, China, 2006; pp. 231–255. 

17. Ning, X.; Fang, J. Spacecraft autonomous navigation using unscented particle filter-based 

celestial/Doppler information fusion. Meas. Sci. Technol. 2008, 19, doi:0957-0233/19/9/095203. 

18. Xu, X.; Li, B. Adaptive Rao-Black wellized particle filter and its evaluation for tracking in 

surveillance. IEEE Trans. Image Process. 2007, 16, 838–849. 

19. Liu, X.; Xu, X. System calibration techniques for inertial measurement units. J. Chin. Inert. Technol. 

2009, 5, 568–571. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


