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Abstract: As society has developed, the number of vehicles has increased and road 

conditions have become complicated, increasing the risk of crashes. Therefore, a service that 

provides safe vehicle control and various types of information to the driver is urgently 

needed. In this study, we designed and implemented a real-time traffic information system 

and a smart camera device for smart driver assistance systems. We selected a commercial 

device for the smart driver assistance systems, and applied a computer vision algorithm to 

perform image recognition. For application to the dynamic region of interest, dynamic frame 

skip methods were implemented to perform parallel processing in order to enable real-time 

operation. In addition, we designed and implemented a model to estimate congestion by 

analyzing traffic information. The performance of the proposed method was evaluated using 

images of a real road environment. We found that the processing time improved by 15.4 

times when all the proposed methods were applied in the application. Further, we found 

experimentally that there was little or no change in the recognition accuracy when the 

proposed method was applied. Using the traffic congestion estimation model, we also found 

that the average error rate of the proposed model was 5.3%. 

Keywords: computer vision; vehicle recognition; road traffic; vehicular network; real-time 

traffic estimation 
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1. Introduction 

Owing to the development of semiconductor and mobile communication technology, smart vehicular 

technologies that enable safety management and provide certain information to a driver using  

high-performance sensors and wireless communication devices in a heavy-traffic environment is an 

active area of research [1]. The number of vehicles has increased and road conditions have become 

complicated, increasing the risk of crashes [2]. Therefore, a system that provides safe vehicle control 

and various types of information to the driver is urgently needed. 

Conventional vehicular camera systems, which record vehicle driving information in order to reveal 

the causes of crashes, and the advanced driver assistance system (ADAS), which facilitates driver 

comfort and vehicular safety, are typical examples. Further, smartphone technologies have evolved 

rapidly, e.g., the fast-paced, low-cost technologies associated with the development of embedded 

processors, image sensors, and global positioning system (GPS) sensors. As the development of these 

small devices is facilitated, many laboratories and vehicular navigation companies are actively pursuing 

the development of a conventional vehicular camera system. In addition, the study of ADASs [3,4] using 

various sensors and image information is stepping up research and development owing to the high 

performance of the various sensors considered thus far. 

Although ADASs were initially studied in terms of driver convenience, these systems have recently 

been improved to provide safety services, such as alerts regarding lane departure and direct vehicular 

control. The German automotive powerhouses and relevant support agencies, such as the Technical 

Monitoring Association, Automobile Association, and Automobile Manufacturers Association, have 

been studying the effects of a variety of ADASs. 

Many researchers have studied security services, such as traffic sign recognition, lane keeping, 

parking aids, and emergency braking. Industrialized countries have already performed the duties of such  

safety-related systems. An ADAS recognizes a vehicle’s surroundings using various sensors. However, 

ADASs have problems with low accuracy and limited types of measurable objects. 

An ADAS is equipped with various radars and IR sensors to recognize various situations. There is 

increasing need for an image recognition sensor that can collect and utilize information about specific 

road conditions by using the image data recorded by a camera to maximize the utilization of the limited 

sensor information. Thus, research using computer vision techniques, such as pedestrian recognition and 

license plate and traffic sign recognition, is in progress. For example, Mobileye ADAS products [5] in 

Israel are equipped with system-on-chip hardware for image recognition. It is possible to determine the 

surrounding information by collecting image data from cameras attached to the front and rear of a 

vehicle. In addition, IT companies, such as Google and Apple, are performing on-going automatic 

driving technology research and development, and automobile manufacturing companies, such as 

Bayerishe Motoren Werke (BMW), Ford, General Motors (GM), Toyota, and Volkswagen (VW) are 

performing on-going research on ADAS technology. 

For infrastructure-to-vehicle and vehicle-to-vehicle communication, researchers are developing 

technology for exchanging information by interradio communication. Among the in-vehicle network 

technologies currently in use, dedicated short-range communication (DSRC) is preferred in Korea. 

DSRC has a problem in that a connection with an external network cannot be established. Utilization of 

mobile communication networks is limited because of the associated fees. A related study based on 
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wireless sensor networks or ad hoc networks is in progress [6], and the related standards for wireless 

access in a vehicular environment [7–9] are being established by the IEEE. However, it is difficult to apply 

an ad-hoc-network-based technology because of the absence of commercial IEEE 802.11p products and 

poor communication performance with respect to the degree of data dissemination by the device. 

Traffic management technologies include intelligent transportation systems (ITSs) and transport 

protocol expert groups (TPEGs) [10]. ITSs will improve the efficiency and safety of traffic control by 

applying state-of-the-art technologies, such as electronic control and communication, to on-going traffic. 

Examples of ITSs that can be used in the real world include bus arrival information systems, automatic 

intersection signals, and real-time traffic information services provided by navigation systems. In Korea, 

TPEGs are used mainly for providing real-time traffic information to a vehicle navigation system.  

A TPEG is a protocol that provides real-time traffic and travel information through digital multimedia 

broadcasting. Conventional traffic management techniques determine the traffic conditions using  

closed-circuit televisions installed along the roads for the collection of traffic information, or by 

measuring the time required for a vehicle to pass a specific point. Conventional collection methods have 

a problem in that information collection is available only in limited areas. 

A driver assistance system collects sensor data using the vehicle’s sensors. This system provides the 

driver with information on the area around the vehicle and uses road information for vehicle control. 

However, the sensors collect only limited types of road information. To address this limitation, the 

proposed device can collect various types of information to analyze camera images. In addition, the 

collected road information is available for use only to the collecting vehicle. Thus, a real-time traffic 

information system is needed that can gather road information from vehicles and provide traffic 

information to other vehicles using a mobile cellular network. 

In this paper, we designed a smart driver assistance system based on image recognition and a mobile 

network, and we implemented the system to evaluate its performance. In addition, we designed and 

implemented a real-time traffic information system. We defined the smart driver assistance system and 

proposed methods of overcoming low image recognition throughput. In addition, we proposed a traffic 

analysis model that uses the collected road information from a vehicle’s sensor data. We performed 

several experiments to evaluate the image recognition throughput and traffic estimation performance.  

2. Smart Vehicular Camera 

With the rapid evolution of mobile platform technology, the components of mobile devices, such as 

embedded processors, image sensors, gyro sensors, and GPS modules, are becoming cheaper. The 

proposed smart driver assistance system consists of a smart vehicular camera device and a real-time 

traffic information system. First, we developed a smart vehicular camera platform. The proposed 

platform requires high-speed camera interfaces to forward images to a processor, network interfaces to 

communicate with the traffic service server, and parallel processing capability to recognize input images. 

2.1. Hardware Design  

To select an embedded processor for the smart camera platform, we performed an image recognition 

test using development boards. We tested four development boards, including the Samsung Exynos  
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core and the NVIDIA Tegra core. Table 1 shows the detailed specifications of each of these four  

development boards.  

Table 1. Comparison of development board specifications. 

 Arndale Exynos 5 ODROID-X2 ODROID-XU JETSON 

CPU 

Exynos 5420 Octa  

Cortex™-A15  

1.7 GHz quad,  

Cortex™-A7 quad 

Exynos 4412 Quad  

Cortex™-A9  

1.7 GHz quad 

Exynos 5410 Octa  

Cortex™-A15  

1.6 GHz quad,  

Cortex™-A7 quad 

Tegra Kepler1  

4-plus-1  

Cortex™-A15  

2.3 GHz 

GPU Mali-T628 Mali-400 MP40 PowerVR SGX544MP3 Kepler GPU with 192 CUDA 

RAM 1 GB LPDDR3 2 GB LPDDR2 2 GB LPDDR3 2 GB LPDDR3 

Storage SDMMC4 SDMMC4 SDMMC4 16 GB fast eMMC4 

Power 5 V/4 A DC 5 V/2 A DC 5 V/4 A DC 12 V/5 A DC 

We evaluated the image processing performance of the development boards using the pedestrian 

recognition open computer vision (OpenCV) library [11] in the Ubuntu Linux environment. The input 

video stream for the test is a real road movie recorded using a conventional vehicular camera attached 

to the test vehicle. The pedestrian recognition parameters are given in Table 2. 

Table 2. Pedestrian recognition parameters. 

Parameter Value 

Library (algorithm) OpenCV 2.4.9 (HOG) 

Input image size WVGA (800 × 480) 

Size of detection windows 48 × 96 

Scale 1.05 

Level 13 

Hit threshold 1.4 

Stride 8 pixels 

Table 3 compares the recognition processing performance of each device. A comparison of the 

recognition processing speed revealed the performance advantages of the NVIDIA Tegra core board. 

The results showed that the use of the GPU cores is more important than the performance of the CPU 

cores. To use the GPU cores, the image recognition system requires a parallel computing framework, 

such as OpenCL [12] or NVIDIA’s Compute Unified Device Architecture (CUDA) [13]. The CUDA 

library provides more options and functions than OpenCL [14,15]. Thus, the use of this library ensures 

high image processing performance. 

The proposed smart camera platform was designed using the NVIDIA Tegra Kepler1 processor and 

includes various modules and sensors. The platform includes a high-performance full HD camera 

module to collect the image frame forward of the vehicle, an LTE modem to connect to the mobile 

network base station, a GPS module to determine the vehicle position, and an accelerometer to determine 

the acceleration of the vehicle. In addition, the platform has an embedded on-board diagnostics (OBD) 

scanner [16–18] to confirm the sensor data from the vehicle interior. Figure 1 shows a schematic 

representation of the smart camera platform. 
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Table 3. Comparison of recognition processing performance. 

Development Board Performance (FPS) 

Arndale (Exynos 5420) 1.89 
Odroid-X2 (Exynos 4412) 2.21 
Odroid-XU (Exynos 5410) 3.25 
JETSON (NVIDIA TK1, CPU only) 3.82 
JETSON (NVIDIA TK1 CPU, GPU) 15.86 
PC (Intel i5) 13.82 
PC (Intel i5, NVIDIA GeForce 750) 44.12 

We connected a camera module and an LTE network module to an NVIDIA Jetson board [19] based 

on the Tegra Kepler1 core, and we designed an extension board based on the STM32 cortex core [20], 

which has an embedded OBD scanner, a GPS module, and an accelerometer. To read the data from the 

vehicle interior using sensors, we use a controller area network (CAN) transceiver for a low-layer 

connection and the standard OBD-II/KOBD protocols. 

 

Figure 1. Schematic representation of smart camera platform based on NVIDIA Tegra 

Kepler1 core. 

2.2. Software Design 

A variety of open-source software was applied to operate the smart vehicular camera device. 

Performing device control using the Linux kernel, we developed the recognition application using the 

computer vision library and implemented the application using the CPU and GPU parallel processing 

library [21–23]. The software architecture of the proposed smart vehicular camera is shown in Figure 2. 

The hardware abstract layer (HAL) controls various hardware devices, and the recognition application 

uses the OpenCV, OpenMP [24], and NVIDIA CUDA libraries to improve performance. This 

application uses image processing to provide road condition information, such as information about 

pedestrians, license plates, road lines, and traffic signs. Further, the application is designed to provide 

the position, speed, accelerator condition, and other vehicular status information. 
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Figure 2. Software architecture of the proposed smart vehicular camera. 

The proposed smart vehicular camera uses a recognition process to search for valid targets, such as 

pedestrians and license plates, in the camera input image. Further, we applied a pedestrian recognition 

method based on the histogram of the oriented gradient (HOG) [25] in an image frame. This method 

calculates the changes in each pixel’s direction component and component size for the full frame of 

pixels. This gradient value can be used for object recognition, as it changes significantly at an object 

boundary, irrespective of the background. To find a pedestrian in a frame, the method uses support vector 

machines (SVMs) to compare the gradient value and the normalized histogram value by changing the 

scale levels. 

The license plate recognition method finds rectangles and eliminates rectangles corresponding to  

non-plate objects from the rectangle list. The rectangle finding method uses pyramid blurring to remove 

the noise in the image, Canny edge detection [26] to find a rectangle edge, and the Dilate algorithm to 

sharpen the detected edge. Finally, the method calculates the contours relative to the edges and extracts 

rectangles from the calculated contours. The license plate recognition method finds the plate by checking 

for a specific pattern aspect ratio. The specific pattern consists of repeated black letters and white spaces. 

In addition, the proposed recognition application estimates the distance to the vehicle ahead using the 

pixel distance difference between a license plate and a hood.  

Lane and traffic sign recognition is performed using a Hough transform to find straight lines and 

circles. In the image frame, the recognition method identifies a straight line that contains most of the 

overlapping points [27]. Furthermore, to identify circles, the method finds the intersections of the straight 

lines, and these points are considered the centers of circles. The circular traffic sign recognition method 

performs character recognition to find circles, and the lane departure warning method determines lane 

departure on the basis of the inclination of the found straight line. 

Image recognition techniques require high computational power and considerable processing time. 

Processing time is accumulated whenever each recognition method is performed. These features make 

it difficult to perform real-time image processing. Therefore, image recognition techniques require two 

methods of real-time image processing, namely, a dynamic region of interest (D-ROI) method to reduce 

the search area and a dynamic frame skip (DFS) method to discard unnecessary frames. 
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3. Methods of Minimizing Computing Load 

In the limited environment of a mobile embedded system, we propose to use the D-ROI method to 

perform image recognition smoothly. An ROI is a region of interest that is searched by the image 

recognition process. A minimized ROI can improve the processing speed by reducing the search region. 

The ROI is generally set to a fixed small size to eliminate unnecessary operations in order to reduce the 

processing time. To accommodate the algorithms with a high computation load, such as pedestrian 

recognition and license plate recognition, we shortened the processing time by applying the D-ROI 

method, which continuously changes the ROI size by estimating the target’s location and size in the frame. 

3.1. D-ROI Method 

In the road environment, each item of information can be recognized for each target by setting the 

corresponding other partial region as the ROI. Thus, each recognition method sets the upper-bound ROI 

size to a static ROI (S-ROI) to maintain the recognition accuracy. Here, we propose a D-ROI method to 

further reduce the S-ROI for the pedestrian and license plate recognition methods. The lane recognition 

and circular sign recognition methods impose a relatively low computational load, and reducing the 

search region by more than the S-ROI size is difficult. Thus, the D-ROI method is not applied to these 

two recognition methods. 

Before describing the D-ROI, we will define the S-ROI. For pedestrian recognition, we remove the 

non-pedestrian regions, such as the sky, the vehicle hood, and the narrow left and right sides of the full frame. 

The same S-ROI is used for license plate recognition and pedestrian recognition. The S-ROI for the 

lane recognition algorithm is set up as the optimal region that includes the region from the vanishing 

point to the hood and both lanes. The S-ROI for lane departure recognition sets a sufficiently large region 

to determine the slope of the lane after lane recognition. Finally, the circular traffic sign recognition 

algorithm sets the S-ROI to the upper-right corner of the full frame. 

 

Figure 3. Size of static ROI for recognizing objects on the road. 

This setting of the ROI also affects the recognition accuracy in addition to reducing the computational 

load. If similar-measurement objects appear outside of the ROI, they can be excluded, thus preventing 

recognition errors caused by identifying wrong targets, such as pedestrians and plates. If a camera is 
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attached to the rear view mirror, the size of the pedestrian and license plate recognition S-ROI is 33% of 

the full frame size. The lane and lane departure recognition S-ROI sizes are 12% and 4%, respectively. 

Further, the circular traffic sign recognition S-ROI size is 25%. These S-ROI sizes are optimal values 

generated by the experimental data obtained from the collected real videos. Figure 3 shows the size of 

the S-ROI for recognizing objects on the road. 

The D-ROI method produces an ROI smaller than the specified S-ROI in order to reduce the 

computational load. The method dynamically changes the ROI size according to the target recognized 

in the previous frame. If the recognition target is not present in the current frame, the recognition 

algorithm searches the S-ROI of the frame. 

Whenever the algorithm applied for the D-ROI method recognizes a target object in the current frame, 

it generates a smaller D-ROI by considering a cropped image including the recognized target and the 

vehicle movement. The new ROI is determined by adding the movement region (MR) to the cropped 

region (CR). The movement region is calculated as: 
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where Vcar denotes the velocity of the vehicle, and Vped represents the velocity of the recognition target. 

The two velocity vectors are substantially orthogonal and are used to calculate the moving distance in 

order to estimate the MR size. Further, FRinp denotes the number of frames in the input image, and FRskip 

represents the value of frame skips per second. If the algorithm considers the entire frame for the 

calculation, this value is zero. Otherwise, if the algorithm skips frames, FRskip increases. CMP denotes the 

pixel margin recommended for image recognition. We set this variable at a fixed value for each algorithm 

and image size. Further, α denotes a constant value to determine MR. For pedestrian and license plate 

recognition, the D-ROI method can reduce the calculation domain on both sides. 

To convert real distances to pixel distances, the following equations are used: 
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where Fpixel(d) denotes a function that converts the real distance to the pixel distance in the image, and 

Fdist(p) denotes an inverse function of Fpixel(d); we derived Equation (2) on the basis of the measured 

values. The graph in Figure 4 shows how the pixel variation corresponds to the variation in the real distance. 

Considering the distance between the license plate of the vehicle in front and the hood, the D-ROI 

method generates the D-ROI using the following equation: 

plateplate

MPprevplate

CRwidthMR

CddheightMR

⋅=
+−⋅=

β
α

.

.
 (3)

where MRplate denotes the movement region of the license plate for image recognition. The height of the 

ROI is set on the basis of the difference in the distance from the vehicle in front in the previous frame, 

and the width of the ROI is set to β times the width of a plate considering the extra width moveable to 

both sides. This D-ROI is changed continuously according to the recognition result, and the D-ROI 

method is executed continuously up to n times. After being executed n times or failing in the target 

search, the recognition algorithm searches for the S-ROI again to prepare for the emergence of a new target. 
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Figure 4. Function for converting pixel distance to real distance. 

Whenever pedestrians or license plates are recognized in a frame, the D-ROI method reduces the 

computational load significantly. However, the D-ROI method has a problem in that it is not applied 

when vehicles or pedestrians do not appear in front of the vehicle. When a frame is processed every 

moment, there is no problem in the precision or accuracy; however, it is difficult to save computing 

resources. For example, when a vehicle is driven at a constant speed on the highway, the change in the 

image is small. When the speed of the vehicle is very slow, there is little change in the continuous input 

image. In such cases, the recognition algorithm can sufficiently detect the situation by low frequency 

image processing.  

3.2. DFS Method 

Here, we propose the DFS method to solve this problem. The proposed method needs certain 

parameters for discarding frames, such as the vehicle’s speed and acceleration variation values. If the 

vehicle’s speed is fast, the image changes more frequently; thus, the skip rate is set to a low value. In 

contrast, if the rate of change is small at a low speed, the skip rate can be increased. The acceleration 

variation value affects acceleration, deceleration, impacts, and turning. When the change in the 

acceleration value is large, the image changes suddenly; thus, the skip rate is set to a low value. The 

speed and acceleration variation values are interdependent; therefore, we designed the model for frame 

skip rating by using these two parameters. 

This model is expressed as: 

 min( ) min( )
min 1 ,

max( ) min( ) max( ) min( )skip inp

s s A A
FR FR

s s A A

    − Δ − Δ= α ⋅ ⋅ −    − Δ − Δ    
 (4) 

After standardizing the two values, we derived an equation to assign a weight to each value. Here, 

max(s) and min(s) are based on the speed limits of the road, and max (∆A) and min (∆A) are set to the 

average of the acceleration variation values generated according to the typical behavior of the driver. 

Algorithm 1 presents the pseudocode of the D-ROI and DFS methods for minimizing the computing load. 
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Algorithm 1. Pseudocode of D-ROI and DFS methods for minimizing computing load. 
frame ← the frames from camera device 
s ← vehicular speed value 
∆A ← vehicular acceleration value 
Initialised ROI = S-ROI, frame_count = 0, D-ROI_count = 0, target_searching = false 
for all frame do 
 frame _count = (frame _count + 1) % FRinp 
 FRskip = min [α × standardisation(s) × standardisation (∆A), FRinp] 
 if FRskip % frame_count = 0 then 
  if ROI ≠ S-ROI then 
   D-ROI_ count += 1 
  end if 
 else then  
  target_searching, CR = recognition_algorithm (ROI) 
  If target_searching = false or D-ROI_ count > D-ROI_ threshold then 
   ROI = S-ROI 
   D-ROI_ count = 0 
  else then 
   D-ROI = CR + MR 
   ROI = D-ROI 
   D-ROI_ count += 1 
  end if 
 end if 
end for 

4. Real-Time Traffic Information System 

Traffic information can be categorized as incident and traffic flow information. Examples of incident 

information are information on crashes, road construction, and road restrictions. Incident information 

can be easily obtained by having the parties involved send the information to the main server. However, 

it is difficult to estimate traffic flow information using a single data item from a vehicle, as computing 

the time at which the vehicle passes along a specific road is difficult. Therefore, we propose a method 

of estimating traffic congestion using the vehicle-to-vehicle distance, vehicle speed, and number of 

neighboring vehicles provided by the proposed smart vehicular camera. The number of neighboring 

vehicles is difficult to provide for each vehicle using the collected position information of each vehicle. 

The proposed model for estimating the traffic congestion degree is as follows: The server divides the 

road into several sections and then initializes the value of the number of neighboring vehicles for each 

section. Whenever the server receives vehicle data, it checks the position information to find the section 

and updates the value of the number of neighboring vehicles. We designed the model to use a 

combination of vehicle-to-vehicle distance, vehicle speed, and number of neighboring vehicles. In this 

case, we need a proper scoring function to use each data item and apply the linear combination for 

normalization. The proposed model for estimating the traffic congestion degree Ctraffic is expressed as: 

)()()( zDwyNwxSwC dnstraffic ++=  (5)
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Here, ws represents the speed weight value, wn indicates the neighboring vehicle’s weight value, and 

wd denotes the intervehicle distance weight value. S(x), N(y), and D(z) denote the scoring functions for 

converting the speed, neighboring vehicle, and intervehicle distance values, respectively. To validate the 

model, we designed simple scoring functions intuitively. A road generally becomes congested when the 

vehicle speeds are slow, there are many vehicles on the road, or the intervehicle distance is small. 

Considering these features, we designed the simple scoring functions expressed in Equations (6)–(8). 

xxS simple 005.01)( −=  (6)

yyN simple 05.0)( =  (7)

)20(),20(00375.03.0)(

)200(,035.01)(

zzzD

zzzD

simple

simple

≤−−=

<<−=
 (8)

The ground truth (GT) value of a road is calculated to represent the ratio of the estimated time of 

passing along the road at limited full speed to the actual time required to pass along the road. The GT 

value of the congestion degree is given by: 

roadlmt

measured

DistS

AT
GT

/
=  (9)

Here, ATmeasured denotes the measured actual time along the road, Slmt represents the limited maximum 

speed on the road, and Distroad indicates the length of the road. 

Comparing the GT of traffic congestion and the estimated congestion degree using the simple scoring 

functions, we found that the trend of the two graphs was similar, but the measurement error was 49%. 

To minimize this error, we thoroughly analyzed the congestion situation and designed the following 

improved scoring functions. 

simproved CxxS += −15)(  (10)

y
nimproved CyN 125.0)( =  (11)

24101)( zzDimproved
−−=  (12)

To obtain these improved functions, we first analyzed the traffic congestion according to the vehicle 

speed. The vehicle speed was slow when the road was congested and fast when the road was empty. 

However, when the speed exceeded the threshold speed, the speed depended on the nature of the driver 

rather than the congestion degree. Therefore, we designed an improved speed scoring function that is 

sensitive to the speed change in the low-speed range. Second, we analyzed the traffic congestion 

according to the intervehicle distance; below a threshold, the intervehicle distance depended on the 

nature of the driver. Thus, the distance affected the congestion degree only slightly. In addition, if the 

distance exceeded a threshold, it was difficult to determine whether the distance was valid information. 

Therefore, we designed the intervehicle scoring model of elliptic functions to be sensitive to changes in 

the intermediate range. Third, we analyzed the traffic congestion according to the neighboring vehicles 

on the road. The number of neighboring vehicles did not significantly affect the congestion degree when 

it was less than the capacity of the road. In contrast, if the capacity of the road was exceeded, the 
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congestion degree increased rapidly. Therefore, we designed the improved scoring model having an 

exponential form to reflect this tendency. 

5. Performance Evaluation 

We implemented the smart driver assistance system before evaluating its performance. 

5.1. Implementation for Performance Evaluation  

To implement the smart vehicular camera device, we used a high-performance application processor 

for image processing and a coprocessor for sensor data collection. In this study, we selected NVIDIA’s 

Tegra Kepler1 AP and STM32 cortex microprocessors. To configure the smart camera device, we used 

the NVIDIA Jetson development board based on the Tegra Kepler1 core and added an expansion board 

having the STM32 core and sensors. Figure 5 shows the prototype of the smart vehicular camera. 

 

Figure 5. Prototype of the smart vehicular camera device based on NVIDIA Jetson board 

with the proposed extension board. 

The extension board included the accelerator sensor module, GPS module, and CAN transceiver. The 

GPS module provided the position information of the vehicle via the UART interface, and the 

accelerometer, along with an analogue-to-digital converter, provided the acceleration data of the vehicle. 

In addition, the CAN transceiver received commands from the extension board and read the sensor data 

of the vehicle interior using the OBD-II protocol. The hardware specifications of the smart vehicular 

camera are given in Table 4. 

To make the best use of the resources of the AP for high-speed image processing, we implemented 

the image recognition algorithm using parallel processing by the multicore CPU and many-core GPU. 

We implemented task parallelism considering the Tegra Kepler1 processor, which contained four CPU cores. 

Task parallelism is generally classified as functional separation or data separation. In functional 

separation, tasks are mapped according to the function of the program executed in parallel. Data 

separation refers to the mapping of different tasks according to the data required to perform the same 



Sensors 2015, 15 20216 

 

 

operation. To improve the performance of the image recognition algorithms with respect to functional 

separation of the four recognition processes, we implemented a parallel processing program. 

Table 4. Hardware specifications of smart vehicular camera. 

Mainboard NVIDIA Jetson Tegra Kepler1 
Microprocessor STM32F105 
LTE module KMK-L200 
GPS module GMMU1 
Accelerator sensor LIS331DLH 
CAN transceiver MCP2551 
USB hub controller TUSB2046 
Board size 127 mm × 127 mm × 35 mm  

We implemented a recognition algorithm that required the operating system to have the scheduling 

threads in parallel, assigning threads to each main function by applying the open-source library of 

OpenMP. To improve the processing performance, detailed functions, such as pedestrian, license plate, 

lane departure, and circular sign recognition were assigned to each of the GPU cores.  

To perform license plate recognition, we allocated parts of the pyramid operation, such as image 

upscaling and downscaling, to the GPUs. In particular, we allocated the interpolation and extrapolation 

processes for performing the pyramid operation to the GPU cores, and the operating result was obtained 

through a shared memory between the CPU and the GPU. Similarly, we allocated Sobel filtering, 

obtaining the magnitude of a vector for Canny edge detection, and calculating the hysteresis for the 

gradient classification to the GPU cores. 

In pedestrian recognition, the functions dispersed to the GPU cores were the oriented gradient 

calculation, histogram calculation, and SVM classifier. In lane departure and circular sign recognition, 

the Hough transform to extract straight lines and circles was allocated to the GPU cores. 

Thus, the functions were implemented with CUDA and parallel-processed by the GPU cores to 

improve the performance. In addition, we set the maximum number of threads considering the characteristics 

of the smart vehicular camera and assigned the threads to the tasks. We assigned 128 threads, which did not 

exceed the 192 GPU cores of the NVIDIA Tegra Kepler1, and thus minimized the waiting threads, which 

occur when the number of threads exceeds the number of GPU cores. The optimized program was 

implemented on the smart vehicular camera device. 

A prototype of a traffic information server was implemented to evaluate the performance of the 

estimation of the traffic congestion degree. A server for collecting the information from vehicles sent 

through a mobile communication network was implemented; it executed a function to estimate the 

congestion degree of roads using the collected information. 

5.2. Image Processing in the Vehicle Environment 

The performance of the implemented smart vehicular camera was tested using the recorded driving 

image sets. The 16 sample images were recorded using a conventional vehicular camera with a frame 

rate of 24 fps, MPEG-4 compression, and WVGA resolution (800 × 480), and the length of each video 
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was 10 s. In other words, we evaluated the computation time and accuracy using 3840 frames. Figure 6 

shows frames from the recorded driving image sets.  

 

Figure 6. Twelve sample images recorded by a conventional vehicular camera and used for 

the performance evaluation (24 fps, MPEG-4, WVGA, and 10 s). 

We evaluated the processing power using the D-ROI method, DFS method, and parallel processing 

implemented on the smart vehicle camera device. The ROI technique was used to evaluate the pedestrian 

recognition and license plate recognition performance, and the DFS method and parallel processing were 

evaluated for four-image recognition. The evaluation parameters were the image processing time and 

accuracy. The image processing time was evaluated according to the availability of real-time operations 

based on the cumulative run time, and the accuracy was evaluated on the basis of whole image processing 

with respect to the ROI size change and number of frame skip changes.  

 

Figure 7. Recognition processing time for the number of D-ROI frame. 

First, we conducted a performance evaluation to select the optimal value of n in the D-ROI method 

for each of the five sample images (pedestrian and license plate). Figure 7 shows the recognition 

processing time according to the number of D-ROI frames. Table 5 shows the accuracy of the pedestrian 
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and license plate recognition algorithms according to the number of D-ROI frames. Increase in n results 

in the reduction of the processing time and accuracy. We have confirmed that the accuracy suffers 

because the recognition algorithms often do not check the entire region when n increases. It is difficult 

to determine the values, since the optimal value n depends on the conditions, such as the power level of 

the processor, complexity of the algorithm, and quality of the input image. Therefore, we used an optimal 

value based on the average of evaluation results, and other experiments were performed.  

Table 5. Comparison of recognition accuracy for number of D-ROI frame n. 

n 
Pedestrian Recognition License Plate Recognition 

image#1 image#2 image#3 image#4 image#5 image#6 image#7 image#8 image#9 image#10 

0 95.28% 31.52% 95.00% 54.55% 43.66% 99.25% 77.08% 11.62% 59.49% 98.67% 

1 87.74% 29.35% 81.67% 45.45% 39.44% 99.25% 77.08% 11.62% 59.49% 98.67% 

2 87.74% 27.17% 86.67% 50.00% 40.85% 99.63% 76.67% 11.62% 59.49% 98.67% 

3 79.25% 27.17% 76.67% 36.36% 45.07% 99.25% 77.08% 11.62% 59.24% 98.67% 

4 83.96% 26.09% 81.67% 45.45% 39.44% 99.63% 77.08% 11.62% 59.24% 98.67% 

5 85.85% 26.09% 80.00% 47.73% 40.85% 99.63% 77.08% 11.62% 59.24% 98.67% 

6 85.85% 28.26% 75.00% 40.91% 42.25% 99.63% 77.08% 11.62% 59.24% 98.67% 

7 81.13% 26.09% 81.67% 45.45% 43.66% 99.63% 77.08% 11.62% 59.24% 98.67% 

8 81.13% 26.09% 81.67% 36.36% 40.85% 99.63% 77.08% 11.62% 59.24% 98.67% 

9 87.74% 29.35% 88.33% 40.91% 43.66% 99.63% 77.08% 11.62% 59.24% 98.67% 

10 83.02% 25.00% 80.00% 43.18% 42.25% 99.63% 77.08% 11.62% 59.24% 98.67% 

Second, we evaluated the performance of the D-ROI method. Figure 8a,b show graphs comparing the 

processing time according to the ROI size. The gray solid lines in the graphs are an upper bound to verify 

the real time processing; thus, when image processing was performed in real time, the slope of the 

cumulative processing time line was lower than the slope of the solid line.  

Figure 8a shows the cumulative processing times of pedestrian recognition for several ROI sizes. 

Compared with the result for the full frame obtained by processing the entire input image, the results of 

the two considered methods show a higher throughput due to a reduced calculation region. In the 

intervals of 4–6 s and 9–10 s, we found that the gradient of the result of the D-ROI was lower, as the 

pedestrian was recognized in a previous frame, and the current processing region was reduced. 

Figure 8b shows the cumulative processing time of vehicle license plate recognition with respect to 

the ROI size. The D-ROI method showed a faster processing time than the full frame. It was slightly 

faster than the S-ROI method for longer time duration. The processing time of the D-ROI was always 

the shortest because the license plate always appeared in the sample image, and the D-ROI method was 

applied consistently. Thus, the processing time of the S-ROI method was reduced compared to that of 

full frame processing by considering part of the full frame, and the processing speed of the D-ROI 

method was the fastest because the D-ROI was smaller than the S-ROI. However, it was difficult to 

ensure real-time processing that always processed the minimized region.  

We evaluated the processing performance of the four recognition algorithms by applying the D-ROI 

method, frame skip method, and parallel processing. Figure 8c,d show the results of the performance 

evaluation. Further, Figure 8c shows the effect of minimizing the computation load using the D-ROI and 
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DFS methods on the image recognition algorithm. The DFS method improved the processing 

performance by reducing the number of frames processed. 

Figure 8d compares the processing time of all the considered methods. The results reveal the shortest 

processing time and confirm that real-time processing is possible. In other words, we confirmed that 

real-time image processing could be performed using the proposed methods. 

 

Figure 8. Evaluation of image processing in the vehicle environment using the proposed 

methods, D-ROI, DFS, and parallel processing (PP). (a) Pedestrian recognition; (b) license 

plate recognition, and comparisons of (c) computation load and (d) processing time for all 

four algorithms. (D-ROI frame n = 5). 

Table 6. Comparison of processing time for various combinations of proposed methods. 

Combination of Methods Processing Time FPS 

D-ROI + DFS + PP 7.81 30.73 
D-ROI + DFS 13.43 17.87 
D-ROI + PP 20.62 11.64 
D-ROI + PP (GPU only) 21.29 11.27 
D-ROI + PP (CPU only) 22.84 10.51 
S-ROI + PP (GPU only) 36.69 6.54 
D-ROI 27.04 8.88 
S-ROI 42.88 5.60 
Full + PP (GPU only) 93.27 2.57 
Full 120.63 1.99 

Table 6 shows the processing time and FPS for each of the methods and their combinations. When 

the image recognition algorithm was executed for a full frame of about 10 s, the image processing time 
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was 120 s. However, when the proposed methods, D-ROI, DFS, and parallel processing, were applied, 

the processing time was only 7 s. 

Accuracy (ACC) is the proportion of true results (both true positives and true negatives) among the 

total number of cases examined. Recall relates to the test’s ability to correctly detect patients who do 

have a condition. Precision is defined as the proportion of the true positives against all the positive results 

(both true positives and false positives).  

We found experimentally that there was little or no change in the recognition accuracy when the 

proposed methods were applied. Tables 7 and 8 show the accuracy, recall, and recognition precision of 

the pedestrian and license plate recognition algorithms, respectively, for an image of about 240 frames. 

These results showed that the accuracy did not change significantly for any image. In the comparison of 

the S-ROI and D-ROI, despite the fact that narrowing of the ROI increased the accuracy of the D-ROI, 

the target region for recognition was reduced when the false negative rate decreased. The accuracy of 

the D-ROI and DFS methods increased, as these methods used information from the previous frame to 

save time. That is, an image recognized in the previous frame determined the next skipped frame before 

the consideration of a new frame for recognition. Therefore, the accuracy increased. It was useful that 

the change in the recognition target between frames was subtle. 

Table 7. Comparison of recognition accuracy, recall, and precision for the proposed methods 

(pedestrian recognition). 

 
Full-Size Frame S-ROI D-ROI D-ROI + DFS 

ACC Recall Precision ACC Recall Precision ACC Recall Precision ACC Recall Precision 

Image #1 0.71 0.53 1.00 0.71 0.53 1.00 0.72 0.43 1.00 0.77 0.58 1.00 

Image #2 0.51 0.73 0.93 0.50 0.71 0.91 0.58 1.00 1.00 0.56 0.21 1.00 

Image #3 0.97 0.43 0.97 0.96 0.43 0.97 0.96 0.44 1.00 0.97 0.45 1.00 

Image #4 0.92 0.57 0.81 0.91 0.57 0.81 0.94 0.23 1.00 0.93 0.38 1.00 

Image #5 0.74 0.05 0.83 0.74 0.04 0.83 0.77 0.16 0.81 0.78 0.20 0.81 

Average 0.77 0.46 0.91 0.76 0.46 0.90 0.79 0.45 0.96 0.80 0.36 0.96 

Table 8. Comparison of recognition accuracy, recall, and precision for the proposed methods 

(license plate recognition). 

 
Full-size Frame S-ROI D-ROI D-ROI + DFS 

ACC Recall Precision ACC Recall Precision ACC Recall Precision ACC Recall Precision 

Image #6 0.63 0.63 1.00 0.63 0.63 1.00 0.46 0.50 1.00 1.00 1.00 1.00 

Image #7 0.76 0.73 1.00 0.76 0.73 1.00 0.76 0.75 1.00 0.76 0.75 1.00 

Image #8 0.09 0.09 1.00 0.09 0.09 1.00 0.07 0.09 1.00 0.14 0.17 1.00 

Image #9 0.92 0.92 1.00 0.92 0.92 1.00 0.92 0.92 1.00 0.91 0.90 1.00 

Image #10 0.90 0.86 1.00 0.90 0.86 1.00 0.90 0.86 1.00 0.90 0.82 1.00 

Average 0.66 0.64 1.00 0.66 0.64 1.00 0.62 0.62 1.00 0.74 0.72 1.00 

5.3. Estimating Traffic Congestion 

We experimentally evaluated the proposed model of estimating the traffic congestion degree. When 

the proposed model estimated the congestion degree, we determined the estimation error by comparing 

the estimated results with the GT of the congestion degree according to the changes in the parameter values. 
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We evaluated 16 sample images recorded using a conventional vehicular camera: eight traffic 

congestion images and eight light traffic images. As with the conventional evaluation conditions, each 

image had a frame rate of 24 fps, MPEG-4 compression format, and WVGA resolution, and the length 

of each video was approximately 10 s. We defined the road conditions using Average Annual Daily 

Travel (AADT). The term traffic count is used to refer to an AADT, which is the annualized average 24-h 

volume of vehicles at a given point or section of highway. It is normally expressed as the ratio of the 

volume of vehicles during a given period to the number of days in that period. The light traffic condition 

is a vehicle count less than 50,000, and the traffic congestion condition is a vehicle count greater than 50,000. 

The traffic congestion images, we used six highway images and six urban images; the speed limit on 

the highway was assumed to be 100 km/h, and the speed limit in the urban areas was assumed to be 60 km/h. 

For the light traffic images, we used only highway images. We determined the error of the estimated 

value by comparing the GT value and the estimated traffic congestion value.  

To determine the error rate with respect to the proposed scoring functions, the performance evaluation 

of the proposed traffic congestion estimation model combined simple and improved scoring functions. 

For estimating the congestion degree when the proposed model was used, we required the scoring 

functions and the weight values. In the experiment, we set the weight values at a ratio of about 2:1:1. 

We performed experiments for a congested road and a light traffic road. For the light traffic road, it 

was difficult to recognize vehicles that were too far away. Therefore, only two functions, namely, the 

speed and neighboring vehicle scoring functions were used in the test. Figure 9a compares the 

cumulative error for the scoring functions for the congested road. In this figure, all the functions with 

improved scoring functions exhibit the best performance, as the function resolutions are set according 

to the features of each entry. 

For the light traffic road, as shown in Figure 9b, we observed slight differences among all the results 

except those obtained when the improved scoring functions for speed and neighboring vehicles were 

applied. In contrast to the congested case, the vehicle speed was very fast, and the number of neighboring 

vehicles was too small. Thus, we found that the result was small irrespective of the type of scoring 

function. Table 9 summarizes the average error value according to the combination of the scoring 

function types. The experimental results demonstrated that the improved scoring functions operated 

correctly irrespective of the road conditions.  

Further, we performed an experiment to determine the optimal weight values for the proposed traffic 

congestion estimation model. In this experiment, we measured the cumulative error by changing the 

three weight values and road conditions. We set up various test combinations, such as a combination of 

the same weight values and one using an additional weight along with an existing weight value.  

Figures 9c,d compare the cumulative errors according to the combinations of weight values. For the 

congested road, a higher weight was set for the intervehicle distance that showed the best performance. 

Under this road condition, the variations in the vehicle speed and number of neighboring vehicles were 

small. In contrast, the intervehicle distance was highly likely to change dynamically. Thus, the estimated 

traffic congestion degree value was similar to the GT value when a higher weight value was applied to 

the intervehicle distance. In a comparison of the speed-oriented weight and neighboring-vehicle-oriented 

weight, the number of neighboring vehicles was a more important factor affecting road congestion than 

the vehicle speed. 
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Figure 9. Cumulative error for various combinations of scoring functions (a,b) and weight 

values (c,d). ((a,c) Congested traffic, (b,d) light traffic.) 

Table 9. Average error rate for combinations of scoring functions under the congestion and 

light traffic conditions. 

Combination of Scoring 

Functions 

Congestion Light Traffic 

Ave. Std. Ave. Std. 

I(NV) + S(dist, speed) 0.158 0.056 0.207 0.105 

I(dist, NV) + S(speed) 0.090 0.066 0.166 0.097 

I(NV, speed) + S(dist) 0.197 0.119 0.173 0.105 

I(NV) + S(dist, speed) 0.148 0.100 0.086 0.065 

I(speed) + S(dist, NV) 0.262 0.184 0.207 0.105 

I(dist) + S(NV, speed) 0.107 0.045 0.090 0.061 

S(dist, NV, speed) 0.206 0.172 0.090 0.061 

I(dist, NV, speed) 0.051 0.061 0.089 0.061 

Among the experimental results obtained under the light traffic condition, that obtained using a 

balanced weight was the best, and that obtained using a speed-oriented weight exhibited acceptable 

performance. Under this road condition, the vehicle speeds changed frequently, the intervehicle 

distances varied considerably, and the variation in the number of neighboring vehicles was dynamic. 

Therefore, the use of an appropriate balanced weight for the vehicle speed and number of neighboring 

vehicles yielded a low cumulative error. The vehicle speed was a more important parameter for the 

estimation of the congestion degree, as the variation in the number of neighboring vehicles was small in 
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the test images used in the experiment. Thus, the use of a speed-oriented weight yielded better 

performance than the use of a neighboring-vehicle-oriented weight. 

Under the light traffic condition, the vehicle recognition success rate was low because the intervehicle 

distance was large. In contrast to the congested road condition, under this condition, the estimation 

performance deteriorated when an intervehicle-distance-oriented weight was used. 

The detailed results of each experiment are shown in Table 10. On the basis of these experimental  

results, we confirmed that the use of a balanced weight under the light road condition and that  

of an intervehicle-distance-oriented weight under the congested road condition yielded good  

estimation performance. 

Table 10. Average error rate for combinations of weight values under the congested and 

light traffic conditions. 

Combination of Weight Values 
Congestion Light Traffic 

Ave. Std. Ave. Std. 

Balanced 0.083 0.050 0.083 0.072 
Distance-oriented 0.053 0.057 0.087 0.061 

Speed-oriented 0.114 0.069 0.081 0.059 
NV-oriented 0.086 0.045 0.162 0.093 

Proposed 0.051 0.061 0.089 0.061 

Considering both road conditions, we found that the proposed weight was similar to the  

intervehicle-distance-oriented weight with an approximately 5% total error rate, which was similar to the 

total error rate of the balanced weight. However, the traffic congestion degree should be estimated 

accurately under the congested road condition. Therefore, the proposed weight was found to be the most 

suitable for estimating the traffic congestion degree. 

6. Related Works 

6.1. Advanced Driver Assistance Systems 

An ADAS is a vehicular device that recognizes several conditions, such as the vehicle status, driver’s 

condition, and environmental status to reduce the driver’s burden and enhance his/her convenience. 

Unlike an active safety system, which prevents a crash or reduces injury to the driver before and after a 

crash, an ADAS provides safety and convenience by assisting the driver during normal driving [28]. To 

enable such systems to provide a variety of information, many researchers are developing a technique 

for continuous recognition of images from a camera.  

The key functions of an ADAS are to recognize road conditions, such as pedestrians, lane departure, 

traffic lights, and traffic signs. The use of ADASs with these functions is likely to continue to increase 

because of changes in the social structure and regulatory strengthening. Consumer demand for these 

systems is increasing continuously, and technological developments and mass production are reducing 

the production cost of these systems. Therefore, the ADAS market is expected to grow by an annual 

average of 25% by 2017 [29]. 
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6.2. Pedestrian Recognition 

Of the many functions of ADASs, pedestrian recognition has been widely studied, and several 

algorithms for this purpose have been developed [30,31]. The widely and readily available methods 

include those using the object recognition method of Viola and Jones [32] and the pedestrian recognition 

method of Dalal and Triggs [25]. It is possible to recognize pedestrians using Haar-like features and the 

AdaBoost classification algorithm of Viola and Jones in a relatively small window size of 14 × 28. 

The method developed by Dalal and Triggs [25] may recognize a pedestrian via an SVM classification 

based on the histogram of the oriented gradient (HOG). These two methods can be easily used via the 

OpenCV library. MULTIFTR [33] showed how a combination of Haar-like features, shapelets, shape 

context, and HOG features outperforms any individual feature. HOGLBP [34] combined a texture 

descriptor based on local binary patterns (LBP) with HOG. Fastest Pedestrian Detector in the West 

(FPDW) [35] was extended to fast multiscale detection. The algorithm was demonstrated how feature 

computed at a single scale can be used to approximate feature at nearby scales.  

FTRMINE [36] explores possibly infinite feature spaces using various strategies including steepest 

descent search prior to training a boosted classifier. FEATSYNTH [37] were improved by FTRMINE, 

the algorithm presented a scheme for combining and synthesizing a rich family of part based features. 

POSEINV [38] used a part-template structure to model a pedestrian parts, such as the head, body with 

arms and legs, and extracted HOG appearance descriptors along the local part’s outline. Table 11 shows 

the comparison of pedestrian recognition algorithms [39]. 

Table 11. Comparison of pedestrian recognition algorithms. 

 HOG MULTIFTR HOGLBP FPDW FTRMINE FEATSYNTH POSEINV 

Features 

gradient 

histogram 
√ √ √ √ √ √ √ 

gradients    √ √   

grayscale  √  √ √   

color    √ √   

texture   √   √  

Learning classifier 
Linear 

SVM 
AdaBoost 

Linear 

SVM 
AdaBoost AdaBoost 

Linear 

SVM 
AdaBoost 

Recognition 
Details 

window 

height 
96 96 96 100 100 96 96 

scales ~14 ~14 14 10 4 - ~18 

fps 0.239 0.072 0.062 6.492 0.080 - 0.474 

miss rate 68% 68% 68% 57% 74% 60% 86% 

Implement 
training 

data 
INRIA 

In addition to these pedestrian recognition techniques, research on a fusion of several computer vision 

techniques and ADASs has been actively conducted [28]. Raphael et al. [40] proposed a method of 

preventing collisions using vehicle recognition, and Guo et al. [41] proposed road recognition techniques 

for conflict prevention, lane departure prevention, and cruise control. 
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6.3. License Plate Recognition 

License plate recognition is important that can be recognizing neighbor vehicles and estimating 

vehicle-to-vehicle distance. Hongliang et al. [42] demonstrated a hybrid license plate extraction 

algorithm based on edge statistics and morphology for highway ticketing systems. This algorithm 

consists of the following four sections: vertical edge detection, edge statistical analysis, hierarchical-based 

LP location, and morphology-based LP extraction. Kim et al. [43] employed the vertical edges of a 

vehicle image, applied by image enhancement and a Sobel operator. The algorithm removes most of the 

background and noise edges, and searches for a license plate using a rectangular window.  

Comelli et al. [44] presented the RITA system for the identification of vehicular license plates. The 

license plate location module of the RITA system was based on the structure of the Italian license plate, 

which is rectangular and contains a white background with black characters. Thus, the algorithm selects 

the license plate area that demonstrates the maximum local contrast that corresponds to the rectangle 

that contains the license plate. Draghici et al. [45] used horizontal scanning of the image to search for 

the license plate location. The algorithm set the assumptions that the contrast between the background 

and the characters of the license plate is fine and that there are at least three or four characters on the 

plate. Anagnostopoulos et al. [46] presented an adaptive image segmentation technique of sliding 

concentric windows (SCW), which is considered for license plate location. The SCW method was 

demonstrated to describe the local irregularity in the image. The method uses image statistics values, 

such as the standard deviation and the mean as a heuristic, to search possible license plate location.  

In Cao et al. [47], the basic idea of recognition algorithm is that the color combination of a background 

and character is unique, and this combination occurs almost in a license plate region. In Zimic et al. [48], 

The concepts of brightness and darkness, which are demonstrated in the algorithm, are described as a 

fuzzy set with membership functions on the interval [0, 255], where the black represents 0, and the white 

represents 255 in a gray scale. In Chang et al. [49], their approach uses an edge detector sensitive to only 

three kinds of edges, black–white, green–white, and red–white, as this algorithm focuses on Korean 

license plates. Thus, the method generates an initial edge image in which all other color tones are 

eliminated. Table 12 show the comparison of license plate recognition algorithms.  

Table 12. Comparison of license plate recognition algorithms. 

 Processing Method Minimum Plate Size 
Recognition 

Success Rate 

Hongliang et al. Binary Edge statistics 65 × 20 99.6% 

Kim et al. Binary Sobel operation 65 × 20 96.5% 

Comelli et al. Gray-level Global Image Processing 100 × 25 84.2% 

Draghici et al. Gray-level Global Image Processing 100 × 25 98.5% 

Anagnostopoulos et al. Gray-level Region segmentation 61 × 20 87.8% 

Cao et al. Color Model transformation 41 × 13 100% 

Zimic et al. Color Fuzzy set theory 120 × 35 97.0% 

Chang et al. Color Fuzzy set theory 80 × 45 97.6% 
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Further, license plate recognition and image recognition methods are now widely used. License plate 

recognition is used for various applications, such as illegal parking crackdown, number recognition for 

speeding cars, and checking out vehicles [50]. 

6.4. Intelligent Transportation Systems 

An Intelligent Transportation Systems (ITS) provides traffic information and services by 

incorporating IT technologies into transportation facilities; further, ITSs improve the efficiency and 

reliability of public transport. ITSs are used in a variety of areas, including traffic management 

optimization, electronic payment processing, traffic information distribution activation, providing 

advanced traveller information, transit activation, realizing efficient freight, and providing high-tech 

roads and vehicles [51]. 

The primary purpose of ITSs is to avoid traffic congestion, which can be realized by providing real-time 

traffic information and detour routes. This is most closely related to traffic management optimization. 

7. Discussion 

7.1. Computer Vision-Based Pedestrian and License Plate Recognition 

In the paper, we use a basic HOG algorithm for pedestrian recognition and a modified Kim’s 

algorithm for license plate recognition. To apply the methods for minimizing the computational load, 

we implemented the smart vehicular camera using the open source library (OpenCV), for convenient 

implementation, and conducted a performance evaluation. Many researchers have studied computer 

vision-based algorithms for pedestrian and license plate recognition. Those algorithms featured a trade-off 

between processing speed and accuracy. Therefore, we will undertake future work to improve processing 

speed and recognition accuracy by applying various algorithms. 

7.2. Recognition Accuracy Based on Weather Conditions 

The proposed smart vehicular camera used the image recognition library powered by OpenCV. The 

library has a training data set (INRIA) to operate only in fine weather conditions (sunny days). Thus, the 

recognition results can vary depending on weather conditions. To solve this problem, we use the training 

data in a variety of environments or the contextual training data for each situation. To use the contextual 

training data, the device requires a method to recognize weather conditions by a means other than the 

computer vision algorithm. Therefore, many studies are required to implement the available system in a 

variety of environments. 

7.3. Optimal Value of N Frames for D-ROI Method 

The proposed D-ROI method has a trade-off between processing speed and accuracy. When the 

number of D-ROI processing frames is increased, the recognition accuracy decreases, even though the 

processing speed of the recognition algorithm is high. We select the optimal value of n by considering 

the number of input images and the FPS value according to the image size. 
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7.4. Precision of Traffic Congestion Estimation 

The actual and predicted traffic conditions may be different based on many variables. The proposed 

method estimates traffic conditions by recognized information, such as vehicle-to-vehicle distance, 

vehicle speed, and number of neighboring vehicles. However, the actual and predicted conditions can 

vary significantly depending on the number of lanes, traffic signal status, construction, and occurrence 

of accidents on the road. When the proposed smart vehicular camera is used in conjunction with such 

data, it would be possible to estimate better traffic conditions. These methods will be applied in future works. 

8. Conclusions 

A smart driver assistance system can provide a wide variety of status information using image 

processing and differs from the simple sensors of ADASs. Further, ADASs use the information obtained 

by various sensors attached to the vehicle and pass this information through a network in order to offer 

information to the driver or for vehicle control. A real-time traffic information system can estimate the 

traffic information for a road using the information collected and help the driver to drive safely on that road.  

In this study, we designed and implemented a real-time traffic information system that uses a smart 

camera device with image processing and network capabilities for application in smart driver assistance 

systems. For image processing, we designed D-ROI and DFS techniques to solve hardware performance 

problems. We implemented a parallel-processing-based smart camera vehicular application for efficient 

operation of the smart vehicle camera device and evaluated its performance. In addition, we proposed a 

traffic estimation model for providing the driver with real-time road traffic information on the basis of 

the collected information. 

We evaluated the image recognition performance and found that the proposed methods improved the 

processing time by 1.58 times compared to that of the S-ROI and D-ROI methods. We found that 

applying the D-ROI method improved the processing time by 2.01 times compared to that obtained by 

applying the DFS method. In addition, we found that the processing time improved by 1.71 times when 

the proposed application was implemented by applying parallel processing. Finally, we found that the 

processing time improved by 15.4 times when all the proposed methods were applied in the application. 

We confirmed that four image recognition methods can be executed in real time. Moreover, we found, 

experimentally, that there was little or no change in the recognition accuracy when the proposed methods 

were used.  

A performance evaluation of the proposed traffic congestion estimation model to provide real-time 

traffic information showed that the average error rate of the improved scoring functions was 2.11% under 

the congested road condition. This error rate was 50% smaller than that obtained when the simple scoring 

functions were used. Under the light traffic condition, we found that it was difficult to use the intervehicle 

distance information and that the proposed estimation model showed an average error of 8.50%. 

Moreover, we found that the average error rate of the proposed model was 5.3%. 
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