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Abstract: In this paper, a blind adaptive detector is proposed for blind separation of user 

signals and blind estimation of spreading sequences in DS-CDMA systems. The blind 

separation scheme exploits a charrelation matrix for simple computation and effective 

extraction of information from observation signal samples. The system model of DS-CDMA 

signals is modeled as a blind separation framework. The unknown user information and 

spreading sequence of DS-CDMA systems can be estimated only from the sampled 

observation signals. Theoretical analysis and simulation results show that the improved 

performance of the proposed algorithm in comparison with the existing conventional 

algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for 

when the number of observation samples is less and the signal to noise ratio (SNR) is low. 
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1. Introduction 

The problem of blind separation in DS-CDMA systems has attracted extensive attention for the past few 

years [1–18]. Research works related to blind separation for DS-CDMA systems are of particular interest in 

fields such as anti-jamming in military communications (MILCOM) and satellite communications 

(SATCOM). There are three main problems which need to be solved, including blind user separation [1–6], 

blind spreading/chip sequence estimation [7,8] and blind interference suppression [9–18]. The blind 
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separation problems are denominated “blind” to indicate the lack of information concerning the source 

signals and mixing matrix. The mixing matrix is equivalent to the effect of the channel matrix in  

DS-CDMA systems. The only prior information utilized is the often soundly justified assumption  

of statistical independence between the source signals. This technique is called as independent 

component analysis (ICA), which has important applications for blind separation in wireless 

communications [1,19–24]. So far, some classical ICA algorithms have been proposed to solve blind 

separation problems in DS-CDMA systems. 

A second order blind identification (SOBI) algorithm is used to separate the desired signal and 

interference signal in spread spectrum communication systems [9]. Fast Independent Component 

Analysis (FastICA) [2–4] and Joint Approximative Diagonalization of Eigen-matrices (JADE) [1,10] 

are used to separate multiuser signals to resist multiple access interference (MAI) or separate the useful 

signal and jammer signals for interference mitigation in DS-CDMA systems [10–16]. JADE and 

FastICA are classical blind separation algorithms. When evaluating these two algorithms for 

robustness, separation accuracy and reliability, it is found that the JADE algorithm is robust and 

reliable, and the FastICA algorithm is not stable and sometimes fails. In general, the existing blind 

separation techniques utilize the second-order statistics (SOS) and higher-order statistics (HOS) of the 

observations for source separation [1]. For example, SOBI exploits second order moment information, 

and FastICA and JADE make use of the four order moments/cumulants information to separate the 

source signal from mixed signals. Classical HOS are powerful tools in the context of multivariate 

statistical analysis, often entailing valuable statistical information beyond SOS. However, longer 

observation intervals might be required in order to fully realize the advantages of HOS over SOS. HOS 

is better than SOS at the expense of increased computational and notational complexity and 

compromised statistical stability [1,25]. 

In this paper, we consider a new generic tool, which offers the structural simplicity and controllable 

statistical stability of SOS on one hand, yet retains HOS-quality information on the other hand. As is 

well known, the cumulants are related to higher-order derivatives of the second characteristic function 

at the origin. However, the new statistical tools are related to lower-order (first and second) derivatives 

of the second characteristic function away from the origin, at locations called processing-point, and 

termed charmean and charrelation [25]. The use of charrelation matrices is extremely useful for 

extracting statistical information in order to establish the optimized cost function for the problem of 

blind separation work. 

Due to the structural simplicity and ample statistical information, we consider using the new 

statistics instead of the HOS statistics used in blind separation problems for DS-CDMA systems. As 

far as we know there is little literature reporting on the use of charrelation matrix-based blind separation in 

DS-CDMA systems [6]. Therefore, the main contribution of this paper is to extend blind separation 

using charrelation matrix and implement blind user separation and blind spreading/chip sequence 

estimation. Then the new tools statistic based on off-origin Hessians of the second characteristic 

function will be discussed and analyzed. We consider a synchronous DS-CDMA systems model. 

Simulations have been carried out to observe Interference to Signal Ratio (ISR) [24] as a function of 

sample number of observations and variation in bit error rate (BER) as a function of SNR. A 

performance comparison of DS-CDMA systems is executed using two assessment criteria to verify the 

advantages of the proposed method. 
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The rest of this paper is organized as follows: Section 2 gives a description of the DS-CDMA signal 

model and describes the relationship between the DS-CDMA signal model and basic blind separation 

one. The charrelation matrix is illustrated and derived, and the blind user separation and blind 

spreading/chip sequence estimation are discussed in Section 3. The simulation results and discussions 

and concluding remarks are given in Sections 4 and 5, respectively. 

2. System Model 

In this section a concrete discrete-time model of a DS-CDMA system is constructed for the 

discussion of the problem formulation. The transmitter and receiver structures of DS-CDMA systems 

involve K  simultaneous users. We consider the DS-CDMA model as a synchronous one, which is a 

base band model with fading channel [1,6]. Assuming that the system has K  users, the signal is sent 

by user k as follows: 

( ) ( ) ( )
1

0

M

k k k
m

x t b m c t mT
-

=

= -å  (1)

which contains the information of M  symbols 
km
b . This symbol 

km
b  denotes the thm  symbol of the 

thk  user. ( )k
c ⋅  is the thk  use’s binary chip sequence, i.e., the spreading code, supported by )0,Téêë , 

where T  is the symbol duration. The signal passed through channel which is assumed to be fixed 

during one symbol duration: 

( ) ( ) ( ) ( )
1

0 1

M K

k k k
m k

r t Ab m c t mT n t
-

= =

= - +åå  (2)

where 
k
A  is the channel gain factor of the thk user; M  is the number of symbols per user; K  is the 

number of users; ( )n t  denotes the additive white Gaussian noise with zero mean and variable 

variance; The chip sequence length (processing gain) is 
c

C T T= , where 
c
T  is chip duration. Since 

the chip sequence ( )k
c t  is now continuous by definition, it includes not only the binary chips ( )k

c i , 

but also a chip waveform ( )p t . More precisely: 

( ) ( ) ( )
1

0

C

k k c
i

c t c i p t iT
-

=

= -å  (3)

where ( )p t  is supported by 0,
c
Té ùê úë û  only. This paper assumes a rectangular waveform for each user. 

Continuous-to-discrete time conversion of the above model can be realized by a chip-matched filter, 

which is a simple integrate-and-dump device. Using chip-rate sampling, which means integrating over 
a chip-duration 

c
T : 

( ) ( )( ) ( )1
c

c c

iT

ciT T
r i p t i T r t dt

-
= - -ò  (4)

The sampled data, which have been obtained by chip-matched filtering using a processing window 

size of one symbol, can be written as: 
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( ) ( ) ( )
1

K

k k k
k

m Ab m m
=

= +år c n  (5)

The chip sequence vector 
k
c  has a size of 1C ´ , and the noise vector 

m
n  has a size of 1C ´ . With 

a simple manipulation, we can get a compact representation for the data [1,6]: 

( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( )

( ) ( )

1 1 1 1 1 1

1 1 1 1
, ,

K KC K C C

K K K CC K

m Ab m A b m m

A A m m

m m

´ ´ ´

´ ´´

= + + +

é ù= +ê úë û
= +

r c c n

c c b n

Gb n



  (6)

where 
1 2
, , ,

T

k k k Ck
c c cé ù= ê úë ûc  , 

1 2
, , ,

T

m C
n n né ù= ê úë ûn  , and ( ) ( ) ( ) ( )1 2

, , ,
T

K
m b m b m b mé ù= ê úë ûb  . ( )T⋅  

denotes tranpose. Furthermore, we can obtain: 

= +X GB N  (7)

where ( ) ( )1 , , Mé ù= ê úë ûX r r , ( ) ( )1 , , Mé ù= ê úë ûB b b , and ( ) ( )1 , , Mé ù= ê úë ûN n n . This data model 

Equation (7) is same as the blind source separation one [1,6]. In next section, we will analyze the blind 

detector related to the model Equations (6) and (7). 

3. Charrelation Matrix Based Blind Detector for DS-CDMA System 

The charrelation matrix can be considered as the off-origin Hessians of the second characteristic 

function. The theory of charrelation matrix is built on the ideal of “generalized cumulants”, which are 

defined as the Taylor series coefficients of the second characteristic function same prespecified point 

in the domain of second characteristic function.  

The prespecified point is processing point, which is away from the zero point. If this point is chosen 

as the origin, then the generalized cumulants reduce to the traditional cumulants [25]. As an appealing 

alternative, it is also possible to remain at the more comfortable second-order differentiation, but to 

move away from the origin. These second order derivatives maintain the convenient form of matrices. 

The proposed blind adaptive detector for DS-CDMA system is shown in the Figure 1. Next, the 

charrelation matrix for the blind separation algorithm will be analyzed. 

⊗

⊗

⊗

⊕ ⊕






1
b

2
b

K
b

1
b̂

2
b̂

ˆ
K
b

1
c

2
c

K
c

n

r

 

Figure 1. Blind adaptive detector based DS-CDMA Systems 
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3.1. Charrelation Matrix Based Blind Source Separation 

Taking into account the blind source separation mixture model linking with DS-CDMA system 

from above discussion, the system model is rewritten as: 

( ) ( ) ( ), 1, ,m m m m M= + =r Gb n   (8)

from the perspective of blind separation framwork, the stochastic vetor ( ) Cm Îr   represents 

observation signals, and  denotes real field. The components of the stochastic vector ( ) Km Îb   

correspond to the unobserved source signals. ( ) Cm În   denotes additive Gaussian white noise. The 

unknown mixing matrix characterizes the way the sources are combined in the observation. The goal 

of blind separation consists of estimating the mixing matrix C K´ÎG   from the observations and 

recovering the source signals, on the assumption that the source signal are non-Gaussian and 

statistically independent. From the single antenna/sensor DS-CDMA reception point of view, in order 

to have a standard blind separation model available in the receiver, the number of users K  can be at 
most C , i.e., K C£ . That is to say, the mixing matrix G  is full column rank. Equation (8) is an 

overdetermined or determined BSS model for K C£  in mixing matrix G . In the process of blind 

separation, the whitening operation is always implemented to convert a model Equation (8) as: 

( ) ( )
( ) ( )

m m

m m

=

= +

r Qr

Gb n


 

 (9)

where Q  is a whitening matrix which is derived in following Section 3.3. After whitening operation, 

we can obtain that ( ) Km Îr  , K K´ÎG   and KÎn  . Next, the principle of blind separation based 

on charrelation matrices is illustrated. 

Let KÎu   denote an arbitrary (deterministic) vector, called “processing point”. The generalized 

characteristic function and the generalized second characteristic function of the obesevation vector are 

defined respectively as: 

( ) ( )( )exp TE mf é ù
ê úë ûr u u r   (10)

( ) ( )( )logj fr ru u   (11)

E é ù⋅ê úë û  denotes the expectation operation. Next we discuss the way to estimate the mixing matrix 

based on the charrelation matrix of the observations. Replacing ( )mr  by its representation and 

negelecting the noise contribution gets: 

( ) ( )( ) ( )exp T TE mf fé ù= =ê úë ûr bu u Gb G u  (12)

Furthermore, using the independence property of source vector, the generalized second 

characteristic function can be rewritten as: 

( ) ( ) ( )
1

i

K
T T

b i
i

j j j
=

= = år bu G u g u  (13)
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where 
i
g  is column vector of G . As a consequence, deriving the charrelation matrix ( )Y r u  which is 

obtained by calculating the second derivative of ( )jr u  with respect to u , we can obtain the following 

charrelation matrix ( )Y r u  (the details are illustrated in Appendix A): 

( ) ( )T TY = Yr bu G G u G  (14)

with: 

( ) ( ) ( )
T T

j
j

é ù¶¶ ê úé ùY =   = ê úê úë û ¶¶ ê úë û

r
r u ru

u
u u

uu


   (15)

It is worthwhile to note that ( )TYb G u  is a diagonal matrix (the details are illustrated in Appendix B). In 

a determined blind separation model, source signals are usually separated by multiplying the 

observations with the pseudo-inverse/inverse of mixing matrix estimate. The estimation of the mixing 

matrix can be carried out by approximate joint diagonalization (AJD) of a series of charrelation 
matrices. By choosing a set of processing points { }1 2

, , ,
L

u u u , we can construct a series of 

charrelation matrices that obey the transformation Equation (14). Then the estimation problem of the 

mixing matrix can be described as the following joint diagonalization [26,27]: 

( ) ( )
2

1

min
L

T T

i i
i F=

Y - YåG r bu G G u G  (16)

where 2

F
⋅  denotes the squared Frobenius norm. In BSS, the diagonal matrices ( )TYb G u  contain some 

statistical or structural properites of sources. The “target matrices” ( )Y r u
 usually denotes estimates of 

similar matrices pertaining to the observed mixtures. The diagonalization of the matrices ( )TYb G u , 

which is often attributed to the statistical independence of the sources, serves as the key to 
identifiability of mixing matrix G  from the matrices ( )Y r u

. The optimization of Equation (16) is a 

well-known joint diagonalization problem. A number of joint diagonalization methods have been 

reported, such as in the literatures [26,27]. Among these, a state-of-the-art algorithm called weight 

exhaustive diagonalization using Gauss iteration (WEDGE) is used to minimize the criterion in 

Equation (16). The WEDGE approach will not be illustrated in this paper, as details are provided in [26]. 

3.2. Estimation Charrelation Matrix ( )Y r u  

In practical applications the exact charrelation matrix ( )Y r u  of observations is estimated by sampling 

of a random variable. The generalized characteristic function of observation vector is estimated as: 

( ) ( )( )
1

1
exp

M
T

m

m
M

f
=

= år u u r   (17)

Similarly, the first and second derivatives of the generalized characteristic function is as follows: 
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( ) ( ) ( )( ) ( )
1

1
exp

M
T

m

m m
M

f

=

¶
G =

¶ år
r

u
u u r r

u


    (18)

( ) ( ) ( )( ) ( ) ( )
2

1

1
exp

M TT

T
m

m m m
M

f

=

¶
X =

¶ ¶
år

r

u
u u r r r

u u


     (19)

Based on the previous analysis, the charrelation matrix ( )Y r u  of the second generalized 

characteristic function ( )jr u  can be easily given by: 

( ) ( )
( )

( ) ( )
( )2

T

f f

X G G
Y = -r r r
r

r r

u u u
u

u u
  


 

 (20)

3.3. Blind User Separation and Blind Spreading/Chip Sequence Estimation 

Taking into account the problem of blind user separation in a DS-CDMA system, the whitening 

process will be carried out first in order to simplify the blind separation problem and suppress noise. 

Using the model Equation (7), the whitening processing is executed as follows:  

The autocorrelation of the observations is described as: 

( )

2

2

2

T T T

T

T

T

E E s

s

s

é ù é ù= = +ê ú ê úë û ë û
= +

= +

=

R XX G BB G I

U U I

U I U

U U

S

S

L

 (21)

where TE é ù =ê úë ûBB S , ( ) ( )2 2 2 2 2 2 2 2
1 2 1 2

diag , , , diag , , , , , ,
C K

l l l s s s s s s s s= = + + +  L . 

2, 1,2, ,
i
i Ks =   are eigenvalues of the signal subspace, which contains the K  eigenvalues of R  in 

descending order. I  denotes an identity matrix of suitable size. 2s  is noise variance. The number of 

active users K  is known in DS-CDMA systems. The noise variance can be estimated as: 

( ) ( )2
1K C

C Ks l l+» + + -  (22)

The corresponding eigenvalues of signal subspace are 2 2, 1,2, ,
i i

i Ks l s= - =  . Furthermore: 

( ) ( )


2

2

T

K K
TN
N

C K C K

s

s
´

- ´ -

é ù+ê ú é ùê ú ê úé ù= ê ú ê úê úë û ê ú ê úë ûê úë û

B
B

B

I 0
U

R U U
U0 I

l

 (23)

the matrix BU  is the size of C K´ , which contains the orthonormal signal eigenvectors, and 

( )C C K´ -  matrix 
N
U  contains the noise eigenvector. ( )2 2

1
, ,

K
diag s s=B l . It is convenient to 

implement a whitening operation, and X  can be compressed as X : 

( )1 2 T-= = +
= +

B BX QX U GB N
GB N


 

l
 (24)
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The model Equation (24) is a whitened BSS model, 
1 2 T-

= B BQ Ul  is whitening matrix same as in 

Equation (9), and G  is an orthogonal matrix. Therefore, the problem of Equation (16) is a converted 

into a orthogonal joint diagonalization to seek a mixing matrix. Assume that the separation matrix is W  

obtained after the optimization of Equation (16). Then the goal of blind user separation is realized by: 

( )ˆ sign=B WX  (25)

Ideally, there exists the relationship of =WG I . In fact, there exists an inherent ambiguity problem 

in blind source separation. Therefore, =V WG  is not an identity matrix but rather a generalized 

permutation matrix. The ambiguity problem includes amplitude and order ambiguity. The amplitude 

ambiguity will be eliminated if we assume the covariance of B  satisfies TE é ù =ê úë ûBB I . After the 

whitening operation, this condition can be obtained easily. The order ambiguity can be solved based on 

the following principle:  

The recovered source signals can be given by: 

ˆ = =B WGB VB  (26)

where V  is a generalized permutation matrix, or global matrix, where each column (or row) contains 

only one non-zero element whose absolute value is 1. It is worthwhile to note that: 

ˆ T TE Eé ù é ù=ê ú ê úë û ë ûBB V BB  (27)

The global matrix V  can be estimated by finding the cross-correlation matrix between the vectors 

of separated signal B̂  and source signal B . If an estimate of V  is acquired, the source signal with 

proper order can be obtained as: 

ˆT=B V B  (28)

In summary, we use the following steps which are shown in Table 1 to overcome the order 
ambiguity, where we assume each user transmits the short length 

p
M  of the pilot symbols. 

Table 1. Order ambiguity eliminated. 

(a) Normalize the pilot symbols so that: 

( ) ( ) ( )1
1 pM T

p i
M i i

=
=å b b I   

(b) Estimate V via the time average as: 

( ) ( ) ( )1
ˆ1 pM T

p i
M i i

=
= åV b b   

(c) For each column of G , normalized the amplitude of the element which has the maximum 
absolute-value to be one, and set all of other elements to be zero. Denote the normalized 

global matrix asV  ; 

(d) Restore the order of the outputs of blind separation by ˆT=B V B . 

Next, we will discuss the blind spreading sequence estimate using BSS. According to Equation (7), 

when the noise N  is not considered except simulation experiments, we can arrive at: 

=X GB (29)
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The autocorrelation of X  is denoted as XR , then XR  is executed singular value decomposition 

(SVD), i.e.,: 

T=XR UDU  (30)

we assume that the C K´ÎBU   denotes the matrix composed of K  main eigenvectors, then the 

expanded space of column vector of T K ĆÎBU   belongs to the same space as the expanded space of 

the column vector of TG . Note that there exist a linear transformation relationship between T

BU  and G  

If the linear transformation is assumed as A , we can establish the blind separation model: 

T T=BU AG  (31)

The matrix A  denotes the mixing matix in the BSS model, TG  is the source matrix, and the matrix 
T

BU  is the observation matrix. Therefore, the blind separation can be used to estimate the matrix TG . 

Assume that Y  denotes the separated signal. After the separation is executed, the hard decision is 

carried out for Y , namely: 

( )ˆT sign=G Y  (32)

Then we can estimate the spreading sequence from Equation (32) as 
1

ˆ , ,
K C K´

é ù= ê úë ûG c c  . The steps 

of the proposed method can be outlined as shown in Table 2. 

Table 2. Blind Adaptive Detector for DS-CDMA system. 

(a) The whitening preprocessing of the observation using Equations (21) and (24); 
(b) Initialize processing point , 1

i
i L=u   from the range of [-1, 1]; 

(c) Estimate charrelation matrices ( )Yr u  of the whitened signal using Equation (20); 

(d) Carry out WEDGE joint diagonalization for optimizing problem Equation (16); 
(e) Seek separation matrix and estimate users’ original signal of DS-CDMA using  

Equation (25), order ambiguity eliminated by Equations (27) and (28); 
(f) Based on the model (7), to estimate spreading sequence of DS-CDMA using  

Equations (30)–(32). 

3.4. Performance Analysis 

In this subsection, we evaluate the blind separation performance of the proposed algorithm 

compared with the conventional scheme (see details in the simulation analysis) and the HOS-based JADE 

algorithm. Due to the fact the charrelation matrix incorporates HOS characteristics, which can suppress 

the Gaussian noise [25]. Therefore, the proposed blind scheme can improve the system performance 

compared to the conventional scheme in the noise environment. Moreover, the proposed algorithm 

exploits a “hybrid statistics” (SOS and HOS) manner to extract statistical information, which can acquire 

more perfect estimated information compared to the JADE with HOS-based manner when the length of 

signal samples is not enough. In addition, we know that the principle of JADE is joint diagonalization 

of estimated fourth-order cumulant eigenmatrices [1]. The principle of the proposed method is joint 
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diagonalization of estimated charrelation matrices. From the perspective of computational complexity, the 

cumulant matrix needs four derivatives of the second characteristic function compared to the two 

derivatives in charrelation matrix. Finally, the computational complexity of the joint diagonalization 

method is also considered for both these blind separation algorithms. The computational complexity of the 

joint diagonalization method of the JADE and the proposed method is ( )4O KM  [1] and ( )3O KM  [28] 

respectively. Thus we can know the new method is computed simply and extracts perfect information 

from samples of observation signals. From the previous analysis, we can evaluate the improved blind 

separation performance that can be obtained. 

In order to carry out more performance assessments, the performance in terms of ISR is displayed in 

mathematical analysis. The ISR is computed from the estimated mixing matrix by post-multiplying its 

inverse by the true mixing matrix and averaging the minimum to maximum power ratio in each row of 

the results. More specifically, if we defined =V WG  as the resulting overall “contamination matrix”, 
2

ij ij
ISR E é ù

ê úë ûV  is the residual mean contaminating power of source j  in the reconstruction of source i . 

Thus, in the vicinity of a non-mixing condition 
K

=G I , it is easy to observe that 2
ij ij

ISR E é ù» ê úë ûW . 

Under the small-errors assumption and sub-Gaussian source signal considered (most communication 

signals are sub-Gaussian signals), the covariance in the estimation of the elements of G , and hence the 

ISR can be predicted. The ISR performance of JADE can be shown [28] to given by: 

( )
4 2 2

2 2

1 j i jJADE

ij

j i

ISR
M

k k k

k k

+ +
»

+
 (33)

Likewise, taking into account the diagonal structure (at =G I ), we can obtain approximatively the 

ISR performance of the proposed method as follows: 

2

2 2 2 2

1 jProposed

ij

j i i j

ISR
M

k

k k k k
»

+ +
 (34)

where, the 
i

k  and 
j

k  are statistical moment parameters about unknown thi  and thj  source. For 

convenience, without loss of generality, the sources come from the uniform distribution, assuming 

i j
k k k= = . We define the ratio of two ISR to evaluate the performance. We can obtain: 

6

4 6 8 2 2

4 1 1
24 4 1 4

Proposed JADE

ij ij
ISR ISR

k
h

k k k k k-
= = = £

+ + + +
 (35)

Based on the above analysis, we find that Proposed JADE

ij ij
ISR ISR<  and the ISR performance is 

inversely proportional to the number of samples M . ISR denotes that the ISR is smaller when the V  

matrix is closer to the generalized permutation matrix, and the demixing performance of the algorithm is 

better. We can know that the proposed method outperforms JADE, and the ISR improvement becomes 

more pronounced as the number of sample increases. In the next section we will give the simulation results 

and demonstrate the performance of the DS-CDMA system aided by the proposed method to verify the 

analyzed case. 
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4. Simulations and Discussions 

To demonstrate the effectiveness of our proposed method, simulation experiments are used to illustrate 

the ISR performance of blind separation by the charrelation matrix and the Bit Error Rate (BER) 

performance of this method executed in DS-CDMA systems. The results are shown in Figures 2–6.  

The ISR and BER performance index are utilized to show the advantage of performance of the  

proposed approach. 

 

Figure 2. ISR performance comparison of JADE and the proposed method. 

 

Figure 3. BER performance comparison between JADE and the proposed method for user 

separation in DS-CDMA systems. 

1000 2000 3000 4500 6500 10000
-54

-52

-50

-48

-46

-44

-42

-40

-38

-36

-34

Number of samples M

A
ve

ra
ge

 IS
R

 [d
B

]

 

 

JADE
Proposed method

-5 -4 -3 -2 -1 0 1 2
10-4

10-3

10-2

10-1

SNR/dB

B
E

R

 

 

JADE
Proposed Method
JADE
Proposed Mehod

User=4

User=3



Sensors 2015, 15 20163 

 

 

 

Figure 4. BER performance comparison among the proposed blind separation scheme and 

conventional scheme. 

 

Figure 5. Performance of estimate the chip code for four users in a DS-CDMA system. 

 

Figure 6. Estimation accuracy of the chip code for different users in a DS-CDMA system 

with the JADE method and the proposed method. 
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To begin with, we demonstrate the performance of the ISR, which can be computed in numerical 

analysis as follows [19]: 

2 2

2 2
1 1 1 1

1
1 1

2 max max

K K K K
ij ij

num
i j j i

j ij i ij

v v
ISR

K v v= = = =

ì üé ù é ùï ïï ïê ú ê úï ïï ïê ú ê ú= - + -í ýê ú ê úï ïï ïê ú ê úï ïë û ë ûï ïî þ

å å å å  (36)

where ( )ijv= =V WG  is the unmixing-mixing global matrix, and 1-=W G  is the estimated 

unmixing matrix.  

The simulation parameters are that the number of sources is 4, the mixing matrix is randomly 

generated, and 10 simulations are implemented, and the channel fading gains of 4 users are set as 1, 

0.8, 0.2 and 0.05, which are same as in the following simulation conditions. The other parameters are 

marked in Figure 2. It is readily seen that the proposed method outperforms JADE from the Figure 2 as 

previously exposed. Next the Bit Error Rate (BER) of user separation performance in DS-CDMA 

systems by this method is given. The simulation parameters in DS-CDMA systems are that the number 

of users is four, the length of spreading code is 31, and Gold Sequence is considered as spreading code, 

the length of samples is set as short with 1000 bits, 10 simulations are executed, and the modulation 

mode is BPSK. For comparison, the performance of another BSS algorithm, JADE (using the same 

data) is indicated as well. 

From the simulation results shown in Figures 2 and 3, we can conclude that the new approach has 

better performance than the JADE algorithms applied in DS-CDMA systems when the number of 

samples is short and the SNR of receiver signal is low. We also know from Figure 3 that the 

performance becomes worse with the increasing number of users. 

Next, we compared the new method with the conventional scheme and blind scheme used in 

multiuser detection. The conventional schemes include Decorrelation (DEC), Matched Filter (MF) 

Minimum Mean-Square-Error (MMSE), Parallel Interference Cancellation (PIC) and Successive 

Interference Cancellation (SIC). The blind schemes are JADE and the new method. All schemes were 

tested using Gold code of length 31C = . The number of users is 4K = . The number of samples is 

10,000 bits, the modulation mode is BPSK, and 10 simulations are carried out. The different 

parameters are marked in Figure 4. According to Figure 4, we can know that blind scheme is superior 

to the conventional scheme and proposed method is better than the JADE at lower SNR. 

In the end, the blind chip sequence estimation is investigated for DS-CDMA systems. The simulation 

parameters are that the Walsh code of length 64 is tested, and 10 simulations are implemented.  

The different parameters are marked in Figure 5 (SNR = −8 dB) and Figure 6, respectively.  

Figures 5 and 6 show the chip sequence can be estimated completely at low SNR. From Figure 6, we 

can know that the proposed method has better performance compared to JADE. In summary, we can 

acquire the chip sequence with high accuracy in the case of low SNR. 

5. Conclusions 

In this paper, we investigate the charrelation matrix (the generalized covariance matrix) in  

DS-CDMA systems for blind user separation and blind chip/speading sequence estimation. The 

unknown mixing matrix is estimated by joint diagonalization of the charrelation matrix of the 
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observations. Theoretical analysis and simulation results show that the proposed blind separation using 

charrelation matrix performs better than the conventional scheme in low SNR. Especially, the 

proposed blind separation method has superior performance than that of the existing classical JADE 

algorithm-based HOS when the number of samplings is short and the SNR of the received signal is 

low. Furthermore, we can acquire the chip sequence in the case of low SNR and high accuracy assisted 

blind separation based on the charrelation matrix, so the proposed method has strong ability anti-

interference, which is promising in applications for anti-jamming in military communications and 

satellite communications. 
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Appendix 

A. Charrelation Matrix Derivation 

Derivation of the charrelation matrix Equation (14) is illustrated in this Appendix. First, the 

differentiation of formula Equation (13) with respect to u  gives: 

( ) ( ) ( )
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Second, the differentiation of Equation (A1) with respect to Tu  affords: 
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 (A2)

In a simple operation, we can derive a more compact form of the core equation: 
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( ) ( )T TY = Yr bu G G u G  (A3)

B. Diagonalization Verification 

Let ( )fb u  denote the generalized characteristic function of source signal ( )mb . Due to the 

statistical independence of elements of ( ) ( ) ( )1
, ,

T

K
m b m b mé ù= ê úë ûb  , we get: 

( ) ( ) ( ) ( )
1 21 3 Kb b b K
u u uf f f f= ⋅b u   (B1)

where ( ) ( )( )exp , 1,
ib i i i
u E u b m i Kf é ù= =ê úë û

 . Defining ( ) ( )logj f=b bu u  is called second generalized 

characteristic function” of source signal ( )mb . Hence, we obtain: 

( ) ( ) ( ) ( )
1 21 2 Kb b b K
u u uj j j j= + + +b u   (B2)

Consequently, the charrelation matrix ( )Yb u  can be easily obtained: 
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