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Abstract: With the increasing climatic extremes, the frequency and severity of urban flood 

events have intensified worldwide. In this study, image-based automated monitoring of 

flood formation and analyses of water level fluctuation were proposed as value-added 

intelligent sensing applications to turn a passive monitoring camera into a visual sensor. 

Combined with the proposed visual sensing method, traditional hydrological monitoring 

cameras have the ability to sense and analyze the local situation of flood events. This can 

solve the current problem that image-based flood monitoring heavily relies on continuous 

manned monitoring. Conventional sensing networks can only offer one-dimensional 

physical parameters measured by gauge sensors, whereas visual sensors can acquire 

dynamic image information of monitored sites and provide disaster prevention agencies 

with actual field information for decision-making to relieve flood hazards. The visual 

sensing method established in this study provides spatiotemporal information that can be 

used for automated remote analysis for monitoring urban floods. This paper focuses on the 

determination of flood formation based on image-processing techniques. The experimental 

results suggest that the visual sensing approach may be a reliable way for determining the 

water fluctuation and measuring its elevation and flood intrusion with respect to real-world 

coordinates. The performance of the proposed method has been confirmed; it has the 

OPEN ACCESS



Sensors 2015, 15 20007 

 

 

capability to monitor and analyze the flood status, and therefore, it can serve as an active 

flood warning system. 

Keywords: visual sensing; urban flood monitoring; water level fluctuation 

 

1. Introduction 

1.1. Urban Floods 

Climate extremes and changing weather, which are associated with global warming and climate change, 

have led to a significant increase in the frequency and severity of floods [1]. Meteorological observations 

have shown that in many cities worldwide, precipitation has become heavier and more variable [2]. The 

overall incidence of extreme rainfall has also increased gradually, and this has caused heavy losses to 

human life and property in flooded areas [3]. Owing to their increasing incidence and severity, floods are 

expected to be a continuous threat in most cities worldwide [4,5]. Nowadays, flood warning systems are 

being widely used for monitoring and forecasting flood disasters and water resources. However,  

one-dimensional measurement data of the water level and streamflow from gauge stations are insufficient 

for representing actual runoff-land interactions. Moreover, existing flood risk models have low specificity 

and are insufficient for the analysis of small districts. Furthermore, decision-makers cannot obtain 

sufficient visual field information for disaster control and hazard reduction. Currently, owing to large-scale 

urbanization, ~50% of the world’s population lives in crowded cities [6]. However, the concentrated 

populations and economic activities of urban areas may also make them more vulnerable to the impact of 

floods on account of increased difficulties in evacuation and sheltering procedures. Thus, to assist  

decision-makers in analyzing a situation for public disaster warning or hazard reduction actions, the  

real-time visual monitoring of urban flood events is a very important tool. In this paper, based on the needs 

of decision-makers for urban flood control, we propose the use of a visual sensing technique based on 

network cameras for hydrological management to realize intelligent surveillance and warning of river 

overflows. As a sensing system for urban intelligent flood control and disaster reduction, this tool provides 

flood warnings and real-time information to disaster relief sectors for disaster reduction actions. 

1.2. Flood Monitoring 

1.2.1. Gauge Sensing 

An urban flood hazard occurs because the surface runoff caused by heavy rainfall cannot be 

relieved in a timely manner. This hazard involves various aspects, including structural erosion; 

building damage; water pollution; interruption of social and economic activities, transportation 

systems, and communication networks; and loss of life and property. Climate change includes extreme 

weather patterns, leading to an increased frequency of flood hazards. Among all natural disasters, flood 

hazards are the most serious in terms of the number of people impacted and the deaths caused [7,8]. 

Therefore, studies on flood hazards have attracted significant attention in some scientific fields, such 

as those focusing on water resources and natural disasters. Currently, dynamic flood monitoring has 
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been extensively used in flood warning systems. Such systems mainly obtain data from a number of 

gauge stations, such as water level measurement stations, precipitation stations, and meteorological 

radar stations in catchment areas [9–13]. The data are mainly those of water-level fluctuation and the 

amount and precipitation distribution. In addition to their use in real-time flood monitoring, these data 

can also be applied to forecast future water-level fluctuations [14,15]. The flood warning system 

monitors hydrological variables as well as their time derivatives to provide disaster prevention sectors 

with advance flood information for flood management and relevant disaster reduction actions. In this 

way, the flood impact can be mitigated as much as possible. 

When a flood event occurs, the simplified water level, precipitation data, and observational evidence 

as well as streamflow models are available for disaster prevention sectors to determine disaster reduction 

actions accordingly. However, the water level data contains only one spatial dimension, a point-based 

view of the water surface, that cannot accurately represent the actual runoff-land interactions such as the 

spatial dynamics of the surface water extent. Moreover, whether monitored precipitation would cause a 

regional flood mainly depends on whether the regional runoff water can be discharged in a timely 

manner. For example, in an urban environment, the surface runoff water is collectively discharged to 

the sewer or a neighboring river. Thus, short heavy rain might be enough to cause a rapid raise in a 

small river’s water level and lead to overflow or even a flood disaster [16]. Therefore, the real-time 

field images of water levels, bank overflows, and the features of the surrounding ground surface and 

buildings in the runoff, in combination with data from precipitation and water level records, will be 

more helpful to disaster-relieving operations. 

1.2.2. Remote Sensing 

In addition to data collection from gauge stations, remote sensing technologies such as optical imagery 

and radar imagery are also widely used for measuring the wide-area water level and scope for defining a 

flooded area [17–21]. Remote altimetry technology can be used to continuously measure the water level 

variation within a large area and can thus be used to extensively monitor an entire flood event [22–24]. 

Another advantage of this technology is that it remotely acquires data of absolute water elevations, which is 

helpful for the integration of flood management and for environmental science research. Comparatively 

speaking, gauge-based ground monitoring is limited by station distribution and numbers, which may result 

in uneven coverage of a floodplain. Moreover, the measured water level is a relative level, and it needs to 

be standardized before comprehensive data pooling among different stations can be performed. Currently, 

remote sensing images of water levels show decimeter-level measurement accuracy, and the transmission is 

almost real-time in nature [13,18]. However, thus far, studies on the remote measurement of water levels 

have mainly focused on large-area waterbodies, such as oceans, interior lakes, lagoons, and large rivers 

(width > 100 m). Only a few studies have focused on small-scale river branches (width < 40 m) in urban 

areas, which typically zigzag through the urban areas and can be easily blocked by buildings [25,26]. Flood 

detection in urban areas is greatly improved using remote sensing techniques. Recent advances in Earth 

Observation (EO) are improving the capability of detecting flooded zones in urban areas via  

high-resolution synthetic aperture radar (SAR) [19,27–30]. Additionally, a digital elevation model (DEM) 

created using an X-band sensor (e.g., TerraSAR-X and COSMO-Skymed Constellation) is widely used 

for flood prediction and monitoring. A satellite can transmit short-wavelength microwaves to acquire data 
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throughout the day regardless of the weather conditions [31,32]. This, along with the increasing 

computational power, is facilitating the real-time integration of SAR-derived water levels with operational 

flood forecast models via data assimilation (DA) techniques [33–38]. The sensor observations are 

integrated with the model by DA techniques to obtain a 3D description of the flood for a forecast as well as 

for the flood warning systems. Furthermore, the remotely measured water level data still need to be verified 

to ensure accuracy using ground measurement data [39]. Owing to the restriction of orbital cycles and 

inter-track spacing of satellite movements, the limitation of remote measurement data in continuous 

monitoring and the observation of fixed points is another key problem. Thus, it is difficult to use remote 

sensing technology for long-term and near-real-time water level measurement at fixed points in small rivers 

in urban areas. Therefore, regardless of its real-time monitoring capability and high accuracy, remote 

sensing technology is not well-suited for urban flood prediction in terms of cost and timeliness. 

1.2.3. Flood Risk Mapping 

Model analysis has been widely applied in studies on flood risk. In this type of analysis, hydrological 

data such as water level and precipitation from monitoring stations is combined with remote measurement 

images and geographic models to analyze and simulate flood events. In this way, this analysis derives risk 

information from a probabilistic viewpoint, which can be assessed with regard to various scenarios such as 

potential flood depth and coverage within a certain geographic area, and it provides flood risk assessment 

and risk mapping to identify zones that are vulnerable to flooding in advance [16,40–43]. For flood 

management and policy implementation, the advance acquisition of flood risk assessment information, 

such as the flooding probability, degree, location, and height, enables the government to implement disaster 

management practices in advance. Furthermore, results from the flood model analysis can be used for 

disaster reduction. For example, for urban flood relief, these results can be considered and used for the 

determination of settings and operational regimens of flood discharge valves and pump stations [44,45].  

On account of the possible geomorphological alteration caused by changes to buildings or streets, or the 

construction of new ones, the model must be periodically updated for urban flood risk mapping. 

Nevertheless, risk mapping is used for large-scale risk assessment, which is not specific or conducted in 

real time for urban local-scale assessment. In addition, it is difficult to verify the analysis results with the 

actual runoff status of the streets. Thus, this method remains insufficient for enabling decision-makers to 

conduct immediate and accurate disaster reduction actions. 

1.3. Proposed Flood Visual Sensing 

In situ gauge measurement is the most basic and extensively used means for obtaining hydrological 

information. Although this measurement can quantitate flow dynamics, such as river flood discharge or 

overflow, it lacks dynamic information regarding the actual spatial change in runoff, such as floodplain 

flow and bank overflow. In most places where conditions are not suitable or funds are lacking to build 

a gauge station, CCTV monitoring is used as an alternative solution. Furthermore, because it is 

difficult for decision-makers to clearly understand the field flood situation based on these measurement 

data, the decisions made might inevitably be unsuitable in the actual situation. Although the use of 

remote sensing images can overcome the in situ gauge measurement’s disadvantage of 

incomprehensive flood monitoring and can reach decimeter-level accuracy for water level measurement, it 
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cannot realize long-term continual monitoring of urban small-scale flood events and accurately measure the 

water level changes in small rivers. 

Closed-circuit television (CCTV) has been widely used in river monitoring [46], water level 

measurement [47], and flood modeling and flood emergency management [48], which employ remote 

video surveillance images to obtain dynamic field information of streamflow or continuously filmed 

images to analyze the surface stream velocity of water [49,50]. The detection of the water body using  

seed-guided graph-based image segmentation and the details of the algorithm are described in Section 2.2. 

The image segmentation technique is currently widely used in various fields of science and engineering. It 

can roughly be divided into boundary-based, graph-based, and statistical-based methods [51–55]. The goal 

of an image segmentation technique is that it groups pixels as multiple segments that represent the visual 

perception meaning from an image. The pixels within a segment have similar properties such as color and 

texture. This is typically used to identify objects or other relevant information in digital images. 

Therefore, real-time images provide more useful dynamic field information to support improved 

decisions from disaster management agencies in optimizing their emergency responses. In this paper, we 

propose a visual sensing application for real-time image-based monitoring of flood fluctuations in small 

urban riverine areas. The sensed data, including visual data, are used for supporting decision-making for 

disaster reduction, as shown in Figure 1. A camera can obtain real-time field images of runoffs and 

automatically analyze the field water level situation. Therefore, the proposed visual sensing application can 

be used for flood detection and provide data regarding water level changes, which will help disaster 

management agencies to rapidly and accurately understand the flood situation and initiate disaster 

reduction actions accordingly. 

 

Figure 1. Flowchart of visual sensing for flood events. The system utilizes visual sensor 

technology to automatically analyze the monitoring image to obtain information regarding 

the field water level and runoff region. According to the analysis results of high-risk areas, 

the system automatically alerts the ultimate decision-makers, who will then choose suitable 

disaster reduction actions based on the geographic images and runoff data. 
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2. Intelligent Urban Flood Visual Sensing of Smart Cities 

In a modernized smart city, information and communication technology (ICT) has been widely 

applied in areas such as transportation management, communication, resource management, and 

instrument information. Technologies such as cyber-surveillance and sensor networks are also commonly 

employed in a variety of intelligent applications [9,56–58]. In addition to long-term water management, 

the hydrological management of a smart city includes key components, such as short-term emergency 

flood alarm and disaster reduction activities, which are decided by the departments of disaster 

prevention and hydrological management. One of the most important steps in the flood alarm system is 

the process of providing accurate and concise field information to the decision-makers through ICT. 

For water resource management and maintenance, monitoring systems have been used in important 

river zones to enhance the surveillance initially performed by humans. This provides continual 

monitoring while greatly reducing human resource consumption. However, all real-time monitoring 

images currently still require a one-by-one manned check to determine the occurrence of river 

overflow after being sent to the central system. Therefore, this system does not function for intelligent 

early warnings. 

This study aims to address the question of how to utilize a visual sensing system to assist in early 

warnings for urban floods. Figure 1 shows a flowchart of the application of intelligent visual sensing in 

an urban flood management system. First, real-time field images are automatically analyzed to 

determine the flood severity by image processing with set virtual markers; the data are then sent to 

decision-makers, along with the field images and water level results for reference, to help in accurately 

and rapidly providing warnings and responses. 

The main software modules of the flood visual sensing system are as follows: Section 2.1 an  

event-based triggered visual sensing system for determining image quality and verifying the existence 

of a waterbody; Section 2.2 detection of the runoff for determining the waterbody region using an 

image segmentation method; and Section 2.3 calculation of runoff fluctuation for analyzing the flood 

risk degree using waterbody region data based on a preset virtual marker or the scales of in situ  

water-level rulers. 

2.1. Flood Visual Sensing 

A flowchart of the visual sensing used in this study is shown in Figure 2. All of the in situ remote 

monitoring cameras were situated at distances of at least tens to hundreds of meters from the 

watercourse. Most of them were located at a higher place behind the riverbank to improve their 

survival rate during disasters while ensuring that the FOV of the cameras could cover the entire 

monitored scene. Figure 2a,b show the input monitoring image and the image with preset virtual 

markers from an actual operation, respectively. The red “o” and green “o” represent the locations of 

the seed and virtual markers, respectively. The red outline in Figure 2c indicates the detected region of 

the waterbody, whereas Figure 2d shows the waterbody contour expressed as a binary image after 

background removal. In the binary image (Figure 2d), the virtual markers covered by the waterbody 

are denoted with a red “*”; the seed location is marked by a black “+”. Figure 2e shows the  

post-analysis water level fluctuation data. 
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The monitoring images of each site were compressed in JPEG format with a resolution of 352 × 288 

(CIF). These images were returned to the central management center at a frequency of one image per 

minute, as shown in Figure 2a. Before the initial visual sensing process, each camera station was set 

with a virtual seed and several virtual markers in advance, as shown in Figure 2b. The seed is used to 

analyze the waterbody surface texture and guide image segmentation of waterbodies, whereas virtual 

markers are used to indicate the boundary of an actual space (for example, marking over the length of a 

water-level ruler on the bridge pier or the surface of a riverbank). The flood risk of the runoff can be 

evaluated according to the number, proportion, and sequence of virtual markers covered by the 

waterbody. Meanwhile, the FOV parameters of the cameras can also be recorded and checked during 

the visual sensing work. If the parameters do not meet the requirement, the cameras should be 

automatically reset to the default FOV parameters to ensure the FOV consistency of images and virtual 

markers throughout the visual sensing process. The FOV parameters, which can be automatically 

retrieved from the cameras, consist of the pan angle, tilt angle, and zoom ratio (pan/tilt/zoom, PTZ). 

The record/check FOV procedure in the overall workflow is shown in Figure 2. 

 

Figure 2. Flowchart of visual sensing process for floods. Before image analysis, (a) check 

whether the camera’s field of view (FOV) is correct; (b) set up a virtual seed and markers; 

(c) determine whether to carry out waterbody detection using an event-based trigger; and 

(d) evaluate the water level fluctuation tendency; (e) Water level variation based on the 

computation of waterbody detection data combined with virtual markers. 

The visual sensing triggered by event-based rules (rules in Table 1 and sensing result in Figure 2c) 

is used to determine whether input monitoring images are suitable for visual detection. If the 

requirement is met, the images are then segmented to separate the waterbody region from the image. 

However, the cameras in the visual sensor network (VSN) might have different specifications, 

functions, and configurations (e.g., with/without defog, nighttime infrared (IR) imaging, infrared 

auxiliary radiation source, and nighttime auxiliary lighting). Moreover, the quality of captured images 

is subject to the impact of weather (e.g., insufficient daylight, heavy fog caused by atmospheric 
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suspended particulates and water vapor). Therefore, the designing principle of event-based trigger 

rules is based on whether the screened image content is analyzable. For example, first, monitoring 

images with excessively low image contrast (likely caused by insufficient brightness, non-IR thermal 

images captured at nighttime, or blurred images caused by heavy fog or rain) or low brightness 

(nighttime or insufficient daylight) can be excluded because they are non-analyzable. Subsequently, 

the texture analysis of the waterbody surface in the image is performed to verify the existence of the 

waterbody. Finally, waterbody region segmentation (Figure 2d) and flood severity analysis (Figure 2e) 

are conducted. 

The event-based trigger mechanism minimizes the discrepancies among the images to be analyzed, 

which are caused by the use of different monitoring devices and environmental conditions. This 

mechanism makes simultaneous or individual control possible for the flood risk assessment of each 

individual monitoring station, thereby reducing the use of computing resources. The procedure of the 

event-based trigger mechanism is shown in Figure 3. It is described in detail in Event-Based Trigger. 

 

Figure 3. Flowchart of sensing triggered by using event-based rules. All remote 

monitoring images are subject to a two-stage screening: (1) quality analysis of images for 

screening of images that cannot be analyzed, and (2) surface texture analysis of the seeding 

region of interest (ROI) to verify the existence of a waterbody. Only images that are 

subject to the two-stage screening are used for the subsequent waterbody region detection.  

Event-Based Trigger 

When visual sensing is used in outdoor conditions that rapidly change, the image-capturing device 

and imaging quality determine the success of the subsequent analysis. However, most hydrological 

monitoring stations do not use advanced intelligent cameras or infrared thermal cameras with night 

vision and fog penetration features. Therefore, the unanalyzable images (or poor quality images) might 

be transmitted to the central warning system. Poor quality images are defined based on “analyzability” 

and “identifiability.” Because various factors are associated with the poor quality of unanalyzable 

images, it is difficult to design and implement algorithms for image analysis in terms of their sources. 
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As a result, in this study, only images that could be used for visual analysis (images with significant 

perceptual identifiability) were considered analyzable. Accordingly, a universal monitoring image 

parser was designed based on this standard. In general, poor image quality is caused by insufficient 

luminance (e.g., images captured at night without night vision), excessive luminance (e.g., direct sunlight, 

strong light reflected by glass walls of buildings, interference of high-beam lights of vehicles, etc.), 

insufficient contrast (images obscured by thick fog, or images with a background that is too bright or 

too dark), hardware or network defects (blank images due to a signal-capturing interruption; these are 

usually a black, green, or blue screen), a dirty camera lens (contaminated mirror surface, spilling of 

rain water, etc.), and so on. 

Unanalyzable images can be attributed to various factors. Therefore, it is not possible to design 

algorithms specific to every cause. Instead, an outcome-based approach can be applied, namely, a 

parser is used to reserve analyzable images and remove poor-quality ones. In this study, analyzable 

images are defined as images with luminance and contrast within a certain visible range; the content in 

these images has high visual identifiability on account of the appropriate luminance and contrast. The 

image property parameters used in the image analysis are shown in Table 1. The range of each 

parameter is obtained from the visual-detecting experience of the users. The work process of the parser 

is as follows: //	ࢋࢍࢇ࢓ࡵ	ࢋ࢙࢘ࢇࡼ	࢘࢕ࢌ	࢝࢕ࡸ/࢚ࢎࢍ࢏ࡺ/࢟ࢇࡰ− ࢍ࢕ࡲ/࢚࢟࢏࢒࢏࢈࢏࢙࢏࢜ − ࢔࢏ࢇ࢘ − ݏ݈݁ݔ݈݅ܲ݁݌݉ܽܵ݇ݎܽܦ݂ܱݐ݊݁ܿݎ݁ܲ_ݐ݅݉݅ܮ	.࢘࢕࢏࢘࢖	࢓࢕࢘ࢌ	ࢋࢍ࢔ࢇࡾ	//	//.࢟ࢊ࢕࢈	࢘ࢋ࢚ࢇࢃ/ࢋ࢙࢏࢕࢔ = 	ݕݐ݅ݏ݊݁ݐ݊݅	݈݁ݔ݅݌)	ݏ݈݁ݔ݅݌	݈݁݌݉ܽݏ	݂݋	%	݇ݎܽ݀	//		;50 ൏ ݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ_ݐ݅݉݅ܮ	(50	 = ݏ݈݁ݔ݈݅ܲ݁݌݂ܱ݉ܽܵݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ_ݐ݅݉݅ܮ	݁݃ܽ݉݅	݂݋	ݕݐ݅ݏ݊݁ݐ݊݅	݊ܽ݁݉	//																																				;80 = 	ݕݐ݅ݏ݊݁ݐ݊݅	݈݁ݔ݅݌)	ݏ݈݁ݔ݅݌	݈݁݌݉ܽݏ	݂݋	ݎܾ݁݉ݑ݊	//			;80 ൏ ݃ݒܣℎ݈ܽ݊݊݁ܥ݇ݎܽܦ_ݐ݅݉݅ܮ	(80	 = ܿݎܲ݁ݎݑݐݔ݁ܶܫܱܴ݀݁݁ܵ_݁ݐ݅݉݅ܮ	݁݃ܽ݉݅	ℎ݈ܽ݊݊݁ܿ	݇ݎܽ݀	݂݋	ݕݐ݅ݏ݊݁ݐ݊݅	݊ܽ݁݉	//																									;60 = 		ܫܱܴ	݀݁݁ݏ	݂݋	݁݃݀ܧ	//																				;2 > 	2%	 = 	ݏ݈݁ݔ݈݅ܲ݁݌݉ܽܵ݇ݎܽܦ݂ܱݐ݊݁ܿݎ݁ܲ)	݂݅	.࢘ࢋ࢙࢘ࢇ࢖	ࢋࢍࢇ࢓ࡵ	//	.݀݊ݑ݋ݎ݃	ݎ݋	ܾ݀݁ݎ݁ݒ݅ݎ	 > 	ݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ)	݂݅݁ݏ݈݁					ࢋ࢘ࢋࢎ	࢖࢕࢚࢙	࢒࢒࢏࢝	ࢋࢍࢇ࢓࢏	࢑࢔ࢇ࢒࡮	//	݊ݎݑݐ݁ݎ					(ݏ݈݁ݔ݈݅ܲ݁݌݉ܽܵ݇ݎܽܦ݂ܱݐ݊݁ܿݎ݁ܲ_ݐ݅݉݅ܮ	 ൏ 	ݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ	||	ݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ_ݐ݅݉݅ܮ	 > ݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ_ݐ݅݉݅ܮ	 + 	ݏ݈݁ݔ݈݅ܲ݁݌݂ܱ݉ܽܵݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ)	݂݅݁ݏ݈݁	ࢋ࢘ࢋࢎ	࢖࢕࢚࢙	࢒࢒࢏࢝	ࢋࢍࢇ࢓࢏	࢑࢘ࢇࢊ	࢕࢕࢚	࢘࢕	࢚ࢎࢍ࢏࢘࢈	࢕࢕ࢀ	//	݊ݎݑݐ݁ݎ					(100 ൏ <	ݏ݈݁ݔ݈݅ܲ݁݌݂ܱ݉ܽܵݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ	||	ݏ݈݁ݔ݈݅ܲ݁݌݂ܱ݉ܽܵݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ_ݐ݅݉݅ܮ	 ݏ݈݁ݔ݈݅ܲ݁݌݂ܱ݉ܽܵݕݐ݈ܾ݅݅݅ݏܸ݅݉ܫ_ݐ݅݉݅ܮ	 + 100)	
	݃ݒܣℎ݈ܽ݊݊݁ܥ݇ݎܽܦ)	݂݅݁ݏ݈݁	ࢋ࢘ࢋࢎ	࢖࢕࢚࢙	࢒࢒࢏࢝	࢙࢒ࢋ࢞࢏࢖	ࢋ࢒࢖࢓ࢇ࢙	ࢌ࢕	࢑࢘ࢇࢊ	࢕࢕࢚	࢘࢕	࢚ࢎࢍ࢏࢘࢈	࢕࢕ࢀ	//	݊ݎݑݐ݁ݎ				 ൏ 	݃ݒܣℎ݈ܽ݊݊݁ܥ݇ݎܽܦ	||	݃ݒܣℎ݈ܽ݊݊݁ܥ݇ݎܽܦ_ݐ݅݉݅ܮ	 > ݃ݒܣℎ݈ܽ݊݊݁ܥ݇ݎܽܦ_ݐ݅݉݅ܮ	 + 	ܿݎܲ݁ݎݑݐݔ݁ܶܫܱܴ݀݁݁ܵ)	݂݅݁ݏ݈݁	ࢋ࢘ࢋࢎ	࢖࢕࢚࢙	࢒࢒࢏࢝	ࢋࢍࢇ࢓࢏	࢟ࢍࢍ࢕ࢌ	࢕࢕ࢀ	//	݊ݎݑݐ݁ݎ					(100 > 	(ܿݎܲ݁ݎݑݐݔ݁ܶܫܱܴ݀݁݁ܵ_݁ݐ݅݉݅ܮ	
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,ࡵࡻࡾ	ࢊࢋࢋ࢙	ࢌ࢕	ࢋࢍࢊࢋ	ࢍ࢔࢕࢒/ࢎࢉ࢛࢓	࢕࢕ࢀ	//	݊ݎݑݐ݁ݎ					 	݀݊݁	.࢔࢕࢏࢚ࢉࢋ࢚ࢋࢊ	ࢊ࢕࢕࢒ࢌ		࢕࢚	࢕ࡳ		.ࢊࢋ࢙࢙ࢇࡼ	ࢋ࢙࢘ࢇࡼ	//					݁ݏ݈݁	ࢋ࢘ࢋࢎ	࢖࢕࢚࢙	࢒࢒࢏࢝,ࢊ࢔࢛࢕࢘ࢍ	࢘࢕	ࢊࢋ࢈࢘ࢋ࢜࢏࢘
Table 1. Parser items and its visual meaning, applied condition, and processed example. 

Parser Item Function Object Image 

PercentOfDarkSample
Pixels 

.ݐݏ݊ܫ)))∑ ,ݔ) (ݕ ∈ ,ݔ)ݏ݈݁ݔ݈݅ܲ݁݌݉ܽܵ ((ݕ ≤ ,ݔ)ݏ݈݁ݔ݈݅ܲ݁݌݉ܽܵ∑(50 ൈ(ݕ 	100% 

Blank 
Image, 

Luminance 

ImVisibility 
∑ ௜.ݐݏ݊ܫ ,ݔ) ே௜ୀ଴(ݕ ܰ  

Luminance, 
Contrast 

ImVisibilityOfSample
Pixels 

∑ ௜.ݐݏ݊ܫ ,ݔ) (ݕ ∈ ,ݔ)ݏ݈݁ݔ݈݅ܲ݁݌݉ܽܵ ே௜ୀ଴(ݕ ܰ  
Luminance, 

Contrast  

DarkChannelAvg 
∑ ௜.ݐݏ݊ܫ_ℎ݈ܽ݊݊݁ܥ݇ݎܽܦ ,ݔ) ே௜ୀ଴(ݕ ܰ  Fog/Haze 

SeedROITexturePrc 
∑ ௜.ݐݏ݊ܫ ,ݔ) (ݕ ∈ ே௜ୀ଴ܫܱܴ݂ܱ݁݃݀ܧ ,ݔ)ܫܱܴ∑ (ݕ ൈ 100% Waterbody 

The percentage of dark sample pixels (PercentOfDarkSamplePixels) is the percentage of sampling 

points with intensity (here, the pixel intensity is the luminance of the HSV color space) value below 50 

in the group of sample pixels. The sampling points are located on the horizontal line and perpendicular 

line that pass through the image center with an interval of 10 pixels. Through this simplified method to 

reduce the number of sampling points, the blank images and unmanageable images with insufficient 

luminance can be very quickly detected and filtered. ImVisibility is the average overall luminance of 

the image, which can be used to roughly determine whether the luminance and contrast of an 

individual image are suitable for visual detection. The luminance of sample pixels 

(ImVisibilityOfSamplePixels) is detected a second time in terms of the average luminance through 

sampling point detection. Even when the average luminance of an image meets the visual requirement, 

this may possibly be a result of averaging excessively bright or excessively dark pixels. This situation 

usually occurs in monitored areas where both bright reflective surfaces and shadows from shelters 

exist. The parameter DarkChannelAvg estimates the fog density following the dark channel prior 

theory [59]. The dark channel prior can obtain the distribution and density of the fog in images. Similar 

to the previously described method of using the average luminance to analyze the image luminance, 

herein, we adopt the average intensity of dark channels in an image to represent the fog density in the 



Sensors 2015, 15 20016 

 

 

given image. After the first stage of image analysis, the second stage of texture analysis confirms the 

presence of a waterbody in images. The SeedROITexturePrc value is used to analyze the surface 

texture of the surrounding area, namely, the region of interest (ROI), of a seed. ROI refers to the  

seed-centralized image area with a radius of 25 pixels. The principles for estimating the waterbody 

surface are as follows. If the surface texture in a ROI area contains a significant number of geometric 

outlines, such as an edge and a boundary, the probability that this area is a riverbed or ground is high; 

otherwise, a texture that is smooth or contains a small proportion of geometric outlines indicates high 

probability of a waterbody. After the first screening stage, which ensures that all included images are 

visually analyzable, the determination of waterbody presence in the second stage can be easily 

simplified as the texture analysis of seed ROIs using the seed location for guidance. After the two 

stages of image property verification, two crucial steps—water range detection and water level 

analysis—can be initiated. 

2.2. Detection of Runoff 

After confirming the image quality and waterbody existence, the runoff region in the image is 

separated using seed-guided graph-based image segmentation. The detailed procedures used in this 

study are as follows. First, the image is subdivided into multiple independent segments using the 

graph-based segmentation method. Next, the independent segment containing the waterbody is 

identified under the guidance of the seed point. Because the water body texture has already been 

verified, the difficulty of identification and probability of false detection are significantly reduced. In 

addition, because the graph-based segmentation separates the image segments based on strong visually 

perceived characteristics, this method provides outstanding robustness for images with light 

attenuation and noise, even in the presence of rain and mist. 

The solutions of graph-based image segmentation can be divided into four groups: minimal 

spanning tree (MST)-based methods, graph-cut methods, shortest path methods, and random walk 

theory based methods [60]. The graph-based segmentation algorithm used in this paper is mainly 

solved by using the MST-based method according to Felzenszwalb’s theory [61]. The algorithm 

considers an individual image as an undirected graph (ܩ); then 	ܩ = (ܸ, ܸ	 where ,(ܧ = ሼݒ௞ሽ is the 

vertex collection in the graph (namely, the pixels in the images) and 	ܧ = ሼ݁௞௟ = ,௞ݒ) ,௟ݒ  ௞௟)ሽ is theݓ

collection of vertex-connecting edges in the graph. In addition, ݓ௞௟ is the weight of adjacent vertices ݒ௞ and ݒ௟ on the edge, and it reflects the dissimilarity of these two adjacent vertices (see Figure 4a). 

According to the rule of MST, vertices in the graph can be connected as sub-tree components (ܥ) by 
the edge with the smallest edge weight. ܦூே்(ܥ) denotes the internal difference and ܦா௑்(ܥ௜,  ௝൯, theܥ

external distance of components; these parameters are used to decide whether adjacent components 

should be combined or separated (see Figure 4b). 

Here, ݓ௞௟, the absolute distance of the RGB vector between the two vertices (namely, the absolute 

distance of the color between the two pixels and not the Euclidean distance in space) is the weighted 

value of the edge: ݓ௞௟ = ට(ݎ௞ − ௟)２ݎ + (݃௞ − ݃௟)２ + (ܾ௞ − ܾ௟)２ (1)
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Figure 4. Principle of graph-based image segmentation (referred from [60]) based on an 

image graph and its components: (a) edges between the pixels and its weight, 	݁଴௜, ݅ = 1,… ,4 for any image pixel ଴ܲ; (b) relationships of the internal distance, ܦூே், and 
mutual external distance, ܦா௑், between two spanning tree elements, ܥ௜	ܽ݊݀	ܥ௝, where ݓ௞௟ 
is the absolute distance of the RGB vector between the two vertices and not the Euclidean 

distance in space. 

The internal distance is defined as the maximum edge weighted value inside the component: ܦூே்(ܥ௜) = max௩ೖ,௩೗∈஼೔,௘∈ெௌ்(஼,ா) ௞௟ (2)ݓ

The external distance is defined as the minimum edge weighted value between all vertices of the 

two adjacent components, Ci  and Cj . If the two components are not adjacent, this parameter is defined 

as ܦா௑் = ,௜ܥா௑்൫ܦ :∞ ௝൯ܥ = min௩ೖ∈஼೔,௩೗∈஼ೕ,(௩ೖ,௩೗)∈ா ௞௟ (3)ݓ

Thus, the pairwise comparison predicates of the two components are as follows: ܲܦ൫ܥ௜, ௝൯ܥ ቊ ,௜ܥா௑்൫ܦ	݂݅				݁ݑݎܶ ௝൯ܥ > min ቀܦூே்(ܥ௜) + ,(௜ܥ)߬ ௝൯ܥூே்൫ܦ + ߬൫ܥ௝൯ቁ		݁ݏ݈ܽܨ			ݐ݋ℎ݁݁ݏ݅ݓݎ 																											  (4)

According to above predication (PD), if the external distances of the two components are longer 

than the minimum internal distance, they are predicated as independent components; otherwise, they 

should be combined into one single component. The threshold function τ(C) = k/|C|, where |C| is the 

number of elements in C. A smaller constant k leads to excessive segmentation that results in smaller 

final components; conversely, a larger constant k leads to segmentation that results in larger final 

components. The value of k is positively proportional to the size of the image [61]; therefore, we 

adopted k = 350 because the image size was 320 × 240 in this study. 

Finally, the runoff components are identified under the guidance of the seed point: ܵ௪௔௧௘௥ = ܵ௠ ∋ ,ݔ)௦௘௘ௗݒ (5) (ݕ

In the formula, ݒௌ௘௘ௗ denotes the coordinates of the seed point in the image. The seed-containing 

component is identified as the runoff stream. Based on the above definitions and the graph-based 

segmentation method, we obtained the Algorithm 1. 
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Algorithm 1 Seed-Guided Graph-Based Segmentation 

The input is a graph ܩ = (ܸ,  with ݊ vertices and ݉ edges. The output is a segmentation of ܸ into ,(ܧ

components ܵ = ,ଵܥ) … ,  .(௥ܥ
0. Sort ܧ into ߨ	 = 	 ,ଵ݋) . . . ,  .௠) by non-decreasing edge weight݋

1. Start with a segmentation ܵ଴, where each vertex	ݒ௜ is in its own component. 

2. Repeat step 3 for ݍ	 = 	1, . . . , ݉. 
3. Construct	ܵ௤ given ܵ௤ିଵ as follows. Let ݒ௜ and ݒ௝ denote the vertices connected by the ݍ-th 

edge in the ordering, i.e., ݋௤ = ௜ݒ ௝൯. Ifݒ,௜ݒ)  and ݒ௝ are in disjoint components of ܵ௤ିଵ and ݓ(݋௤) is small compared to the internal difference of both these components, then merge the 

two components; otherwise, do nothing. More formally, let ܥ௜௤ିଵbe the component of ܵ௤ିଵ 

containing ݒ௜  and ܥ௝௤ିଵ , the component containing ݒ௝ . If ܥ௜௤ିଵ ≠ ௝௤ିଵܥ  and ݓ൫݋௤൯ ≤ ,௜௤ିଵܥ൫ݐ݊ܫܯ ௝௤ିଵ൯ܥ , then 	ܵ௤  is obtained from ܵ௤ିଵ  by merging ܥ௜௤ିଵ  and ܥ௝௤ିଵ . 

Otherwise, 	ܵ௤ = ܵ௤ିଵ. 

4. All components of the image are obtained, and ܵ	 = 	 ܵ௠. The guiding flood region ܵ௪௔௧௘௥ is 

obtained from ܵ௠ when ܵ௠ is intersected by ݒ௦௘௘ௗ(ݔ,  .(ݕ
5. Return the waterbody region, ܵ௪௔௧௘௥.  

2.3. Calculation of Run off Fluctuation 

Based on the interleaving degree of the visually detected waterbody region and virtual markers, the 

actual field water level fluctuation is calculated to determine the flood risk and water level. The virtual 

markers representing the actual boundaries are pre-labeled in the image. The flood risk of the runoff 

can be assessed according to the quantity, proportion, and order of the virtual markers covered by the 

waterbody. The water level fluctuation can be expressed by the proportion of virtual markers covered 

by the waterbody as follows: ܹܽݎ݁ݐ	݈݁ݒ݁ܮ ݊݋݅ݐܽݑݐܿݑ݈ܨ = ݏܯܸ)∑ ∈ ܵ௪௔௧௘௥)∑ܸݏܯ  (6)

In this formula, ∑ܸݏܯ is the total number of virtual markers and ∑(ܸݏܯ ∈ ܵ௪௔௧௘௥) is the number 

of virtual markers covered by the waterbody. The virtual markers placed on the surface and top of the 

riverbank can be used to reflect the extent of water overflow; those placed on the water gauges can be 

applied to evaluate water level fluctuation by using images. An actual example is presented in the 

following section. 

3. Experimental Section and Discussion 

3.1. Monitoring Embankment Overflow 

Image monitoring was applied to monitor embankment overflow in this real-life case. The yellow 

“+” markers denote the virtual markers set on the embankment surface. The monitored location was 

the embankment of the MeiNong-Creek, which was monitored from 6:00 a.m. to 12:30 p.m. on  

29 August 2013. During this period, this area was in the early rain phase of the Kong-Rey typhoon, 

and an overflow from the embankment occurred once. In the monitoring images, a residential area is 
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adjacent to the MeiNong-Creek with the embankments serving as the boundaries. Five points were 

marked from the bottom to the top of the embankment to gauge the approaching water toward the 

embankment crown. The blue “*” markers denote the site where the seed was situated, which could be 

any site on the riverbed or runoff’s path to be sensed. Owing to the Kong-Rey typhoon, 498 mm of 

precipitation occurred within 24 h. Because the elevation of the MeiNong-Creek’s altitude is lower 

than that of its branches, overflow occurred continuously after noon, causing serious flooding on the 

roads of the adjacent MeiNong City. The local buildings, including post offices, fire stations, train 

stations, and agriculture associations, were flooded and paralyzed. In the downtown area, the average 

depth of the flood water reached 60 cm, and in the most critical flooded regions, the depth was 2 m. It 

was not until 8:00 p.m. that the flood ebbed and the roads were again operational. 

During this event, visual sensing was applied to acquire nearly real-time water level information, 

including analysis results of the runoff range from the monitoring images, extent of river water 

approaching the embankment, and time series fluctuation data. The visual analysis results and 

fluctuation data are shown in Figure 5. The monitoring images were sent back at a speed of one picture 

per minute; therefore, the sensing time resolution was 1 min. The analysis results with an interval of  

50 min are shown in Figure 5a–h. The virtual markers are denoted with a yellow “+” and a red “+” if 

they are covered by water; the blue “*” denotes the seed. Figure 5i shows the visual analysis data of 

the river water fluctuation. The data are expressed as the number of flooded virtual markers on the 

embankment. The horizontal axis indicates the monitoring time from 0 min (starting time was  

6:00 a.m.) to 370 min (12:30 a.m.); the vertical axis is the number of markers covered among the five 

markers in total. The number indicates the risk level; when all five markers were covered, a flood 

occurs. Figure 5i shows that high water levels occurred two times during the monitoring process. The 

first time, they appeared at around 8:00 a.m., when four markers were covered; the second time, they 

appeared at around 11:00 a.m., when all five markers were covered, indicating that overflow occurred 

continuously and led to a serious urban flood. 

Visual sensing of monitoring images can clearly determine the water level fluctuation amplitude 

before the occurrence of overflow. Although the sensing is not based on the exact water level, it can be 

used for an initial automatic warning. For instance, if four flooded markers are defined as the warning 

threshold, an alert can be sent in advance to disaster prevention agencies to enable an early response to 

the subsequent flood event. In this way, these agencies can evacuate personnel and facilities, control 

access to flooded areas, and undertake protective actions of important institutions and key facilities 

prior to the occurrence of an urban flood. 

Three false diagnoses were made during sensing in this actual case. Two false diagnoses occurred at 

the 89th and 98th minute, respectively, because the river was divided into upper and lower sections by 

a wave boundary on the water surface (Figure 6a–b). At the 272nd minute, there was significant signal 

loss in the image during the transmission and compression process from the remote site. During  

transmission, packet loss may typically be caused by network congestion between the remote site and 

the management center. During compression, lossy coding schemes are used to achieve the optimal 

image quality under bandwidth and power constraints, and this may degrade the perceptual image 

quality. This resulted in the incompleteness of segments owing to the obvious coding blocks (as shown 

in Figure 6c,d). Figure 6d shows a contrast enhancement of Figure 6c by 50 times. 
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(a) 0 min (b) 50 min (c) 100 min (d) 150 min 

  
(e) 200 min (f) 250 min (g) 300 min (h) 350 min 

(i) Flood fluctuations 

Figure 5. Real-time field images and analysis data of the flood level. In this case, only five 

virtual markers were set from the riverbed to the embankment top. (a–h) show the visual 

sensing results from screen shots every 50 min; and (i) the graph generated using the 

number of the virtual markers covered by the waterbody against time. 

  

(a) (b) (c) (d) 

Figure 6. Images with false diagnoses. (a–b) boundaries are caused by wave of large 

turbulence, as indicated by the arrow; (c) result of signal loss that occurred during 

transmission and compression; and (d) result of contrast enhancement of (c) by 50 times. 

3.2. Water Level Measurement 

For the monitored site with a water ruler, the virtual markers can be set on the ruler’s scale so that the 

water level can be indirectly measured using images. In this example case, the monitored site was the ruler 

on the bridge pier on the MeiNong Creek, and the monitoring period was from 14:19 p.m. to 15:28 p.m. on 
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29 August 2013. During this period, the morning flood event had ended; however, several subsequent 

overflows aggravated the flood situation. The highest point of the water ruler was at an elevation of 48 m, 

and the top of the bank was at an elevation of ~46.5 m. When the water surface is above 46.5 m, it means 

that the water has overflowed the embankment. Virtual markers were set on the scale from 47.5 to 45.5 m 

at intervals of 0.5 m; in other words, the five markers respectively represented elevations of 47.5, 47, 46.5, 

46, and 45.5 m. Figure 7 shows the monitoring results. Figure 7a–d show the results at intervals of 15 min, 

with virtual markers denoted by a yellow “+,” covered markers denoted by a red “+,” and a seed denoted 

by a blue “*.” Similar to the false diagnoses discussed in Section 3.1, fierce turbulence around the piers 

resulted in incomplete segmentation, as shown in Figure 7c. 

At the 42nd minute (15:05 p.m.), the water level reached an elevation of 46.5 m, which was the 

same as the top of the bank on both sides; therefore, embankment overflow occurred, as shown in 

Figure 7e. Although water fluctuation caused the detected water level to decrease to 46 m at the 43rd 

and 44th minutes, subsequently, the actual water level was measured accurately. For disaster 

prevention and management, it is suggested that the water level of 46 m can be considered a warning 

level. Following this level, a warning was issued 25 min earlier in this example case. Moreover, 

increasing the number of markers can increase the precision of water level detection. However, for this 

purpose, the ruler scale area must be enlarged and the image quality should be improved.  

(a) 0 min (b) 15 min (c) 30 min (d) 45 min 

(e) Elevation of stream 

Figure 7. Indirect measurement of water level of runoff stream. The ruler scale in the 

images shows the elevation. (a–d) show the visual sensing results from screen shots every 

15 min; and (e) the graph generated using the number of the virtual markers covered by the 

waterbody against time. 

It is feasible to detect the water level by monitoring the juncture between the ruler and the 

waterbody using cameras. However, owing to the insufficient resolution of images (CIF is referenced 

in this paper), currently, the monitored FOV must be reduced to ensure the visibility of the ruler scale. 
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For example, in this case, the ruler image must be enlarged two to four times to ensure the visibility of 

the water ruler. Although the detection precision was improved, the original purpose of monitoring the 

overall runoff condition was lost. 

3.3. Monitoring of Specific Flood-Intruded Area 

When no ruler or embankment in the monitored scenes can be used as a reference, or when the 

water intrusion of an actual space must be monitored, the virtual markers can be used to represent the 

physical boundaries of the image space. Figure 8 shows a case in which the monitored water intrusion 

caused ground flooding. In this case, the images were captured by infrared (IR) photography. The 

purpose of monitoring was to assess the flood severity of the wetland in the river shoal. Virtual 

markers were set on the river shoal from the edge of the stream to the embankment. A yellow “+,” red 

“+,” and blue “*” denote the virtual markers, covered markers, and seed, respectively. Figure 8a–d 

show the sensing results at intervals of 50 min, from which the change in flood severity with water 

level fluctuations at night can be identified clearly. Figure 8 shows the change in the water intrusion on 

the ground over time. The monitored place was completely flooded between the 72nd and 110th 

minutes. The flood began to ebb after the 145th minute. 

(a) 0 min (b) 50 min (c) 100 min (d) 150 min 

(e) Water intrusion monitoring 

Figure 8. Water intrusion on specific ground measured using IR photography. (a–d) show 

the visual sensing results from screen shots every 50 min; and (e) the graph generated 

using the number of the virtual markers covered by the waterbody against time. 

IR imaging uses either added infrared light to form images via reflection over the object’s surface or 

thermal-radiation-derived scattered infrared light from the object itself to form images. Therefore, the 

images generated will not be influenced by insufficient light in the environment. Moreover, owing to a 

longer wavelength than that of visible light, IR light can penetrate heavy fog or rain to form images. 
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Therefore, it is often used in satellite and aerial photographing to penetrate clouds [62,63]. At present, 

commercial surveillance IR photography primarily employs added IR light. Its FOV size is limited by 

the transmission and reflection ratios of IR light; consequently, this technology has yet to be widely 

applied to water resource management. Furthermore, IR technology transforms the actual scene to the 

surface light reflection intensity expressed as a grey-scale value; this results in a loss of color-induced 

visual features of objects.  

For example, in Figure 8e, the incorrect determinations at the 162nd and 169th minutes were caused 

by the weakened visual difference between the ground and the water surface owing to weak contrast in 

the IR images. IR imaging is the best way for monitoring in the evening or under inclement weather 

conditions. Visual sensing combined with the use of IR cameras can be applied for monitoring during 

low-light nighttime and under heavy rain or fog. However, because image processing is mostly 

developed for visual light emission images, the application of IR imaging in visual sensing should be 

explored further. 

4. Conclusions 

This study established an image-based visual sensing and water level analysis method. Through the 

automatic screening of images that contain visible content and the texture verification of a waterbody 

surface, abnormal water level fluctuations can be detected to enable the automatic sensing and early 

warning of flood events. Currently, early warnings for floods mainly rely on data from in situ 

measurements and remote sensing images. Field visual data of runoffs are not collectively applied in 

an effective manner. Consequently, dynamic field information required for timely decision-making to 

reduce disasters in small urban areas is insufficient. In this study, we therefore applied an image-based 

visual sensing method that uses passive monitoring cameras as visual sensors or “smart” cameras to 

automatically monitor flood fluctuations in a small urban area. The experiment results of this real flood 

case proved that the proposed method can accurately provide monitoring images and time series water 

level fluctuation data that reflects the current flood situation. Using this method, disaster prevention 

and management sectors can quickly and accurately understand the local hydrological conditions and 

efficiently implement disaster reduction measures. 
Early flood prevention and water management techniques were predominantly based on 

hydrological engineering, such as embankments and containments. However, owing to the extreme 

climate changes in the last decade, resource investments in these projects have not produced 

satisfactory outcomes. Thus, in addition to hydrological engineering, new concepts such as risk 

avoidance and disaster reduction of floods have been introduced to flood management and control in 

recent years [64,65]. Using a relatively small investment, the current flood forecasting system aims to 

send early alerts for disaster prevention to control sectors so that disaster reduction actions can be 

implemented in a timely manner. These actions include opening a reservoir in advance to discharge 

floods, closing a water gate, and advance evacuation of people in low-lying areas. Existing warning 

systems mainly rely on monitoring stations for water level and precipitation information, remote 

sensing images, and numerical prediction systems. These systems can provide warnings of large-scale 

floods several hours or even 24 h in advance, and therefore, they remain the most widely used  

methods [10,23,66,67]. However, large-scale forecasting is not suitable for hazard reduction in small 
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urban regions on account of its low specificity and timeliness. It is difficult to cross-verify the 

forecasting results and actual flood conditions. Thus, this system cannot provide sufficient information 

for decision-makers to manage disasters and to accurately and rapidly determine disaster reduction 

measures. In this paper, we therefore proposed an intelligent flood monitoring system using existing 

river monitoring cameras that can provide real-time field images and information regarding water level 

changes in a time series. By using this system, decision-makers can better understand the field 

situation to take appropriate actions for evacuations before the flood disaster occurs. Furthermore, they 

can apply suitable disaster reduction approaches afterwards, thereby reducing the flood’s impact on 

urban areas. 

The monitoring of urban floods with VSNs can reduce field inspections by human beings while 

increasing the number of monitored sites. However, both VSNs and wireless VSNs (WVSNs) are 

highly reliant on the availability of electric power and communications. Therefore, when electric 

power and communications are interrupted by disasters, the continuity of monitoring becomes a 

significant bottleneck for sensing networks [68,69]. The measurement components of in situ 

measurement stations must be in contact with or stay on top of the water body, depending on the 

measurement method. Therefore, in situ sensors cannot survive well in the midst of the destruction 

caused by large-scale disasters. The biggest difference between VSNs and measurement stations is that 

VSNs are used to observe the overall environment instead of the water level. Therefore, image sensors 

can be placed at a greater distance in safety to ensure sufficient FOV and to have a higher chance of 

withstanding floods. If all measurement stations are damaged, the remote sensing images will be the 

only information source. Under this circumstance, the availability, reliability, and accuracy of data can 

only be guaranteed with the help of cyber physical systems (CPSs) that combine various monitoring 

and pre-warning systems, including site measurement instruments, remote sensing images, flood 

forecasting, and visual sensing [70,71].  

In addition, the image segmentation method used in this study can operate very efficiently with a 

processing time of approximately 2 s for each CIF image, whereas the update interval of monitoring 

images is 1 min. Because the processing time is much shorter than the update time, the processing is 

nearly real-time without a calculation delay induced by data accumulation. However, in the future, with 

the increasing number of monitors and smart cameras deployed in urban areas and the growing need for 

high-resolution images, the real-time response time of virtual sensor systems will become a bottleneck; 

thus, more efficient algorithms [60,72] and distributed processes [69,73] must be considered. 
Each flood monitoring and forecast system affords unique advantages. A single pre-warning system 

can accurately monitor and forecast floods under certain environmental conditions; however, it lacks 

an intelligent triggering and response function for field flooding and overflow events. Large-scale 

flood forecast systems cannot provide sufficient field information to decision-making agencies; thus, 

these agencies can obtain relevant data only from the vulnerable location. Therefore, there is a lack of 

flexibility in integrating integrate disaster prevention information and performing collective mitigation 

actions. Thus, an important future direction is to integrate various systems to determine appropriate 

disaster reduction measures. Managers require clear and specific disaster information to develop  

long-term management strategies and real-time disaster reduction actions. Toward this end, a key 

future research direction will be determining how to integrate field measurements, satellite sensing, 

and visual sensing into a practical information system, such as CPSs. 
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