
Sensors 2015, 15, 20204-20231; doi:10.3390/s150820204

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Design and Implementation of Real-Time Vehicular Camera for
Driver Assistance and Traffic Congestion Estimation

Sanghyun Son and Yunju Baek *

School of Computer Science and Engineering, Pusan National University, Busan 609735, Korea;

E-Mail: sonsang@eslab.re.kr

* Author to whom correspondence should be addressed; E-Mail: yunju@pusan.ac.kr;

Tel.: +82-10-2937-2599; Fax: +82-51-583-2873.

Academic Editor: Leonhard M. Reindl

Received: 16 June 2015 / Accepted: 10 August 2015 / Published: 18 August 2015

Abstract: As society has developed, the number of vehicles has increased and road

conditions have become complicated, increasing the risk of crashes. Therefore, a service that

provides safe vehicle control and various types of information to the driver is urgently

needed. In this study, we designed and implemented a real-time traffic information system

and a smart camera device for smart driver assistance systems. We selected a commercial

device for the smart driver assistance systems, and applied a computer vision algorithm to

perform image recognition. For application to the dynamic region of interest, dynamic frame

skip methods were implemented to perform parallel processing in order to enable real-time

operation. In addition, we designed and implemented a model to estimate congestion by

analyzing traffic information. The performance of the proposed method was evaluated using

images of a real road environment. We found that the processing time improved by 15.4

times when all the proposed methods were applied in the application. Further, we found

experimentally that there was little or no change in the recognition accuracy when the

proposed method was applied. Using the traffic congestion estimation model, we also found

that the average error rate of the proposed model was 5.3%.

Keywords: computer vision; vehicle recognition; road traffic; vehicular network; real-time

traffic estimation

OPEN ACCESS

Sensors 2015, 15 20205

1. Introduction

Owing to the development of semiconductor and mobile communication technology, smart vehicular

technologies that enable safety management and provide certain information to a driver using

high-performance sensors and wireless communication devices in a heavy-traffic environment is an

active area of research [1]. The number of vehicles has increased and road conditions have become

complicated, increasing the risk of crashes [2]. Therefore, a system that provides safe vehicle control

and various types of information to the driver is urgently needed.

Conventional vehicular camera systems, which record vehicle driving information in order to reveal

the causes of crashes, and the advanced driver assistance system (ADAS), which facilitates driver

comfort and vehicular safety, are typical examples. Further, smartphone technologies have evolved

rapidly, e.g., the fast-paced, low-cost technologies associated with the development of embedded

processors, image sensors, and global positioning system (GPS) sensors. As the development of these

small devices is facilitated, many laboratories and vehicular navigation companies are actively pursuing

the development of a conventional vehicular camera system. In addition, the study of ADASs [3,4] using

various sensors and image information is stepping up research and development owing to the high

performance of the various sensors considered thus far.

Although ADASs were initially studied in terms of driver convenience, these systems have recently

been improved to provide safety services, such as alerts regarding lane departure and direct vehicular

control. The German automotive powerhouses and relevant support agencies, such as the Technical

Monitoring Association, Automobile Association, and Automobile Manufacturers Association, have

been studying the effects of a variety of ADASs.

Many researchers have studied security services, such as traffic sign recognition, lane keeping,

parking aids, and emergency braking. Industrialized countries have already performed the duties of such

safety-related systems. An ADAS recognizes a vehicle’s surroundings using various sensors. However,

ADASs have problems with low accuracy and limited types of measurable objects.

An ADAS is equipped with various radars and IR sensors to recognize various situations. There is

increasing need for an image recognition sensor that can collect and utilize information about specific

road conditions by using the image data recorded by a camera to maximize the utilization of the limited

sensor information. Thus, research using computer vision techniques, such as pedestrian recognition and

license plate and traffic sign recognition, is in progress. For example, Mobileye ADAS products [5] in

Israel are equipped with system-on-chip hardware for image recognition. It is possible to determine the

surrounding information by collecting image data from cameras attached to the front and rear of a

vehicle. In addition, IT companies, such as Google and Apple, are performing on-going automatic

driving technology research and development, and automobile manufacturing companies, such as

Bayerishe Motoren Werke (BMW), Ford, General Motors (GM), Toyota, and Volkswagen (VW) are

performing on-going research on ADAS technology.

For infrastructure-to-vehicle and vehicle-to-vehicle communication, researchers are developing

technology for exchanging information by interradio communication. Among the in-vehicle network

technologies currently in use, dedicated short-range communication (DSRC) is preferred in Korea.

DSRC has a problem in that a connection with an external network cannot be established. Utilization of

mobile communication networks is limited because of the associated fees. A related study based on

Sensors 2015, 15 20206

wireless sensor networks or ad hoc networks is in progress [6], and the related standards for wireless

access in a vehicular environment [7–9] are being established by the IEEE. However, it is difficult to apply

an ad-hoc-network-based technology because of the absence of commercial IEEE 802.11p products and

poor communication performance with respect to the degree of data dissemination by the device.

Traffic management technologies include intelligent transportation systems (ITSs) and transport

protocol expert groups (TPEGs) [10]. ITSs will improve the efficiency and safety of traffic control by

applying state-of-the-art technologies, such as electronic control and communication, to on-going traffic.

Examples of ITSs that can be used in the real world include bus arrival information systems, automatic

intersection signals, and real-time traffic information services provided by navigation systems. In Korea,

TPEGs are used mainly for providing real-time traffic information to a vehicle navigation system.

A TPEG is a protocol that provides real-time traffic and travel information through digital multimedia

broadcasting. Conventional traffic management techniques determine the traffic conditions using

closed-circuit televisions installed along the roads for the collection of traffic information, or by

measuring the time required for a vehicle to pass a specific point. Conventional collection methods have

a problem in that information collection is available only in limited areas.

A driver assistance system collects sensor data using the vehicle’s sensors. This system provides the

driver with information on the area around the vehicle and uses road information for vehicle control.

However, the sensors collect only limited types of road information. To address this limitation, the

proposed device can collect various types of information to analyze camera images. In addition, the

collected road information is available for use only to the collecting vehicle. Thus, a real-time traffic

information system is needed that can gather road information from vehicles and provide traffic

information to other vehicles using a mobile cellular network.

In this paper, we designed a smart driver assistance system based on image recognition and a mobile

network, and we implemented the system to evaluate its performance. In addition, we designed and

implemented a real-time traffic information system. We defined the smart driver assistance system and

proposed methods of overcoming low image recognition throughput. In addition, we proposed a traffic

analysis model that uses the collected road information from a vehicle’s sensor data. We performed

several experiments to evaluate the image recognition throughput and traffic estimation performance.

2. Smart Vehicular Camera

With the rapid evolution of mobile platform technology, the components of mobile devices, such as

embedded processors, image sensors, gyro sensors, and GPS modules, are becoming cheaper. The

proposed smart driver assistance system consists of a smart vehicular camera device and a real-time

traffic information system. First, we developed a smart vehicular camera platform. The proposed

platform requires high-speed camera interfaces to forward images to a processor, network interfaces to

communicate with the traffic service server, and parallel processing capability to recognize input images.

2.1. Hardware Design

To select an embedded processor for the smart camera platform, we performed an image recognition

test using development boards. We tested four development boards, including the Samsung Exynos

Sensors 2015, 15 20207

core and the NVIDIA Tegra core. Table 1 shows the detailed specifications of each of these four

development boards.

Table 1. Comparison of development board specifications.

 Arndale Exynos 5 ODROID-X2 ODROID-XU JETSON

CPU

Exynos 5420 Octa

Cortex™-A15

1.7 GHz quad,

Cortex™-A7 quad

Exynos 4412 Quad

Cortex™-A9

1.7 GHz quad

Exynos 5410 Octa

Cortex™-A15

1.6 GHz quad,

Cortex™-A7 quad

Tegra Kepler1

4-plus-1

Cortex™-A15

2.3 GHz

GPU Mali-T628 Mali-400 MP40 PowerVR SGX544MP3 Kepler GPU with 192 CUDA

RAM 1 GB LPDDR3 2 GB LPDDR2 2 GB LPDDR3 2 GB LPDDR3

Storage SDMMC4 SDMMC4 SDMMC4 16 GB fast eMMC4

Power 5 V/4 A DC 5 V/2 A DC 5 V/4 A DC 12 V/5 A DC

We evaluated the image processing performance of the development boards using the pedestrian

recognition open computer vision (OpenCV) library [11] in the Ubuntu Linux environment. The input

video stream for the test is a real road movie recorded using a conventional vehicular camera attached

to the test vehicle. The pedestrian recognition parameters are given in Table 2.

Table 2. Pedestrian recognition parameters.

Parameter Value

Library (algorithm) OpenCV 2.4.9 (HOG)

Input image size WVGA (800 × 480)

Size of detection windows 48 × 96

Scale 1.05

Level 13

Hit threshold 1.4

Stride 8 pixels

Table 3 compares the recognition processing performance of each device. A comparison of the

recognition processing speed revealed the performance advantages of the NVIDIA Tegra core board.

The results showed that the use of the GPU cores is more important than the performance of the CPU

cores. To use the GPU cores, the image recognition system requires a parallel computing framework,

such as OpenCL [12] or NVIDIA’s Compute Unified Device Architecture (CUDA) [13]. The CUDA

library provides more options and functions than OpenCL [14,15]. Thus, the use of this library ensures

high image processing performance.

The proposed smart camera platform was designed using the NVIDIA Tegra Kepler1 processor and

includes various modules and sensors. The platform includes a high-performance full HD camera

module to collect the image frame forward of the vehicle, an LTE modem to connect to the mobile

network base station, a GPS module to determine the vehicle position, and an accelerometer to determine

the acceleration of the vehicle. In addition, the platform has an embedded on-board diagnostics (OBD)

scanner [16–18] to confirm the sensor data from the vehicle interior. Figure 1 shows a schematic

representation of the smart camera platform.

Sensors 2015, 15 20208

Table 3. Comparison of recognition processing performance.

Development Board Performance (FPS)

Arndale (Exynos 5420) 1.89
Odroid-X2 (Exynos 4412) 2.21
Odroid-XU (Exynos 5410) 3.25
JETSON (NVIDIA TK1, CPU only) 3.82
JETSON (NVIDIA TK1 CPU, GPU) 15.86
PC (Intel i5) 13.82
PC (Intel i5, NVIDIA GeForce 750) 44.12

We connected a camera module and an LTE network module to an NVIDIA Jetson board [19] based

on the Tegra Kepler1 core, and we designed an extension board based on the STM32 cortex core [20],

which has an embedded OBD scanner, a GPS module, and an accelerometer. To read the data from the

vehicle interior using sensors, we use a controller area network (CAN) transceiver for a low-layer

connection and the standard OBD-II/KOBD protocols.

Figure 1. Schematic representation of smart camera platform based on NVIDIA Tegra

Kepler1 core.

2.2. Software Design

A variety of open-source software was applied to operate the smart vehicular camera device.

Performing device control using the Linux kernel, we developed the recognition application using the

computer vision library and implemented the application using the CPU and GPU parallel processing

library [21–23]. The software architecture of the proposed smart vehicular camera is shown in Figure 2.

The hardware abstract layer (HAL) controls various hardware devices, and the recognition application

uses the OpenCV, OpenMP [24], and NVIDIA CUDA libraries to improve performance. This

application uses image processing to provide road condition information, such as information about

pedestrians, license plates, road lines, and traffic signs. Further, the application is designed to provide

the position, speed, accelerator condition, and other vehicular status information.

Sensors 2015, 15 20209

Figure 2. Software architecture of the proposed smart vehicular camera.

The proposed smart vehicular camera uses a recognition process to search for valid targets, such as

pedestrians and license plates, in the camera input image. Further, we applied a pedestrian recognition

method based on the histogram of the oriented gradient (HOG) [25] in an image frame. This method

calculates the changes in each pixel’s direction component and component size for the full frame of

pixels. This gradient value can be used for object recognition, as it changes significantly at an object

boundary, irrespective of the background. To find a pedestrian in a frame, the method uses support vector

machines (SVMs) to compare the gradient value and the normalized histogram value by changing the

scale levels.

The license plate recognition method finds rectangles and eliminates rectangles corresponding to

non-plate objects from the rectangle list. The rectangle finding method uses pyramid blurring to remove

the noise in the image, Canny edge detection [26] to find a rectangle edge, and the Dilate algorithm to

sharpen the detected edge. Finally, the method calculates the contours relative to the edges and extracts

rectangles from the calculated contours. The license plate recognition method finds the plate by checking

for a specific pattern aspect ratio. The specific pattern consists of repeated black letters and white spaces.

In addition, the proposed recognition application estimates the distance to the vehicle ahead using the

pixel distance difference between a license plate and a hood.

Lane and traffic sign recognition is performed using a Hough transform to find straight lines and

circles. In the image frame, the recognition method identifies a straight line that contains most of the

overlapping points [27]. Furthermore, to identify circles, the method finds the intersections of the straight

lines, and these points are considered the centers of circles. The circular traffic sign recognition method

performs character recognition to find circles, and the lane departure warning method determines lane

departure on the basis of the inclination of the found straight line.

Image recognition techniques require high computational power and considerable processing time.

Processing time is accumulated whenever each recognition method is performed. These features make

it difficult to perform real-time image processing. Therefore, image recognition techniques require two

methods of real-time image processing, namely, a dynamic region of interest (D-ROI) method to reduce

the search area and a dynamic frame skip (DFS) method to discard unnecessary frames.

Sensors 2015, 15 20210

3. Methods of Minimizing Computing Load

In the limited environment of a mobile embedded system, we propose to use the D-ROI method to

perform image recognition smoothly. An ROI is a region of interest that is searched by the image

recognition process. A minimized ROI can improve the processing speed by reducing the search region.

The ROI is generally set to a fixed small size to eliminate unnecessary operations in order to reduce the

processing time. To accommodate the algorithms with a high computation load, such as pedestrian

recognition and license plate recognition, we shortened the processing time by applying the D-ROI

method, which continuously changes the ROI size by estimating the target’s location and size in the frame.

3.1. D-ROI Method

In the road environment, each item of information can be recognized for each target by setting the

corresponding other partial region as the ROI. Thus, each recognition method sets the upper-bound ROI

size to a static ROI (S-ROI) to maintain the recognition accuracy. Here, we propose a D-ROI method to

further reduce the S-ROI for the pedestrian and license plate recognition methods. The lane recognition

and circular sign recognition methods impose a relatively low computational load, and reducing the

search region by more than the S-ROI size is difficult. Thus, the D-ROI method is not applied to these

two recognition methods.

Before describing the D-ROI, we will define the S-ROI. For pedestrian recognition, we remove the

non-pedestrian regions, such as the sky, the vehicle hood, and the narrow left and right sides of the full frame.

The same S-ROI is used for license plate recognition and pedestrian recognition. The S-ROI for the

lane recognition algorithm is set up as the optimal region that includes the region from the vanishing

point to the hood and both lanes. The S-ROI for lane departure recognition sets a sufficiently large region

to determine the slope of the lane after lane recognition. Finally, the circular traffic sign recognition

algorithm sets the S-ROI to the upper-right corner of the full frame.

Figure 3. Size of static ROI for recognizing objects on the road.

This setting of the ROI also affects the recognition accuracy in addition to reducing the computational

load. If similar-measurement objects appear outside of the ROI, they can be excluded, thus preventing

recognition errors caused by identifying wrong targets, such as pedestrians and plates. If a camera is

Sensors 2015, 15 20211

attached to the rear view mirror, the size of the pedestrian and license plate recognition S-ROI is 33% of

the full frame size. The lane and lane departure recognition S-ROI sizes are 12% and 4%, respectively.

Further, the circular traffic sign recognition S-ROI size is 25%. These S-ROI sizes are optimal values

generated by the experimental data obtained from the collected real videos. Figure 3 shows the size of

the S-ROI for recognizing objects on the road.

The D-ROI method produces an ROI smaller than the specified S-ROI in order to reduce the

computational load. The method dynamically changes the ROI size according to the target recognized

in the previous frame. If the recognition target is not present in the current frame, the recognition

algorithm searches the S-ROI of the frame.

Whenever the algorithm applied for the D-ROI method recognizes a target object in the current frame,

it generates a smaller D-ROI by considering a cropped image including the recognized target and the

vehicle movement. The new ROI is determined by adding the movement region (MR) to the cropped

region (CR). The movement region is calculated as:

MP
inp

skip
pedcarpixelped C

FR

FR
VVFMR +

 +⋅+⋅= 1

)(

α (1)

where Vcar denotes the velocity of the vehicle, and Vped represents the velocity of the recognition target.

The two velocity vectors are substantially orthogonal and are used to calculate the moving distance in

order to estimate the MR size. Further, FRinp denotes the number of frames in the input image, and FRskip

represents the value of frame skips per second. If the algorithm considers the entire frame for the

calculation, this value is zero. Otherwise, if the algorithm skips frames, FRskip increases. CMP denotes the

pixel margin recommended for image recognition. We set this variable at a fixed value for each algorithm

and image size. Further, α denotes a constant value to determine MR. For pedestrian and license plate

recognition, the D-ROI method can reduce the calculation domain on both sides.

To convert real distances to pixel distances, the following equations are used:

()
() 3599.9ln0837.2

4799.0 0112.0

−⋅=

⋅=

ppF

edF

dist

d
pixel (2)

where Fpixel(d) denotes a function that converts the real distance to the pixel distance in the image, and

Fdist(p) denotes an inverse function of Fpixel(d); we derived Equation (2) on the basis of the measured

values. The graph in Figure 4 shows how the pixel variation corresponds to the variation in the real distance.

Considering the distance between the license plate of the vehicle in front and the hood, the D-ROI

method generates the D-ROI using the following equation:

plateplate

MPprevplate

CRwidthMR

CddheightMR

⋅=
+−⋅=

β
α

.

.
 (3)

where MRplate denotes the movement region of the license plate for image recognition. The height of the

ROI is set on the basis of the difference in the distance from the vehicle in front in the previous frame,

and the width of the ROI is set to β times the width of a plate considering the extra width moveable to

both sides. This D-ROI is changed continuously according to the recognition result, and the D-ROI

method is executed continuously up to n times. After being executed n times or failing in the target

search, the recognition algorithm searches for the S-ROI again to prepare for the emergence of a new target.

Sensors 2015, 15 20212

Figure 4. Function for converting pixel distance to real distance.

Whenever pedestrians or license plates are recognized in a frame, the D-ROI method reduces the

computational load significantly. However, the D-ROI method has a problem in that it is not applied

when vehicles or pedestrians do not appear in front of the vehicle. When a frame is processed every

moment, there is no problem in the precision or accuracy; however, it is difficult to save computing

resources. For example, when a vehicle is driven at a constant speed on the highway, the change in the

image is small. When the speed of the vehicle is very slow, there is little change in the continuous input

image. In such cases, the recognition algorithm can sufficiently detect the situation by low frequency

image processing.

3.2. DFS Method

Here, we propose the DFS method to solve this problem. The proposed method needs certain

parameters for discarding frames, such as the vehicle’s speed and acceleration variation values. If the

vehicle’s speed is fast, the image changes more frequently; thus, the skip rate is set to a low value. In

contrast, if the rate of change is small at a low speed, the skip rate can be increased. The acceleration

variation value affects acceleration, deceleration, impacts, and turning. When the change in the

acceleration value is large, the image changes suddenly; thus, the skip rate is set to a low value. The

speed and acceleration variation values are interdependent; therefore, we designed the model for frame

skip rating by using these two parameters.

This model is expressed as:

 min() min()
min 1 ,

max() min() max() min()skip inp

s s A A
FR FR

s s A A

 − Δ − Δ= α ⋅ ⋅ − − Δ − Δ
 (4)

After standardizing the two values, we derived an equation to assign a weight to each value. Here,

max(s) and min(s) are based on the speed limits of the road, and max (∆A) and min (∆A) are set to the

average of the acceleration variation values generated according to the typical behavior of the driver.

Algorithm 1 presents the pseudocode of the D-ROI and DFS methods for minimizing the computing load.

Sensors 2015, 15 20213

Algorithm 1. Pseudocode of D-ROI and DFS methods for minimizing computing load.
frame ← the frames from camera device
s ← vehicular speed value
∆A ← vehicular acceleration value
Initialised ROI = S-ROI, frame_count = 0, D-ROI_count = 0, target_searching = false
for all frame do
 frame _count = (frame _count + 1) % FRinp
 FRskip = min [α × standardisation(s) × standardisation (∆A), FRinp]
 if FRskip % frame_count = 0 then
 if ROI ≠ S-ROI then
 D-ROI_ count += 1
 end if
 else then
 target_searching, CR = recognition_algorithm (ROI)
 If target_searching = false or D-ROI_ count > D-ROI_ threshold then
 ROI = S-ROI
 D-ROI_ count = 0
 else then
 D-ROI = CR + MR
 ROI = D-ROI
 D-ROI_ count += 1
 end if
 end if
end for

4. Real-Time Traffic Information System

Traffic information can be categorized as incident and traffic flow information. Examples of incident

information are information on crashes, road construction, and road restrictions. Incident information

can be easily obtained by having the parties involved send the information to the main server. However,

it is difficult to estimate traffic flow information using a single data item from a vehicle, as computing

the time at which the vehicle passes along a specific road is difficult. Therefore, we propose a method

of estimating traffic congestion using the vehicle-to-vehicle distance, vehicle speed, and number of

neighboring vehicles provided by the proposed smart vehicular camera. The number of neighboring

vehicles is difficult to provide for each vehicle using the collected position information of each vehicle.

The proposed model for estimating the traffic congestion degree is as follows: The server divides the

road into several sections and then initializes the value of the number of neighboring vehicles for each

section. Whenever the server receives vehicle data, it checks the position information to find the section

and updates the value of the number of neighboring vehicles. We designed the model to use a

combination of vehicle-to-vehicle distance, vehicle speed, and number of neighboring vehicles. In this

case, we need a proper scoring function to use each data item and apply the linear combination for

normalization. The proposed model for estimating the traffic congestion degree Ctraffic is expressed as:

)()()(zDwyNwxSwC dnstraffic ++= (5)

Sensors 2015, 15 20214

Here, ws represents the speed weight value, wn indicates the neighboring vehicle’s weight value, and

wd denotes the intervehicle distance weight value. S(x), N(y), and D(z) denote the scoring functions for

converting the speed, neighboring vehicle, and intervehicle distance values, respectively. To validate the

model, we designed simple scoring functions intuitively. A road generally becomes congested when the

vehicle speeds are slow, there are many vehicles on the road, or the intervehicle distance is small.

Considering these features, we designed the simple scoring functions expressed in Equations (6)–(8).

xxS simple 005.01)(−= (6)

yyN simple 05.0)(= (7)

)20(),20(00375.03.0)(

)200(,035.01)(

zzzD

zzzD

simple

simple

≤−−=

<<−=
 (8)

The ground truth (GT) value of a road is calculated to represent the ratio of the estimated time of

passing along the road at limited full speed to the actual time required to pass along the road. The GT

value of the congestion degree is given by:

roadlmt

measured

DistS

AT
GT

/
= (9)

Here, ATmeasured denotes the measured actual time along the road, Slmt represents the limited maximum

speed on the road, and Distroad indicates the length of the road.

Comparing the GT of traffic congestion and the estimated congestion degree using the simple scoring

functions, we found that the trend of the two graphs was similar, but the measurement error was 49%.

To minimize this error, we thoroughly analyzed the congestion situation and designed the following

improved scoring functions.

simproved CxxS += −15)((10)

y
nimproved CyN 125.0)(= (11)

24101)(zzDimproved
−−= (12)

To obtain these improved functions, we first analyzed the traffic congestion according to the vehicle

speed. The vehicle speed was slow when the road was congested and fast when the road was empty.

However, when the speed exceeded the threshold speed, the speed depended on the nature of the driver

rather than the congestion degree. Therefore, we designed an improved speed scoring function that is

sensitive to the speed change in the low-speed range. Second, we analyzed the traffic congestion

according to the intervehicle distance; below a threshold, the intervehicle distance depended on the

nature of the driver. Thus, the distance affected the congestion degree only slightly. In addition, if the

distance exceeded a threshold, it was difficult to determine whether the distance was valid information.

Therefore, we designed the intervehicle scoring model of elliptic functions to be sensitive to changes in

the intermediate range. Third, we analyzed the traffic congestion according to the neighboring vehicles

on the road. The number of neighboring vehicles did not significantly affect the congestion degree when

it was less than the capacity of the road. In contrast, if the capacity of the road was exceeded, the

Sensors 2015, 15 20215

congestion degree increased rapidly. Therefore, we designed the improved scoring model having an

exponential form to reflect this tendency.

5. Performance Evaluation

We implemented the smart driver assistance system before evaluating its performance.

5.1. Implementation for Performance Evaluation

To implement the smart vehicular camera device, we used a high-performance application processor

for image processing and a coprocessor for sensor data collection. In this study, we selected NVIDIA’s

Tegra Kepler1 AP and STM32 cortex microprocessors. To configure the smart camera device, we used

the NVIDIA Jetson development board based on the Tegra Kepler1 core and added an expansion board

having the STM32 core and sensors. Figure 5 shows the prototype of the smart vehicular camera.

Figure 5. Prototype of the smart vehicular camera device based on NVIDIA Jetson board

with the proposed extension board.

The extension board included the accelerator sensor module, GPS module, and CAN transceiver. The

GPS module provided the position information of the vehicle via the UART interface, and the

accelerometer, along with an analogue-to-digital converter, provided the acceleration data of the vehicle.

In addition, the CAN transceiver received commands from the extension board and read the sensor data

of the vehicle interior using the OBD-II protocol. The hardware specifications of the smart vehicular

camera are given in Table 4.

To make the best use of the resources of the AP for high-speed image processing, we implemented

the image recognition algorithm using parallel processing by the multicore CPU and many-core GPU.

We implemented task parallelism considering the Tegra Kepler1 processor, which contained four CPU cores.

Task parallelism is generally classified as functional separation or data separation. In functional

separation, tasks are mapped according to the function of the program executed in parallel. Data

separation refers to the mapping of different tasks according to the data required to perform the same

Sensors 2015, 15 20216

operation. To improve the performance of the image recognition algorithms with respect to functional

separation of the four recognition processes, we implemented a parallel processing program.

Table 4. Hardware specifications of smart vehicular camera.

Mainboard NVIDIA Jetson Tegra Kepler1
Microprocessor STM32F105
LTE module KMK-L200
GPS module GMMU1
Accelerator sensor LIS331DLH
CAN transceiver MCP2551
USB hub controller TUSB2046
Board size 127 mm × 127 mm × 35 mm

We implemented a recognition algorithm that required the operating system to have the scheduling

threads in parallel, assigning threads to each main function by applying the open-source library of

OpenMP. To improve the processing performance, detailed functions, such as pedestrian, license plate,

lane departure, and circular sign recognition were assigned to each of the GPU cores.

To perform license plate recognition, we allocated parts of the pyramid operation, such as image

upscaling and downscaling, to the GPUs. In particular, we allocated the interpolation and extrapolation

processes for performing the pyramid operation to the GPU cores, and the operating result was obtained

through a shared memory between the CPU and the GPU. Similarly, we allocated Sobel filtering,

obtaining the magnitude of a vector for Canny edge detection, and calculating the hysteresis for the

gradient classification to the GPU cores.

In pedestrian recognition, the functions dispersed to the GPU cores were the oriented gradient

calculation, histogram calculation, and SVM classifier. In lane departure and circular sign recognition,

the Hough transform to extract straight lines and circles was allocated to the GPU cores.

Thus, the functions were implemented with CUDA and parallel-processed by the GPU cores to

improve the performance. In addition, we set the maximum number of threads considering the characteristics

of the smart vehicular camera and assigned the threads to the tasks. We assigned 128 threads, which did not

exceed the 192 GPU cores of the NVIDIA Tegra Kepler1, and thus minimized the waiting threads, which

occur when the number of threads exceeds the number of GPU cores. The optimized program was

implemented on the smart vehicular camera device.

A prototype of a traffic information server was implemented to evaluate the performance of the

estimation of the traffic congestion degree. A server for collecting the information from vehicles sent

through a mobile communication network was implemented; it executed a function to estimate the

congestion degree of roads using the collected information.

5.2. Image Processing in the Vehicle Environment

The performance of the implemented smart vehicular camera was tested using the recorded driving

image sets. The 16 sample images were recorded using a conventional vehicular camera with a frame

rate of 24 fps, MPEG-4 compression, and WVGA resolution (800 × 480), and the length of each video

Sensors 2015, 15 20217

was 10 s. In other words, we evaluated the computation time and accuracy using 3840 frames. Figure 6

shows frames from the recorded driving image sets.

Figure 6. Twelve sample images recorded by a conventional vehicular camera and used for

the performance evaluation (24 fps, MPEG-4, WVGA, and 10 s).

We evaluated the processing power using the D-ROI method, DFS method, and parallel processing

implemented on the smart vehicle camera device. The ROI technique was used to evaluate the pedestrian

recognition and license plate recognition performance, and the DFS method and parallel processing were

evaluated for four-image recognition. The evaluation parameters were the image processing time and

accuracy. The image processing time was evaluated according to the availability of real-time operations

based on the cumulative run time, and the accuracy was evaluated on the basis of whole image processing

with respect to the ROI size change and number of frame skip changes.

Figure 7. Recognition processing time for the number of D-ROI frame.

First, we conducted a performance evaluation to select the optimal value of n in the D-ROI method

for each of the five sample images (pedestrian and license plate). Figure 7 shows the recognition

processing time according to the number of D-ROI frames. Table 5 shows the accuracy of the pedestrian

33.0

36.0

39.0

42.0

45.0

48.0

51.0

54.0

57.0

60.0

63.0

29.0

29.1

29.2

29.3

29.4

29.5

29.6

29.7

29.8

29.9

30.0

0 1 2 3 4 5 6 7 8 9 10

L
ic

en
se

 p
la

te
 P

ro
ce

ss
in

g
T

im
e

(s
)

P
ed

es
tr

ia
n

P
ro

ce
ss

in
g

T
im

e
(s

)

Number of D-ROI frame

Pedestrian
Recognition

Sensors 2015, 15 20218

and license plate recognition algorithms according to the number of D-ROI frames. Increase in n results

in the reduction of the processing time and accuracy. We have confirmed that the accuracy suffers

because the recognition algorithms often do not check the entire region when n increases. It is difficult

to determine the values, since the optimal value n depends on the conditions, such as the power level of

the processor, complexity of the algorithm, and quality of the input image. Therefore, we used an optimal

value based on the average of evaluation results, and other experiments were performed.

Table 5. Comparison of recognition accuracy for number of D-ROI frame n.

n
Pedestrian Recognition License Plate Recognition

image#1 image#2 image#3 image#4 image#5 image#6 image#7 image#8 image#9 image#10

0 95.28% 31.52% 95.00% 54.55% 43.66% 99.25% 77.08% 11.62% 59.49% 98.67%

1 87.74% 29.35% 81.67% 45.45% 39.44% 99.25% 77.08% 11.62% 59.49% 98.67%

2 87.74% 27.17% 86.67% 50.00% 40.85% 99.63% 76.67% 11.62% 59.49% 98.67%

3 79.25% 27.17% 76.67% 36.36% 45.07% 99.25% 77.08% 11.62% 59.24% 98.67%

4 83.96% 26.09% 81.67% 45.45% 39.44% 99.63% 77.08% 11.62% 59.24% 98.67%

5 85.85% 26.09% 80.00% 47.73% 40.85% 99.63% 77.08% 11.62% 59.24% 98.67%

6 85.85% 28.26% 75.00% 40.91% 42.25% 99.63% 77.08% 11.62% 59.24% 98.67%

7 81.13% 26.09% 81.67% 45.45% 43.66% 99.63% 77.08% 11.62% 59.24% 98.67%

8 81.13% 26.09% 81.67% 36.36% 40.85% 99.63% 77.08% 11.62% 59.24% 98.67%

9 87.74% 29.35% 88.33% 40.91% 43.66% 99.63% 77.08% 11.62% 59.24% 98.67%

10 83.02% 25.00% 80.00% 43.18% 42.25% 99.63% 77.08% 11.62% 59.24% 98.67%

Second, we evaluated the performance of the D-ROI method. Figure 8a,b show graphs comparing the

processing time according to the ROI size. The gray solid lines in the graphs are an upper bound to verify

the real time processing; thus, when image processing was performed in real time, the slope of the

cumulative processing time line was lower than the slope of the solid line.

Figure 8a shows the cumulative processing times of pedestrian recognition for several ROI sizes.

Compared with the result for the full frame obtained by processing the entire input image, the results of

the two considered methods show a higher throughput due to a reduced calculation region. In the

intervals of 4–6 s and 9–10 s, we found that the gradient of the result of the D-ROI was lower, as the

pedestrian was recognized in a previous frame, and the current processing region was reduced.

Figure 8b shows the cumulative processing time of vehicle license plate recognition with respect to

the ROI size. The D-ROI method showed a faster processing time than the full frame. It was slightly

faster than the S-ROI method for longer time duration. The processing time of the D-ROI was always

the shortest because the license plate always appeared in the sample image, and the D-ROI method was

applied consistently. Thus, the processing time of the S-ROI method was reduced compared to that of

full frame processing by considering part of the full frame, and the processing speed of the D-ROI

method was the fastest because the D-ROI was smaller than the S-ROI. However, it was difficult to

ensure real-time processing that always processed the minimized region.

We evaluated the processing performance of the four recognition algorithms by applying the D-ROI

method, frame skip method, and parallel processing. Figure 8c,d show the results of the performance

evaluation. Further, Figure 8c shows the effect of minimizing the computation load using the D-ROI and

Sensors 2015, 15 20219

DFS methods on the image recognition algorithm. The DFS method improved the processing

performance by reducing the number of frames processed.

Figure 8d compares the processing time of all the considered methods. The results reveal the shortest

processing time and confirm that real-time processing is possible. In other words, we confirmed that

real-time image processing could be performed using the proposed methods.

Figure 8. Evaluation of image processing in the vehicle environment using the proposed

methods, D-ROI, DFS, and parallel processing (PP). (a) Pedestrian recognition; (b) license

plate recognition, and comparisons of (c) computation load and (d) processing time for all

four algorithms. (D-ROI frame n = 5).

Table 6. Comparison of processing time for various combinations of proposed methods.

Combination of Methods Processing Time FPS

D-ROI + DFS + PP 7.81 30.73
D-ROI + DFS 13.43 17.87
D-ROI + PP 20.62 11.64
D-ROI + PP (GPU only) 21.29 11.27
D-ROI + PP (CPU only) 22.84 10.51
S-ROI + PP (GPU only) 36.69 6.54
D-ROI 27.04 8.88
S-ROI 42.88 5.60
Full + PP (GPU only) 93.27 2.57
Full 120.63 1.99

Table 6 shows the processing time and FPS for each of the methods and their combinations. When

the image recognition algorithm was executed for a full frame of about 10 s, the image processing time

Sensors 2015, 15 20220

was 120 s. However, when the proposed methods, D-ROI, DFS, and parallel processing, were applied,

the processing time was only 7 s.

Accuracy (ACC) is the proportion of true results (both true positives and true negatives) among the

total number of cases examined. Recall relates to the test’s ability to correctly detect patients who do

have a condition. Precision is defined as the proportion of the true positives against all the positive results

(both true positives and false positives).

We found experimentally that there was little or no change in the recognition accuracy when the

proposed methods were applied. Tables 7 and 8 show the accuracy, recall, and recognition precision of

the pedestrian and license plate recognition algorithms, respectively, for an image of about 240 frames.

These results showed that the accuracy did not change significantly for any image. In the comparison of

the S-ROI and D-ROI, despite the fact that narrowing of the ROI increased the accuracy of the D-ROI,

the target region for recognition was reduced when the false negative rate decreased. The accuracy of

the D-ROI and DFS methods increased, as these methods used information from the previous frame to

save time. That is, an image recognized in the previous frame determined the next skipped frame before

the consideration of a new frame for recognition. Therefore, the accuracy increased. It was useful that

the change in the recognition target between frames was subtle.

Table 7. Comparison of recognition accuracy, recall, and precision for the proposed methods

(pedestrian recognition).

Full-Size Frame S-ROI D-ROI D-ROI + DFS

ACC Recall Precision ACC Recall Precision ACC Recall Precision ACC Recall Precision

Image #1 0.71 0.53 1.00 0.71 0.53 1.00 0.72 0.43 1.00 0.77 0.58 1.00

Image #2 0.51 0.73 0.93 0.50 0.71 0.91 0.58 1.00 1.00 0.56 0.21 1.00

Image #3 0.97 0.43 0.97 0.96 0.43 0.97 0.96 0.44 1.00 0.97 0.45 1.00

Image #4 0.92 0.57 0.81 0.91 0.57 0.81 0.94 0.23 1.00 0.93 0.38 1.00

Image #5 0.74 0.05 0.83 0.74 0.04 0.83 0.77 0.16 0.81 0.78 0.20 0.81

Average 0.77 0.46 0.91 0.76 0.46 0.90 0.79 0.45 0.96 0.80 0.36 0.96

Table 8. Comparison of recognition accuracy, recall, and precision for the proposed methods

(license plate recognition).

Full-size Frame S-ROI D-ROI D-ROI + DFS

ACC Recall Precision ACC Recall Precision ACC Recall Precision ACC Recall Precision

Image #6 0.63 0.63 1.00 0.63 0.63 1.00 0.46 0.50 1.00 1.00 1.00 1.00

Image #7 0.76 0.73 1.00 0.76 0.73 1.00 0.76 0.75 1.00 0.76 0.75 1.00

Image #8 0.09 0.09 1.00 0.09 0.09 1.00 0.07 0.09 1.00 0.14 0.17 1.00

Image #9 0.92 0.92 1.00 0.92 0.92 1.00 0.92 0.92 1.00 0.91 0.90 1.00

Image #10 0.90 0.86 1.00 0.90 0.86 1.00 0.90 0.86 1.00 0.90 0.82 1.00

Average 0.66 0.64 1.00 0.66 0.64 1.00 0.62 0.62 1.00 0.74 0.72 1.00

5.3. Estimating Traffic Congestion

We experimentally evaluated the proposed model of estimating the traffic congestion degree. When

the proposed model estimated the congestion degree, we determined the estimation error by comparing

the estimated results with the GT of the congestion degree according to the changes in the parameter values.

Sensors 2015, 15 20221

We evaluated 16 sample images recorded using a conventional vehicular camera: eight traffic

congestion images and eight light traffic images. As with the conventional evaluation conditions, each

image had a frame rate of 24 fps, MPEG-4 compression format, and WVGA resolution, and the length

of each video was approximately 10 s. We defined the road conditions using Average Annual Daily

Travel (AADT). The term traffic count is used to refer to an AADT, which is the annualized average 24-h

volume of vehicles at a given point or section of highway. It is normally expressed as the ratio of the

volume of vehicles during a given period to the number of days in that period. The light traffic condition

is a vehicle count less than 50,000, and the traffic congestion condition is a vehicle count greater than 50,000.

The traffic congestion images, we used six highway images and six urban images; the speed limit on

the highway was assumed to be 100 km/h, and the speed limit in the urban areas was assumed to be 60 km/h.

For the light traffic images, we used only highway images. We determined the error of the estimated

value by comparing the GT value and the estimated traffic congestion value.

To determine the error rate with respect to the proposed scoring functions, the performance evaluation

of the proposed traffic congestion estimation model combined simple and improved scoring functions.

For estimating the congestion degree when the proposed model was used, we required the scoring

functions and the weight values. In the experiment, we set the weight values at a ratio of about 2:1:1.

We performed experiments for a congested road and a light traffic road. For the light traffic road, it

was difficult to recognize vehicles that were too far away. Therefore, only two functions, namely, the

speed and neighboring vehicle scoring functions were used in the test. Figure 9a compares the

cumulative error for the scoring functions for the congested road. In this figure, all the functions with

improved scoring functions exhibit the best performance, as the function resolutions are set according

to the features of each entry.

For the light traffic road, as shown in Figure 9b, we observed slight differences among all the results

except those obtained when the improved scoring functions for speed and neighboring vehicles were

applied. In contrast to the congested case, the vehicle speed was very fast, and the number of neighboring

vehicles was too small. Thus, we found that the result was small irrespective of the type of scoring

function. Table 9 summarizes the average error value according to the combination of the scoring

function types. The experimental results demonstrated that the improved scoring functions operated

correctly irrespective of the road conditions.

Further, we performed an experiment to determine the optimal weight values for the proposed traffic

congestion estimation model. In this experiment, we measured the cumulative error by changing the

three weight values and road conditions. We set up various test combinations, such as a combination of

the same weight values and one using an additional weight along with an existing weight value.

Figures 9c,d compare the cumulative errors according to the combinations of weight values. For the

congested road, a higher weight was set for the intervehicle distance that showed the best performance.

Under this road condition, the variations in the vehicle speed and number of neighboring vehicles were

small. In contrast, the intervehicle distance was highly likely to change dynamically. Thus, the estimated

traffic congestion degree value was similar to the GT value when a higher weight value was applied to

the intervehicle distance. In a comparison of the speed-oriented weight and neighboring-vehicle-oriented

weight, the number of neighboring vehicles was a more important factor affecting road congestion than

the vehicle speed.

Sensors 2015, 15 20222

Figure 9. Cumulative error for various combinations of scoring functions (a,b) and weight

values (c,d). ((a,c) Congested traffic, (b,d) light traffic.)

Table 9. Average error rate for combinations of scoring functions under the congestion and

light traffic conditions.

Combination of Scoring

Functions

Congestion Light Traffic

Ave. Std. Ave. Std.

I(NV) + S(dist, speed) 0.158 0.056 0.207 0.105

I(dist, NV) + S(speed) 0.090 0.066 0.166 0.097

I(NV, speed) + S(dist) 0.197 0.119 0.173 0.105

I(NV) + S(dist, speed) 0.148 0.100 0.086 0.065

I(speed) + S(dist, NV) 0.262 0.184 0.207 0.105

I(dist) + S(NV, speed) 0.107 0.045 0.090 0.061

S(dist, NV, speed) 0.206 0.172 0.090 0.061

I(dist, NV, speed) 0.051 0.061 0.089 0.061

Among the experimental results obtained under the light traffic condition, that obtained using a

balanced weight was the best, and that obtained using a speed-oriented weight exhibited acceptable

performance. Under this road condition, the vehicle speeds changed frequently, the intervehicle

distances varied considerably, and the variation in the number of neighboring vehicles was dynamic.

Therefore, the use of an appropriate balanced weight for the vehicle speed and number of neighboring

vehicles yielded a low cumulative error. The vehicle speed was a more important parameter for the

estimation of the congestion degree, as the variation in the number of neighboring vehicles was small in

Sensors 2015, 15 20223

the test images used in the experiment. Thus, the use of a speed-oriented weight yielded better

performance than the use of a neighboring-vehicle-oriented weight.

Under the light traffic condition, the vehicle recognition success rate was low because the intervehicle

distance was large. In contrast to the congested road condition, under this condition, the estimation

performance deteriorated when an intervehicle-distance-oriented weight was used.

The detailed results of each experiment are shown in Table 10. On the basis of these experimental

results, we confirmed that the use of a balanced weight under the light road condition and that

of an intervehicle-distance-oriented weight under the congested road condition yielded good

estimation performance.

Table 10. Average error rate for combinations of weight values under the congested and

light traffic conditions.

Combination of Weight Values
Congestion Light Traffic

Ave. Std. Ave. Std.

Balanced 0.083 0.050 0.083 0.072
Distance-oriented 0.053 0.057 0.087 0.061

Speed-oriented 0.114 0.069 0.081 0.059
NV-oriented 0.086 0.045 0.162 0.093

Proposed 0.051 0.061 0.089 0.061

Considering both road conditions, we found that the proposed weight was similar to the

intervehicle-distance-oriented weight with an approximately 5% total error rate, which was similar to the

total error rate of the balanced weight. However, the traffic congestion degree should be estimated

accurately under the congested road condition. Therefore, the proposed weight was found to be the most

suitable for estimating the traffic congestion degree.

6. Related Works

6.1. Advanced Driver Assistance Systems

An ADAS is a vehicular device that recognizes several conditions, such as the vehicle status, driver’s

condition, and environmental status to reduce the driver’s burden and enhance his/her convenience.

Unlike an active safety system, which prevents a crash or reduces injury to the driver before and after a

crash, an ADAS provides safety and convenience by assisting the driver during normal driving [28]. To

enable such systems to provide a variety of information, many researchers are developing a technique

for continuous recognition of images from a camera.

The key functions of an ADAS are to recognize road conditions, such as pedestrians, lane departure,

traffic lights, and traffic signs. The use of ADASs with these functions is likely to continue to increase

because of changes in the social structure and regulatory strengthening. Consumer demand for these

systems is increasing continuously, and technological developments and mass production are reducing

the production cost of these systems. Therefore, the ADAS market is expected to grow by an annual

average of 25% by 2017 [29].

Sensors 2015, 15 20224

6.2. Pedestrian Recognition

Of the many functions of ADASs, pedestrian recognition has been widely studied, and several

algorithms for this purpose have been developed [30,31]. The widely and readily available methods

include those using the object recognition method of Viola and Jones [32] and the pedestrian recognition

method of Dalal and Triggs [25]. It is possible to recognize pedestrians using Haar-like features and the

AdaBoost classification algorithm of Viola and Jones in a relatively small window size of 14 × 28.

The method developed by Dalal and Triggs [25] may recognize a pedestrian via an SVM classification

based on the histogram of the oriented gradient (HOG). These two methods can be easily used via the

OpenCV library. MULTIFTR [33] showed how a combination of Haar-like features, shapelets, shape

context, and HOG features outperforms any individual feature. HOGLBP [34] combined a texture

descriptor based on local binary patterns (LBP) with HOG. Fastest Pedestrian Detector in the West

(FPDW) [35] was extended to fast multiscale detection. The algorithm was demonstrated how feature

computed at a single scale can be used to approximate feature at nearby scales.

FTRMINE [36] explores possibly infinite feature spaces using various strategies including steepest

descent search prior to training a boosted classifier. FEATSYNTH [37] were improved by FTRMINE,

the algorithm presented a scheme for combining and synthesizing a rich family of part based features.

POSEINV [38] used a part-template structure to model a pedestrian parts, such as the head, body with

arms and legs, and extracted HOG appearance descriptors along the local part’s outline. Table 11 shows

the comparison of pedestrian recognition algorithms [39].

Table 11. Comparison of pedestrian recognition algorithms.

 HOG MULTIFTR HOGLBP FPDW FTRMINE FEATSYNTH POSEINV

Features

gradient

histogram
√ √ √ √ √ √ √

gradients √ √

grayscale √ √ √

color √ √

texture √ √

Learning classifier
Linear

SVM
AdaBoost

Linear

SVM
AdaBoost AdaBoost

Linear

SVM
AdaBoost

Recognition
Details

window

height
96 96 96 100 100 96 96

scales ~14 ~14 14 10 4 - ~18

fps 0.239 0.072 0.062 6.492 0.080 - 0.474

miss rate 68% 68% 68% 57% 74% 60% 86%

Implement
training

data
INRIA

In addition to these pedestrian recognition techniques, research on a fusion of several computer vision

techniques and ADASs has been actively conducted [28]. Raphael et al. [40] proposed a method of

preventing collisions using vehicle recognition, and Guo et al. [41] proposed road recognition techniques

for conflict prevention, lane departure prevention, and cruise control.

Sensors 2015, 15 20225

6.3. License Plate Recognition

License plate recognition is important that can be recognizing neighbor vehicles and estimating

vehicle-to-vehicle distance. Hongliang et al. [42] demonstrated a hybrid license plate extraction

algorithm based on edge statistics and morphology for highway ticketing systems. This algorithm

consists of the following four sections: vertical edge detection, edge statistical analysis, hierarchical-based

LP location, and morphology-based LP extraction. Kim et al. [43] employed the vertical edges of a

vehicle image, applied by image enhancement and a Sobel operator. The algorithm removes most of the

background and noise edges, and searches for a license plate using a rectangular window.

Comelli et al. [44] presented the RITA system for the identification of vehicular license plates. The

license plate location module of the RITA system was based on the structure of the Italian license plate,

which is rectangular and contains a white background with black characters. Thus, the algorithm selects

the license plate area that demonstrates the maximum local contrast that corresponds to the rectangle

that contains the license plate. Draghici et al. [45] used horizontal scanning of the image to search for

the license plate location. The algorithm set the assumptions that the contrast between the background

and the characters of the license plate is fine and that there are at least three or four characters on the

plate. Anagnostopoulos et al. [46] presented an adaptive image segmentation technique of sliding

concentric windows (SCW), which is considered for license plate location. The SCW method was

demonstrated to describe the local irregularity in the image. The method uses image statistics values,

such as the standard deviation and the mean as a heuristic, to search possible license plate location.

In Cao et al. [47], the basic idea of recognition algorithm is that the color combination of a background

and character is unique, and this combination occurs almost in a license plate region. In Zimic et al. [48],

The concepts of brightness and darkness, which are demonstrated in the algorithm, are described as a

fuzzy set with membership functions on the interval [0, 255], where the black represents 0, and the white

represents 255 in a gray scale. In Chang et al. [49], their approach uses an edge detector sensitive to only

three kinds of edges, black–white, green–white, and red–white, as this algorithm focuses on Korean

license plates. Thus, the method generates an initial edge image in which all other color tones are

eliminated. Table 12 show the comparison of license plate recognition algorithms.

Table 12. Comparison of license plate recognition algorithms.

 Processing Method Minimum Plate Size
Recognition

Success Rate

Hongliang et al. Binary Edge statistics 65 × 20 99.6%

Kim et al. Binary Sobel operation 65 × 20 96.5%

Comelli et al. Gray-level Global Image Processing 100 × 25 84.2%

Draghici et al. Gray-level Global Image Processing 100 × 25 98.5%

Anagnostopoulos et al. Gray-level Region segmentation 61 × 20 87.8%

Cao et al. Color Model transformation 41 × 13 100%

Zimic et al. Color Fuzzy set theory 120 × 35 97.0%

Chang et al. Color Fuzzy set theory 80 × 45 97.6%

Sensors 2015, 15 20226

Further, license plate recognition and image recognition methods are now widely used. License plate

recognition is used for various applications, such as illegal parking crackdown, number recognition for

speeding cars, and checking out vehicles [50].

6.4. Intelligent Transportation Systems

An Intelligent Transportation Systems (ITS) provides traffic information and services by

incorporating IT technologies into transportation facilities; further, ITSs improve the efficiency and

reliability of public transport. ITSs are used in a variety of areas, including traffic management

optimization, electronic payment processing, traffic information distribution activation, providing

advanced traveller information, transit activation, realizing efficient freight, and providing high-tech

roads and vehicles [51].

The primary purpose of ITSs is to avoid traffic congestion, which can be realized by providing real-time

traffic information and detour routes. This is most closely related to traffic management optimization.

7. Discussion

7.1. Computer Vision-Based Pedestrian and License Plate Recognition

In the paper, we use a basic HOG algorithm for pedestrian recognition and a modified Kim’s

algorithm for license plate recognition. To apply the methods for minimizing the computational load,

we implemented the smart vehicular camera using the open source library (OpenCV), for convenient

implementation, and conducted a performance evaluation. Many researchers have studied computer

vision-based algorithms for pedestrian and license plate recognition. Those algorithms featured a trade-off

between processing speed and accuracy. Therefore, we will undertake future work to improve processing

speed and recognition accuracy by applying various algorithms.

7.2. Recognition Accuracy Based on Weather Conditions

The proposed smart vehicular camera used the image recognition library powered by OpenCV. The

library has a training data set (INRIA) to operate only in fine weather conditions (sunny days). Thus, the

recognition results can vary depending on weather conditions. To solve this problem, we use the training

data in a variety of environments or the contextual training data for each situation. To use the contextual

training data, the device requires a method to recognize weather conditions by a means other than the

computer vision algorithm. Therefore, many studies are required to implement the available system in a

variety of environments.

7.3. Optimal Value of N Frames for D-ROI Method

The proposed D-ROI method has a trade-off between processing speed and accuracy. When the

number of D-ROI processing frames is increased, the recognition accuracy decreases, even though the

processing speed of the recognition algorithm is high. We select the optimal value of n by considering

the number of input images and the FPS value according to the image size.

Sensors 2015, 15 20227

7.4. Precision of Traffic Congestion Estimation

The actual and predicted traffic conditions may be different based on many variables. The proposed

method estimates traffic conditions by recognized information, such as vehicle-to-vehicle distance,

vehicle speed, and number of neighboring vehicles. However, the actual and predicted conditions can

vary significantly depending on the number of lanes, traffic signal status, construction, and occurrence

of accidents on the road. When the proposed smart vehicular camera is used in conjunction with such

data, it would be possible to estimate better traffic conditions. These methods will be applied in future works.

8. Conclusions

A smart driver assistance system can provide a wide variety of status information using image

processing and differs from the simple sensors of ADASs. Further, ADASs use the information obtained

by various sensors attached to the vehicle and pass this information through a network in order to offer

information to the driver or for vehicle control. A real-time traffic information system can estimate the

traffic information for a road using the information collected and help the driver to drive safely on that road.

In this study, we designed and implemented a real-time traffic information system that uses a smart

camera device with image processing and network capabilities for application in smart driver assistance

systems. For image processing, we designed D-ROI and DFS techniques to solve hardware performance

problems. We implemented a parallel-processing-based smart camera vehicular application for efficient

operation of the smart vehicle camera device and evaluated its performance. In addition, we proposed a

traffic estimation model for providing the driver with real-time road traffic information on the basis of

the collected information.

We evaluated the image recognition performance and found that the proposed methods improved the

processing time by 1.58 times compared to that of the S-ROI and D-ROI methods. We found that

applying the D-ROI method improved the processing time by 2.01 times compared to that obtained by

applying the DFS method. In addition, we found that the processing time improved by 1.71 times when

the proposed application was implemented by applying parallel processing. Finally, we found that the

processing time improved by 15.4 times when all the proposed methods were applied in the application.

We confirmed that four image recognition methods can be executed in real time. Moreover, we found,

experimentally, that there was little or no change in the recognition accuracy when the proposed methods

were used.

A performance evaluation of the proposed traffic congestion estimation model to provide real-time

traffic information showed that the average error rate of the improved scoring functions was 2.11% under

the congested road condition. This error rate was 50% smaller than that obtained when the simple scoring

functions were used. Under the light traffic condition, we found that it was difficult to use the intervehicle

distance information and that the proposed estimation model showed an average error of 8.50%.

Moreover, we found that the average error rate of the proposed model was 5.3%.

Acknowledgments

This work was supported by the Center for Integrated Smart Sensors funded by the Ministry of

Science, ICT and Future Planning as Global Frontier Project (CISS-2011-0031863).

Sensors 2015, 15 20228

This work was supported by BK21PLUS, Creative Human Resource Development Program for

IT Convergence.

Author Contributions

Son, S. and Beak, Y. conceived and designed the experiments; Son, S. performed the experiments;

Son, S. analyzed the data; Son, S. contributed reagents/materials/analysis tools; Son, S. wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Corona, D.; de Schutter, B. Adaptive Cruise Control for a SMART Car: A Comparison Benchmark

for MPC-PWA Control Methods. Trans. Control Syst. Technol. 2008, 16, 365–372.

2. Klauer, S.G.; Dingus, T.A.; Neale, V.L.; Sudweks, J.D.; Ramsey, D.J. The Impact of Driver

Inattention on Near-Crash/Crash Risk: An Analysis using the 10-Car Naturalistic Driving Study

Data; Technical Report for National Technical Information: Alexandria, VA, USA, April 2006.

3. Borhade, S.; Jadhav, P.; Rajurkar, D.; Bhor, A. Advanced Driver Assistance System. In Proceedings

of the International Conference on Sensing Technology, Kolkata, India, 18–21 December 2012;

pp. 718–722.

4. Burns, L.D. A Vision of our Transport Future. Nature 2013, 497, 181–182.

5. Mobileye Home Page. Available online: http://www.mobileye.com/ (accessed on 5 June 2015).

6. Wu, S.L.; Tseng, Y.C. Wireless Ad Hoc Networking; Auerbach Publications: Florida, FL, USA, 2007.

7. Information Technology—Telecommunications and Information Exchange between Systems—Local

and Metropolitan Area Networks—Specific Requirements, IEEE Standard 802.11p; IEEE:

New York, NY, USA, 2010.

8. Wireless Access in Vehicular Environments (WAVE)-Networking Services, IEEE Standard 1609.3;

IEEE: New York, NY, USA, 2010.

9. Family of Standards for Wireless Access in Vehicular Environments (WAVE), IEEE Standard 1609;

IEEE: New York, NY, USA, April 2013.

10. Traveller Information Services Association (TISA). TPEG—What is It All about? TISA Guideline;

TISA: Brussels, Belgium, January 2014.

11. OpenCV Home Page. Available online: http://opencv.org/ (accessed on 5 June 2015).

12. Khronos Group’s OpenCL Information. Available online: https://www.khronos.org/opencl/

(accessed on 5 June 2015).

13. NVIDIA’s CUDA Information. Available online: http://www.nvidia.com/object/cuda_home_new.html

(accessed on 5 June 2015).

14. Wang, G.; Xiong, Y.; Yun, J.; Cavallaro, J.R. Accelerating Computer Vision Algorithms Using

OpenCL Framework on the Mobile GPI—A Case Study. In Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013;

pp. 2629–2633.

Sensors 2015, 15 20229

15. Du, P.; Weber, R.; Luszczek, P.; Tomov, S.; Peterson, G.; Dongarra, J. From CUDA to OpenCL:

Towards a Performance-Portable Solution for Multi-platform GPU Programming. Parallel Comput. J.

2012, 38, 391–407.

16. Diagnostic Connector Equivalent to ISO/DIS 15031, SAE J1962. Available online: http://

standards.sae.org/j1962_201207/ (accessed on 5 June 2015)

17. Road Vehicles—Diagnostic Communication over Controller Area Network (DoCAN)—Part 2:

Transport Protocol and Network Layer Services, ISO 15765-2; ISO: Geneva, Switzerland,

November 2011.

18. SAE J1979: E/E Diagnostic Test Modes. Available online: http://standards.sae.org/ j1979_201202/

(accessed on 5 June 2015).

19. NVIDIA Jetson TK1 Development Kit Information. Available online: https://developer.nvidia.com/

jetson-tk1 (accessed on 5 June 2015).

20. ST Microelectronics Home Page. Available online: http://www.st.com (accessed on 5 June 2015).

21. Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-Time Computer Vision with OpenCV.

Commun. ACM 2012, 55, 61–69.

22. Singhal, N.; Park, I.K.; Cho, S. Implementation and Optimization of Image Processing Algorithms

on Handheld GPU. In Proceedings of IEEE International Conference on Image Processing, Orlando,

FL, USA, 30 September–3 October 2012; pp. 4481–4484.

23. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU Computing.

IEEE Proc. 2008, 96, 879–899.

24. OpenMP Home Page. Available online: http://openmp.org/ (accessed on 5 June 2015).

25. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA,

USA, 20–26 June 2005; pp. 886–893.

26. Canny, J. A Computational Approach to Edge Detection. Trans. Pattern Anal. Mach. Intell. 1986,

8, 679–698.

27. Yim, Y.U.; Oh, S.Y. Three-Feature Based Automatic Lane Detection Algorithm (TFALDA) for

Autonomous Driving. Trans. Intell. Transp. Syst. 2003, 4, 219–225.

28. Geronimo, D.; Lopez, A.M.; Sappa, A.D.; Graf, T. Survey of Pedestrian Detection for Advanced

Driver Assistance Systems. Trans. Pattern Anal. Mach. Intell. 2010, 32, 1239–1258.

29. Research and Markets: Global Advanced Driver Assistance Systems Market 2012–2016. Available

online: http://www.researchandmarkets.com/research/m7kld9/global_advanced/ (accessed on

5 June 2015).

30. Kim, K.; Lee, D.; Essa, I. Detecting Regions of Interest in Dynamic Scenes with Camera Motions.

In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1258–1265.

31. Prioletti, A.; Møgelmose, A.; Grisleri, P.; Trivedi, M.M.; Broggi, A.; Moeslund, T.B. Part-based

Pedestrian Detection and Feature-based Tracking for Driver Assistance: Real-Time, Robust

Algorithms, and Evaluation. Trans. Intell. Transp. Syst. 2013, 14, 1346–1359.

32. Viola, P.; Jones, M.J. Rapid Object Detection Using a Boosted Cascade of Simple Features. In

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

Kauai, HI, USA, 8–14 December 2001.

Sensors 2015, 15 20230

33. Wojek, C.; Schiele, B. A Performance Evaluation of Single and Multi-feature People Detection. In

Pattern Recognition; Springer Berlin Heidelberg: Munich, Germany, 2008; pp. 82–91.

34. Wang, X.; Han, T.X.; Yan, S. An HOG-LBP Human Detector with Partial Occlusion Handling. In

Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan,

29 September–2 October 2009; pp. 32–39.

35. Dollár, P.; Belongie, S.; Perona, P. The Fastest Pedestrian Detector in the West. In Proceedings of

the British Machine Vision Conference, Aberystwyth, Wales, UK, 31 August–3 September 2010.

36. Dollár, P.; Tu, Z.; Tao, H.; Belongie, S. Feature Mining for Image Classification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22

June 2007; pp. 1–8.

37. Bar-Hillel, A.; Levi, D.; Krupka, E.; Goldberg, C. Part-based Feature Synthesis for Human

Detection. In Computer Vision–ECCV 2010; Springer Berlin Heidelberg: Heraklion, Greece, 2010;

pp. 127–142.

38. Lin, Z.; Davis, L.S. A Pose-invariant Descriptor for Human Detection and Segmentation. In

Computer Vision–ECCV 2008; Springer Berlin Heidelberg: Marseille, France, 2008; pp. 423–436.

39. Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of

the Art. Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761.

40. Raphael, E.; Kiefer, R.; Reisman, P.; Hayon, G. Development of a Camera-based Forward Collision

Alert System. SAE Int. J. Passeng. Cars Mech. Syst. 2011, 4, 467–478.

41. Guo, C.; Meguro, J.; Kojima, Y.; Naito, T. CADAS: A Multimodal Advanced Driver Assistance

System for Normal Urban Streets Based on Road Context Understanding. In Proceedings of the

IEEE Intelligent Vehicles Symposium, Gold Coast City, Australia, 23–26 June 2013; pp. 228–235.

42. Bai, H.L.; Liu, C.P. A Hybrid License Plate Extraction Method Based on Edge Statistics and

Morphology. In Proceedings of the 17th International Conference on Pattern Recognition,

Cambridge, UK, 23–26 August 2004; pp. 831–834.

43. Kim, S.; Kim, D.; Ryu, Y.; Kim, G. A Robust License-plate Extraction Method under Complex

Image Conditions. In Proceedings of the 16th International Conference on Pattern Recognition,

Quebec, QC, Canada, 11–15 August 2002; pp. 216–219.

44. Comelli, P.; Ferragina, P.; Granieri, M.N.; Stabile, F. Optical Recognition of Motor Vehicle License

Plates. Trans. Veh. Technol. 1995, 44, 790–799.

45. Draghici, S. A Neural Network Based Artificial Vision System for License Plate Recognition.

Int. J. Neural Syst. 1997, 8, 113–126.

46. Anagnostopoulos, C.N.E.; Anagnostopoulos, I.E.; Loumos, V.; Kayafas, E. A License Plate-recognition

Algorithm for Intelligent Transportation System Applications. Trans. Intell. Transp. Syst. 2006, 7,

377–392.

47. Cao, G.; Chen, J.; Jiang, J. An Adaptive Approach to Vehicle License Plate Localization. In

Proceedings of the 29th Annual Conference on the IEEE Industrial Electronics Society, Roanoke,

VA, USA, 2–6 November 2003; pp. 1786–1791.

48. Zimic, N.; Ficzko, J.; Mraz, M.; Virant, J. The Fuzzy Logic Approach to the Car Number Plate

Locating Problem. In Proceedings of the Intelligent Information Systems, Grand Bahama Island,

Commonwealth of The Bahamas, 8–10 December 1997; pp. 227–230.

Sensors 2015, 15 20231

49. Chang, S.L.; Chen, L.S.; Chung, Y.C.; Chen, S.W. Automatic License Plate Recognition.

Trans. Intell. Transp. Syst. 2004, 5, 42–53.

50. Sirithinaphong, T.; Chamnongthai, K. The Recognition of Car License Plate for Automatic Parking

System. In Proceedings of 5th International Symposium on Signal Processing and Its Applications,

Brisbane, Australia, 2009; pp. 455–457.

51. US Department of Transportation, Intelligent Transportation Systems Joint Program Office

Information. Available online: http://www.its.dot.gov (accessed on 5 June 2015).

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

