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Abstract: Reliable data transmission over lossy communication link is expensive due
to overheads for error protection. For signals that have inherent sparse structures,
compressive sensing (CS) is applied to facilitate efficient sparse signal transmissions over
lossy communication links without data compression or error protection. The natural packet
loss in the lossy link is modeled as a random sampling process of the transmitted data,
and the original signal will be reconstructed from the lossy transmission results using
the CS-based reconstruction method at the receiving end. The impacts of packet lengths
on transmission efficiency under different channel conditions have been discussed, and
interleaving is incorporated to mitigate the impact of burst data loss. Extensive simulations
and experiments have been conducted and compared to the traditional automatic repeat
request (ARQ) interpolation technique, and very favorable results have been observed in
terms of both accuracy of the reconstructed signals and the transmission energy consumption.
Furthermore, the packet length effect provides useful insights for using compressed sensing
for efficient sparse signal transmission via lossy links.
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1. Introduction

Wireless sensor networks (WSNs) have attracted much interest in both academia and industry due
to their advantages of low cost, ease of deployment and ubiquitous applications, ranging from military
surveillance to medical monitoring [1]. Reliable wireless communication is of paramount importance to
facilitate data-centric WSN applications. However, low power wireless links often lead to a high data
packet loss rate [2] due to factors like channel noise, multipath, asymmetric links, inadequate antenna
orientation [3] and antenna height [4]. Data collected from large-scale WSN installations are often mired
with missing or garbled data values, which significantly depreciates the potential usage of the data.

To deal with the high data packet loss rate, one may either transmit data only via high quality
links in the connected region to ensure communication reliability; or invoke error-correcting measures,
such as automatic repeat request (ARQ), in the transitional region to retransmit lost data packets
(the communication area of a wireless link can be divided into three regions, which are called the
connected region, the transitional region and the disconnected region). Using only high quality links
in the connected region to transmit data implies shorter physical distance, which also leads to denser
sensor node deployment or higher transmission power, i.e., shorter network lifespan. ARQ-based error
correcting measures will increase transmission times and latency [5,6]. Both approaches are expensive
and imperfect solutions.

There are also many schemes for improving the communication performance of wireless systems,
such as transmitting power control, packet length control, forward error correction (FEC), etc. However,
FEC and power control are energy-consuming schemes [7] and are unsuitable to be implemented in
low power wireless sensor nodes [8]. The scheme presented in this work is a different asymmetric
communication method that shifts the computation burden from the transmission end (low power sensor
nodes) to the receiving end (more powerful fusion center).

Our approach leverages compressive sensing [9,10] at the receiving end to reconstruct the original
sparse signal; even data packets are lost or damaged while transmitting in a lossy wireless link. In fact,
with the careful packaging of the data using the appropriate packet lengths and interleaving scheme, the
effect of transmission loss may be modeled as a random sampling process. As such, the original data
may be reconstructed with a high probability.

The notion of incorporating compressive sensing with network data transmission was discussed
in [11], where the authors proposed a distributed matched source-channel communication scheme by
exploiting the spatial averaging property inherent in a multiple access channel. Numerous authors have
reported approaches to combine compressive sensing with wireless communication by exploiting the
inherent sparseness in signals, such as temperature, CO2 emission, seismic signal [8], image [10] and
acoustical signal [12].

This work is a substantial expansion of an earlier conference proceeding paper [12], where the
notion of modeling lossy wireless links as a random sampling process in compressive sensing was
first presented. In this paper, we provide a careful derivation to show how the packet loss in a lossy
channel may be modeled as a random sampling process of the original signal. In addition, the intricate
relations between communication parameters (e.g., bit error rate, packet error rate, packet lengths) and
the quality of signal reconstruction (mutual coherence) are carefully investigated. To mitigate potential
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burst communication error, the interleaving scheme is incorporated at little computation and energy
overhead at the transmission end. Moreover, a novel criterion, called the information acquisition rate
(IAR), is proposed as a more direct and effective way to gauge the link quality rather than traditional
quality metrics, such as the packet reception rate (PRR). We have conducted extensive simulation to
validate the proposed scheme, and a field experiment with a wireless sensor network that implements
this proposed scheme is also conducted. Both simulation and experimental results demonstrated
superior performance.

The main contributions of this paper can be summarized as follows:

• We demonstrated the feasibility of incorporating compressive sensing as an error correction
measure to facilitate communication over lossy wireless links.
• We propose a new cyber-physical measurement process model in applying compressive sensing

where the packet loss in a wireless link is modeled as a random sampling process.
• We propose a novel wireless link performance metric, called the information acquisition rate, to

measure the actual information content that is transferred. We show that this metric better reflects
the actual performance of data transmission than the conventional data-oriented criteria, such as
the packet reception rate.
• We established important relations between packet lengths and the mutual coherence, which is

critical to the success of compressive sensing reconstruction.

The rest of this paper is organized as follows. Sections 2 and 3 review the related work and
compressive sensing (CS) theory, respectively. We present the proposed sparse signal transmission
framework in Section 4. Packet length control for sparse signal transmission is shown in Section 5.
Section 6 shows comparison simulations between the conventional ARQ interpolation technique and
the CS-based method, as well as the packet length effect on sparse signal transmission. Experimental
verification is presented in Section 7. Finally, Section 8 concludes this paper.

The following notation is used throughout the paper. Vectors and matrices are denoted by boldface
lowercase and boldface uppercase letters, respectively. The identity matrix is denoted by I. For any
matrix A, A′ or AT refers to the matrix transpose; Tr(A) is the trace. The lp norm of a vector x,
for 1 ≤ p ≤ ∞, is denoted ||x||p = (

∑N
i=1 |x|)1/p, while ||x||0 denotes the number of nonzero elements

in x. The main notation in this paper is listed in Table 1.

2. Related Work

Information acquisition consists of data transmission and signal recovery. The most frequently-used
approach for providing reliable data transmission over lossy links is to use the acknowledgment-based
retransmission mechanism, at the cost of extra energy consumption and latency. Specifically, the
energy cost to successfully transmit a packet over a lossy link is proportional to the number of
transmissions (including the first transmission and subsequent retransmissions if necessary) for that
packet. Furthermore, traditionally, transmission power is adjusted dynamically to overcome unreliability
over lossy links in energy-constrained WSNs. The network node increases its transmission power to
achieve immunity against link errors. Nevertheless, besides the extra energy consumed, [13] illuminates
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that it adversely affects the channel contention, network throughput and energy consumption at the
network scale.

Table 1. Symbols and notations.

Symbol Explanation

x sampled signal, x = [x1, ..., xn]T

x̂ reconstruction signal, x̂ = (x̂1, x̂2...x̂N)

ε reconstruction error, ε = ||x− x̂||2/||x||2
N dimension of sampled signal
M dimension of projection (measurement) vector
Ψ fast Fourier transform matrix, Ψ ∈ RN×N

Φ projection matrix,Φ ∈ RM×N

α coefficients that represent x on the basis Ψ, α = [α1, ..., αN]T

K nonzero coefficients in α
A equivalent matrix, A = ΦΨ

y measurement vector, y = Φx

µ(A) mutual coherence
Ã column-normalized version of A

G G = ÃTÃ

Pprr packet reception rate (PRR)
Pe bit error rate (BER)
L packet length
Loverhead overhead length
Lpayload payload length
n packet number n = N

Lpayload

Other approaches try to study the link behavior for better understanding of the wireless
communication characteristics and transmit data packets based on this to achieve better
performance. The works in [5,6,14] utilize link burstiness to achieve better communication performance.
The work in [5] presents a metric denoted β to measure this link burstiness. Measuring β allows
one to reason about how long a protocol should pause after encountering a packet failure to reduce
its transmission cost. The works in [6,14] characterize links by their maximum burst length and then
adaptively allocate slots for reliable data transmission. However, link-aware methods always induce
large transmission delay and extra energy cost, because of waiting for a good link; besides they are
all data-centric methods, which must transmit almost all of the data sampled to sink node to get
information detected.

Once the data packet has been received, the conventional interpolation technique is used for signal
recovery. Despite much progress in the area of data interpolation, existing methods are suitable for only
a few data loss condition, but cannot scale when the rate of data loss is high [15]. Furthermore, data
fusion algorithms have always been adopted for denoising, overcoming environmental effects, etc. [16].
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In practical WSNs applications, multi-sensor data fusion can also be applied at the fusion center for
performance promotion.

Advances in compressive sensing [9,10] offer a promising approach for signal acquisition and
recovery. One appealing feature of the CS theory is its ability to reconstruct the original
high-dimensional, inherently sparse signal by using only very few low dimensional measurements,
whichprovides a promising prospect for signal recovery. This attractive feature motivated a number
of works applying CS to wireless communication.

The authors of [11] are the first to introduce compressed sensing into network applications. The
authors propose a distributed matched source-channel communication scheme by exploiting the spatial
averaging inherent in a multiple access channel. Furthermore, [11] has enlightened CS’ potential
application in sensor networks. Since then, there have been many research works that have concentrated
on combining CS with wireless communication for transmitting these sparse signals.

In the application layer, [15] proposed a CS algorithm to estimate the missing data based on the
typical data loss pattern, and [7] introduced compressive sensing as a coding strategy that is applied in
the application layer, which exploits redundancy in oversampling to facilitate compressive oversampling.

In the routing layer, [17,18] represent the first complete design to apply compressive sampling
theory to sensor data gathering for large-scale wireless sensor networks. The proposed scheme can
handle abnormal sensor readings gracefully, and its load balancing characteristic is capable of extending
the lifetime of the entire sensor network. In [19], the effectiveness of data gathering in WSNs is
improved by introducing an autoregressive model to assess inherent sparsity and to adjust the number of
measurements accordingly.

In the medium access control (MAC) layer, [20] proposed compressive sensing MAC (CS-MAC) to
exploit the sparse property of the sensing signal that, at a given time, only a few hosts are expected
to access the channel for a data report. In CS-MAC, a central coordinator can recover a multitude of
these received data in one decoding operation and then schedule multiple hosts accordingly. This result
is incorporated in [21], which boosts multiple input multiple output (MIMO) capacity gain without
requiring strict synchronization and coordination among distributed users. The work in [22] proposed a
random access compressed sensing (RACS) scheme to analyze random access to the wireless channel.
In RACS, a randomly-chosen subset of nodes participates in the sensing process and then randomly
accesses the channel to report their sensing data. By using the node’s carefully-designed sensing
probability, RACS ensures sufficiently many data packets to be received in spite of packet collision.

In the link layer, we are the first to combine CS with data loss via a lossy wireless link [12]. We
modeled the packet loss during transmission as a random sampling process by utilizing knowledge of
signal characteristics (sparse), then the sparse signal can be accurately transmitted through sufficient
received data with lower energy consumption and latency.

In this paper, considering that packet length control is an easy to implement and efficient
communication performance optimization method, we further investigate packet length effect on sparse
signal transmission via a lossy link based on our former work [12]. Packet length control for sparse
signal transmission is investigated, which inspires us to choose different optimal packet lengths to
optimize different communication demands. Furthermore, for the traditional communication technique,
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data interleaving is adopted to optimize sparse signal transmission performance. Further details are
presented in the following sections.

3. Compressive Sensing

Compressive sensing is an emerging novel signal acquisition and recovery method that has become
a hot research topic recently; it provides an alternative to Shannon/Nyquist sampling when the signal
under acquisition is known to be sparse or compressible [9].

3.1. Compressive Sensing Fundamentals

Compressive sensing includes three parts:

• Sparsity: Let x = [x1, ..., xn]T represent the N -dimension original signal and Ψ = [ψ1, ..., ψN ] be
an orthogonal basis (dictionary), such that:

x =
N∑
i=1

αiψi =Ψα (1)

where α = [α1, ..., αN]T is the vector that represent x on the basis Ψ. The signal is sparse if
most of the elements of α are zero or they can be discarded without much loss of information.
Specifically, if there are K(K � N) nonzero coefficients in α, the signal can be regarded as being
K-sparse. In fact, sparse signals are rather ubiquitous, such as acoustic signal, temperature, the
density of carbon dioxide and images, which allows compressive sensing to be applied in many
far-reaching applications in WSNs [23].
• Incoherent measurement: For any N -dimensional signal x, its measurement y is taken as follows:

y = Φx = ΦΨα = Aα (2)

where y ∈ RM is the M -dimensional linear measurement data, Φ = [φ1, ..., φM]T is the M ×N
projection matrix and A = ΦΨ is the equivalent matrix. Compressive sensing theory requires
the projection matrix Φ and the sparse dictionary to be as incoherent as possible, such that the
samples add new information that is not already represented by the known basis Ψ. It has been
proven [24] that Φ with i.i.d. Gaussian entries with zero mean and variance 1

M
or binary

matrices with independent entries taking values ± 1√
M

are largely incoherent with any fixed sparse
dictionary Ψ with overwhelming probability as long as the measurement number conforms to the
following condition, holding for some constant c:

M ≥ cK log(N/K) (3)

• Reconstruction algorithms: K-sparse x can be reconstructed by solving the l0 norm [10] from y

as follows:
min ||x||0 s.t. ΦΨx = y (4)

This optimization problem relies on an exhaustive search and is successful for all x ∈
∑

K

when the matrix Φ has the sparse solution uniqueness property. However, this algorithm has
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combinatorial computational complexity [25]. An alternative to the above l0 norm optimization
is to use the l1 norm. l1 norm optimization is convex, which can be solved by using
linear programming, and the global optimal solutions can be achieved. An alternative to
optimization-based approaches is greedy algorithms for sparse signal recovery. These methods are
iterative in nature and select columns of Φ according to their correlation with the measurements y

determined by an appropriate inner product. A typical example is orthogonal matching pursuit
algorithms (OMP), which we use in our framework due to the low complexity. Still, the
computational complexity of this solution is greater than that of traditional decoding and data
interpolation, but CS shifts this burden to the base station, which we assume to have a significantly
higher energy budget than the ordinary sensor nodes. Considering that the data have noise in
practice, basis pursuit de-noising (BPDN) (also called LASSO) is adopted to minimize the usual
sum of square errors, which can be formatted as a l1-penalty least squares estimate problem:

arg min
α
||y −ΦΨα||22 + λ||α||1 (5)

It should be noted that some authors reserve this term for the related optimization problem, with a
bound on the sum of the absolute value:

min
α
||α||1 s.t.||y −ΦΨα||22 ≤ η (6)

3.2. Compressive Sensing Applications

In this part, we introduce several examples of combining CS with practical systems and applications,
such as wireless channel estimation, network tomography and magnetic resonance (MR) image
reconstruction. In channel estimation, a wideband signal reveals the actual response of the wireless
channel, which has a discrete nature consisting of multipath components; while the response is smoothed
out for narrowband communication systems, which makes the impulse response of the wireless channel
tend to be sparse for a larger bandwidth [26]. In link delay estimation of network tomography, only
a limited number of links have large delays in typical networks. If considering a vector composed of
delays of all links, the vector will be sparse [27]. While the MR image shows sparsity after Fourier
transformation, CS can be used for image reconstruction. In fact, the original paper of CS [10] was
largely motivated by the reconstruction of MR imaging.

4. Sparse Signal Transmission Framework

In this section, we first present the background, which shows the characteristic of a lossy wireless
link and the ubiquity of a sparse signal in sensor networks. Then, we reveal the process of sparse signal
transmission and propose the problem formulation.
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4.1. Background

4.1.1. Lossy Wireless Link

The propagation of wireless signals with low-power radios is affected by several factors, such
as space, time and and asymmetric connectivity [2], that contribute to the degradation of its
quality. Consequently, wireless links in WSNs are often unpredictable and unreliable, especially
lossy links in the transitional region, where the spatial characteristic of the wireless link presents
three different communication regions, which are the connected region, the transitional region and the
disconnected region [28].

To verify the spatial characteristic of the wireless link, we conduct extensive experiments by using
a pair of STM32W108 chips [29] putting them in our teaching building corridor for link testing. The
transmitting power for the sensor node is −10 dBm. The sender node transmits 256 packets to the
receiver node in eachtest, with the packet length being 13 bytes. The experiment is conducted 10 times on
each distance, and we take the typical packet reception rate (PRR) value to show the spatial characteristic.

As shown in Figure 1, taking the PRR as the index to indicate the link’s quality, a higher PRR means
better link quality. Figure 1 verifies the existing results for three different communication regions.

 

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between Sender and Receiver node /meter

P
ac

ke
t 

re
ce

pt
io

n 
ra

te
/ 

%

Transitional region Disconnected
 region

Connected region

Figure 1. The spatial characteristic of the wireless link.

Traditionally, high quality links in the connected region are used to ensure communication reliability.
However, a high quality link also implies shorter physical distance and, hence, denser sensor node
deployment with higher transmission power and, hence, a shorter network lifespan. On the other hand,
using an unstable lossy link in the transitional region invokes error-correcting measures, such as ARQ,
to retransmit lost data packets. ARQ-based error-correcting measures will increase transmission times
and latency. To this end, both approaches are expensive and imperfect solutions. In this section, we will
introduce a novel use of the lossy link by using the compressive sensing technique.
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4.1.2. Ubiquity of Sparse Signals

It has been reported recently that many signals have sparsity in certain domains, such as temperature,
light [15], image [10], acoustical signals [12], etc. Furthermore, [8] gives a relatively comprehensive
summary of the signal’s sparsity with CO2 emission readings [30], temperature [31] and the
seismic signal [32].

To verify the ubiquity of sparse signal, we take the CO2 emission in the Port of Oakland and the
acoustical signal of a Porsche car as examples to show their sparsity. Figure 2 shows their sparsity in
the wavelet and frequency domains, respectively. Since signal sparsity is the fundamental condition for
using CS, the ubiquity of a sparse signal in sensor networks enables one to apply compressive sensing to
sparse signal transmission.
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Figure 2. Signal sparsity in sensor networks. (a) Sparsity of CO2 emission in the Port of
Oakland; (b) sparsity of a car engine.

4.2. Process of Sparse Signal Transmission

According to the above discussion and former research, it only requires 20% of the whole data to
recover the original signal (such as temperature and light [15]) with no more than 20% errors. While
considering that the transitional region is formed mainly due to the path loss with small vibration caused
by noise, with a 20% packet reception rate being settled to sufficiently reconstruct the original signal, a
rough distance can be determined for stable use.

What is more, though the area of three regions in the spatial characteristic of the link varies with
transmission environment, transmitting power etc., the transitional region occupies a large area compared
to the connected region [28]. Stable use of a lossy link with our method can surely broaden the
communication scope extensively.

Next, we give a sketch of sparse signal transmission and then propose the problem formulation. The
process of the CS-based reliable information transmission methods via lossy links is shown in Figure 3. It
is composed of a lossy link transmission-random compressed sensing period and a signal reconstruction
period. Instead of compressive sampling, we model the data packet loss as the measurement process.
First of all, data obtained after signal sampling is directly transmitted through lossy wireless links.
During wireless data transmission, there will be data loss. According to the CS theory, it is sufficient to



Sensors 2015, 15 19889

capture the signal with a small number of compressive measurements. Thus, the sink node does not care
which part of the information is successfully transmitted, as long as: (i) data loss caused by lossy links is
random to some extent; (ii) there is a sufficient number of received packets to allow for the reconstruction
of the information; and (iii) the original sequence of the received packets is known for the convenience
of designing the projection matrix. Therefore, unlike the traditional methods, our proposed method can
just disregard these lost packets. Then, based on the received broken data, the receiver node designs
the projection matrix Φ through random compressive sensing (RCS) [33] as Equation (7) and gets the
measurement data y = Φx. Finally, through transformation and orthogonal matching pursuit recovery
algorithm, the original signal will be reconstructed from those received broken measurement data y.

Signal 
Sampling

Signal sparsity

original signal
Reconstructed signal

Wireless lossy links transmission ‐Random compressed sensing Signal reconstruction

Wireless transmission via 
lossy links y x 

y

x

Broken data

Figure 3. Process of reliable information transmission.

4.3. Problem Formulation

The sensor node samples the signal and reports data to the sink node for signal recovery periodically.
Supposing that the monitoring period includes Ntime slots. xi denotes the sensed data at time slot i,
where i = 1, 2, ....N .

Definition 1 Original Data Vector . This is the mathematical presentation of the original signal after
signal sampling, which is defined as x = (x1, x2...xN). x represents every data sampling in N time slots
without missing data elements.

Definition 2 Lossy Transmission Matrix. This is also the projection matrix, whose matrix dimensions
are M ×N , recording the data loss process caused by a lossy link. M is the received data number. The
matrix has only a single entry of one in each row, and the others zero. The value in projection matrix Φ

can be chosen through the following formula:

Φ(i, j) =

{
1 if j= J(i) ≤ N

0 otherwise
(7)

where i is the row number of Φ and also the received data packets’ sequence number. J(i) is the received
data’s original sequence number in f .

The effective projection matrix corresponds to a partial Fourier transform projection matrix, which
has been shown to meet the restricted isometry property (RIP) and, hence, promises the reconstruction
of the sensor signal at the fusion center with a high probability. The feasibility of this approach has been
reported earlier in [12,33,34].
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Suppose a signal consisting of 28 sampled data is transmitted through a wireless medium and only
nine sampled data are successfully received in the FC, with their sampled sequence number being 1, 4,
9, 12, 14, 17, 21, 25, 28. Then, the corresponding projection matrix is shown in Figure 4, where the
blank grid denotes corresponding elements being zero and red being one.

Figure 4. An example of the projection matrix construction.

Definition 3 Measurement Vector. This is a N × 1 vector. It is the combination of data packets
received after lossy wireless transmissions. Due to the data loss, its elements are either xi gathered by
the sensor node or zero. It can be denoted as the production of Φ and x,

y = Φx (8)

which conforms to the standard compressive sensing expression.
Definition 4 Reconstructed Vector. This is generated by reconstruction algorithms and denoted as

x̂ = (x̂1, x̂2...x̂N).
Problem: Original Signal/Information Reconstruction . Given the measurement vector y, this problem

is to find an optimal reconstructed vector x̂ that approximates the original data vector x as closely as
possible. i.e.,

Objective min ||x− x̂||2
Subject to y

(9)

where ||.||2 is the l2 norm used to measure the error between vector x and x̂.
In the above problem, the objective is to minimize the absolute error. In order to measure the

reconstruction error, we further define the following metric.
Definition 5 Reconstruction Error. We define the parameter of the reconstruction error ε as follows:

ε =

√∑
i

(xi − x̂i)2√∑
i

xi
2

(10)

Reconstruction error reflects the similarity degree of the reconstructed signal and the original one.
The smaller the reconstruction error is, the higher the data recovery accuracy of the reconstruction
methods will be.

Definition 6 Information Acquisition Rate (IAR). Consider that traditional link quality estimation
usually adopts packet reception rate, which is based on data acquisition. Aiming to measure the
information transmission quality of a certain link, we define a new link performance metric called the
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information acquisition rate (IAR) as follows, where thresholddenotes the application’s need for signal
recovery error. For example, in the practical application of structural health monitoring (SHM), the
reconstruction error should be less than 30%, so as to satisfy the engineering requirement [35], which
means threshold = 0.3.

IAR =

{
1 0 < ε < threshold

0 ε > threshold
(11)

5. Packet Length Control for Sparse Signal Transmission

Considering the unit of wireless communication is packet and packet length control in a traditional
communication system has brought remarkable performance promotion, we analyze the packet length
control for sparse signal transmission in this section. Supposing the sampling precision is 8 bits, therefore
the number of samples in one packet is the payload length.

5.1. Packet Length Effect on Mutual Coherence

A trade-off exists between the desire to reduce overhead by making packets large and the need to
reduce packet error rates in the noisy channel by using small packet length. As shown in Figure 5,
supposing a signal consisting of 64 KB of sampled data is transmitted through a wireless medium, with
the PRR being 20%, when the payload length increases, once a packet has failed to transmit, more
consecutive data will be lost, leading to bursty data loss. Traditionally, bursty data loss is difficult to
recover from using interpolation-based methods [15]. Next, we will show the packet length effect on
sparse signal transmission.

We first introduce mutual coherence as the metric to measure signal transmission quality and then
reveal the relationship between packet length and signal recovery performance. The mutual coherence,
denoted as µ(A),

µ(A) = max
i 6=j,1≤i,j≤N

{
|Ai

TAj|
||Ai||.||Aj||

}
(12)

represents the worst case coherence between any two columns (atoms) of equivalent matrix A and is one
of the most fundamental quantities associated with CS theory. Any K-sparse signal x can be exactly
recovered from the observation/measurement y = Ax as long as:

K <
1

2
[1 +

1

µ(A)
] (13)

Another suitable way to describe µ(A), which is also our method in this paper, is to compute the
Gram matrix G = ÃT Ã, where Ã is column-normalized version of A [36]. Then:

µ(A) = max
i 6=j,1≤i,j≤N

|gij| (14)
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Figure 5. Frequency histogram of consecutive data loss. (a) Consecutive loss with the
payload length being one byte; (b) consecutive loss with the payload length being 16 bytes;
(c) consecutive loss with payload length being 64 bytes.

Figure 6 shows the relationship between mutual coherence and packet length with the RCS projection
matrix. For convenience, we make the signal dimension N be divisible by payload length. Because the
Fourier basis requires N to be a power of two, the payload length is chosen to be 1, 8, 32, 64, 128.
Though it is not practical using a payload length of 128 bytes, since the maximum packet length in the
IEEE 802.15.4 standard is 127 bytes, we only draw it as a reference here by using a 127-byte length to
approximate the 128-byte length.
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and mutual coherence using
random compressive sensing (RCS) projection.

Specifically, when the payload length is one byte, it is similar to random sampling [33]. We can see
that when the measurement vector is fixed, mutual coherence increases with the growing length of the
packet. Furthermore, as the measurement vector number increases, the coherence difference caused by
packet length is weakened.

However, this is just a clue to the relationship between packet length and signal recovery
performance; signal recovery performance is also correlated with other factors, such as signal sparsity.
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According to [8], the sparsity of typical signals in sensor networks, such as temperature and light, is
between 5 and 10. Based on this, we show the relationship between mutual coherence and reconstruction
error as follows.

Figure 7 shows a noteworthy phenomenon, that as packet length increases, the mutual coherence
guaranteeing accurate reconstruction (error being zero) is increasing, as well (except when the payload
length is 128 bytes, which is due to its low resolution, making us not find an appropriate value). This
figure is drawn through changing the measurement number when different payload lengths are adopted.
The reason for the packet length effect is when the measurement number is fixed, a shorter packet
length achieves lower mutual coherence. While reconstruction accuracy is correlated with measurement
number, as shown in Equation (3), when the measurement number meets the need for recovery, a longer
packet length has larger coherence compared to shorter packet length.
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Figure 7. Relationship between mutual coherence and reconstruction error using RCS
projection with K = 5.

Further, Figure 8 shows the relationship between measurement number, mutual coherence and
reconstruction error when different payload lengths are adopted. Generally, the measurement number
has a direct effect on mutual coherence, which influences the reconstruction error. However, packet
loss with different packet lengths also affects the mutual coherence, as shown in Figure 6. Figure 8
presents the combined effect of packet length and measurement number on mutual coherence (further
on recovery error). Because a larger packet length decreases the mutual coherence, the measurement
number guaranteeing the recovery error increases compared to the shorter packet length.

5.2. Relationship between Communication Parameter and Mutual Coherence

Packet length does not directly act on mutual coherence/signal transmission quality. In fact, its effect
combined with the bit error rate (BER) can determine the packet reception rate (PRR) and then influence
the signal transmission quality.
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BER is a fundamental parameter that can be determined by transmitting power, modulation scheme
and transmission distance. In practical applications, transmission distance is fixed once sensor nodes are
deployed, as well as the modulation scheme with specific hardware chips, for example chips that offer
the IEEE 802.15.4 standard communication adopt the offset-quadrature phase shift keying (O-QPSK)
modulation scheme. Without considering transmitting power control in this paper, BER is almost settled.
What is more, BER is the key parameter that determines the quality of the wireless channel.

This part first presents the relationship between BER, packet length and PRR, then shows how these
communication parameters affect signal transmission quality.

5.2.1. Combined Effects of BER and Packet Length on PRR

Given bit error rate Pe, the packet reception rate Pprr is obtained as follows:

Pprr = (1− Pe)L (15)

where L = Loverhead + Lpayload denotes the whole packet length including overhead. Pe depends on
the modulation scheme. For binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK)
adopted by the IEEE 802.15.4 standard at 2.4 GHz, the bit error rate is the same and equals:

Pe = Q(

√
2Eb
N0

) = Q(
√

2β) (16)

where β is the Eb

N0
ration. The Q-function is defined as Q(x) =

∞∫
x

1√
2π

exp(−x2/2)dx = 1
2
[1− erf( x√

2
)].

Hence, the packet reception rate Pprr is defined as:

Pprr = (1−Q(
√

2β))L (17)

We now conjecture that the successfully-received packet number by the FC denoted as M has a
binomial distribution with parameter n = N

Lpayload
and probability Pprr, i.e.,

P (M ′ = m) = B(n, Pprr) = Cm
n Pprr

m(1− Pprr)n−m (18)
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where n is the total transmitted packet number. The measurement number (M ) is:

M = n× Pprr × L (19)

where N denotes the number of sampling data. In this paper, we use N = 1024. In this
case, given a deterministic channel condition and packet length, we can acquire the quality of
signal/information transmission.

5.2.2. Threshold of PRR for Reliable Signal Reconstruction

Therefore, given the required packet reception rate pthreshold, appropriate parameter selection can
achieve accurate sparse signal transmission as long as the following condition is satisfied:

Pprr = (1−Q(
√

2β))L ≥ pthreshold (20)

where:
pthreshold =

M

N
=
cK log (N/K)

N
(21)

with K being the signal sparsity and c a constant.
Figure 9 shows the packet length effect on the relationship betweenBERand mutual coherence using

RCS projection, which shows that mutual coherence increases when the channel condition becomes
worse and the packet length becomes longer. Considering specific applications (specific signal sparsity)
and the relationship between mutual coherence and recovery error, as shown in Figure 7, the application’s
requirements can be met through appropriate parameter selection.
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5.3. Performance Improvement with Data Interleaving

As mentioned in the above part, a longer packet length has a bad effect on signal recovery. In this
part, we use the traditional communication technique to improve it. We first introduce the interleaving
technique and then show its effect on sparse signal transmission by analyzing mutual coherence,
the relationship between mutual coherence and recovery error and the relationship between mutual
coherence and bit error rate (BER). At last, considering that interleaving length is limited by memory
size and the application’s timeliness, the relationship between mutual coherence and interleaving length
is investigated.

5.3.1. An Easy-to-Implement Method: Interleaving

Traditionally, when data loss exists, ARQ is always adopted to retransmit lost packets. However, ARQ
does not function well when severe packet collision or communication noise exists with introducing extra
energy consumption and delay. There is something else we can do that provides better protection against
burst errors: we can transmit data bits in a different order than the order in which the data bits were
originally transmitted. Doing so is called interleaving [37]. Adopting data interleaving before data
transmission as a feedforward way surely can make the data loss random, thereby improving the sparse
signal transmission performance in bursty data loss condition. This approach is based on mixing up or
interleaving the order of the sampling sequence before transmission and unmixing or de-interleaving it
on reception. That way, if a packet (or burst of packets) is lost, the loss will be spread out over time by
the mixing. It will not result in a single, large gap during signal transmission.

5.3.2. Interleaving Effect on Sparse Signal Transmission

In this part, we present the interleaving effect on sparse signal transmission by analyzing mutual
coherence, the relationship between mutual coherence and recovery error and the relationship between
mutual coherence and BER.

Figure 10 shows the relationship between mutual coherence and packet length using RCS projection
with interleaving. We can see that data interleaving actually lower the mutual coherence of equivalent
matrixA. This is because data interleaving makes data loss more random, which helps to make projection
matrix and basis matrix more incoherent. It is also noteworthy that the performance of using RCS with
interleaving as the projection matrix is even better than using the random Gaussian projection matrix.

Next, Figure 11 shows the packet length effect on the relationship between mutual coherence
and reconstruction error using RCS projection with interleaving. We can see that packet length has
little effect on the relationship between mutual coherence and reconstruction error. This is because
interleaving makes data loss random whichever packet length it is, therefore eliminating the packet
length effect. Since when signal sparsity is five, one packet with the payload length being 128 bytes can
recover the original signal, the curve corresponding to a 128-byte payload is a point.
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Figure 12 shows the packet length effect on the relationship betweenBER and mutual coherence. The
dotted line is drawn using RCS projection with interleaving, while the solid line is obtained by using only
RCS projection. This shows that mutual coherence increases when the channel condition becomes worse
and the packet length becomes longer. However, as long as there is a received packet, interleaving can
lower the mutual coherence under the same channel condition and packet length, therefore promoting the
sparse signal transmission performance. Considering the specific application (specific signal sparsity)
and relationship between mutual coherence and recovery error, as shown in Figure 11, appropriate
parameter selection can be made to meet the application’s requirements.
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5.3.3. Interleaving Length

Note that performance improvement is correlated with interleaving length, which is limited by
memory size and the application’s timeliness. Figure 13 further shows the relationship between mutual
coherence and interleaving length when M

N
= 0.2.

The dashed line represents the mutual coherence guaranteeing accurate signal recovery (the error
being zero) when using RCS as the projection matrix with packet lengths equal to 1, 8, 32, 64, 128 bytes.
A larger interleaving length makes the data loss more random, therefore making the mutual coherence
smaller. Longer packets lead to longer bursty loss, therefore needing larger interleaving length. However,
larger interleaving length induces larger transmission delay and needs more memory space. A trade-off
must be made between the application’s requirements (signal recovery accuracy, latency, etc.) and
interleaving length, which will be our further work. In the following part of this paper, we leave this
problem by considering the interleaving length equal to N .
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6. Performance Evaluation

In this section, we take the sound signal consisting of 30 different frequencies (K = 30, much larger
than the temperature’s sparsity [8]) as the original signal needed to be transmitted. The acoustical signal
is sparse in the Fourier domain, which is fundamental for using compressed sensing. We use ns3 to
simulate the random data packet loss procedure, where wireless links with different qualities are obtained
through changing the distance between the sender node and the receiver node. The default backoff
exponent of the IEEE 802.15.4 standard is adopted, and Channel 11 of the standard is used considering
the difference between different channels.

The main parameters used in NS-3 simulation are listed in Table 2. Our CS-based methods do not
use the data retransmission scheme, even if data loss happens during wireless transmission, while the
traditional ARQ interpolation methods adopt a maximum of three-times the transmission scheme. There
are four typical interpolation methods adopted in ARQ interpolation methods, which are nearest neighbor
(NN), cubic polynomial interpolation, spline interpolation and linear interpolation. Upon data packet
reception, we use the orthogonal matching pursuit algorithm or L1-Magic to reconstruct the original
signal, comparing to the traditional interpolation method.

6.1. Performance Comparison on Signal Reconstruction

In this part, to eliminate the effect of packet length on sparse signal transmission, we fix the payload
length to one byte and model the data loss as random compressive sampling. Then, the original signal
can be reconstructed by using the received broken data. The original packets’ number is N = 1024.

Table 2. Parameter settings in NS-3 simulation.

Tx Power 0 dB
Channel number 11
Simulation time 4 s
Max frame retries 0 or 2
Overhead length 10 bytes
Minimum packet length 11 bytes
Maximum packet length 127 bytes
Minimum distance between sender and receiver 98 m
Maximum distance between sender and receiver 128 m

With compressive sensing, it only needs 20% of the data to recover the real signal, such as temperature
and light [15]. Furthermore, conducting DOA estimation using 20% data is also sufficient [38]. To verify
the effectiveness of our CS-based method, we first conduct simulations over a link in the transitional
region, in which the packet reception rates (single data transmission) are 20%.

The reconstruction comparison is shown in Figure 14. The interpolation method in this test is spline,
which is thought to be more efficient than other methods. As we can see, when the PRR is 20%, data loss
is quite severe. Even with a maximum of three transmission schemes, the number of received packets still
cannot satisfy the interpolation’s need to reconstruct the signal accurately. The traditional interpolation
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method can only recover a few parts of the signal with received broken data, leading to large recovery
error, which means adopting the ARQ interpolation-related technique in harsh environments is not very
useful, but has extra energy waste and transmission latency; while due to the sparsity of the original signal
and the appropriate selection of the projection matrix, a small number of compressive measurements can
capture the signal with high probability and high precision. By using the CS reconstruction algorithms,
our CS-based method can recover the original signal with a much smaller reconstruction error.
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Figure 14. Reconstruction comparison.

Figure 15 further presents the reconstruction error comparison between CS and interpolation methods
under different lossy links (different PRR). Figure 15 shows that all four ARQ interpolation methods
perform badly when the PRR is below 0.6, even with three-times the data transmission. Just as described
previously, interpolation methods are suitable only for a few data loss condition; while thanks to the
sparsity of the original signal and the appropriate selection of projection matrix, a small number of
compressive measurements can capture the signal with high probability and high precision. As we can
conclude from Figure 15, spline interpolation performs the best when the PRR is below 0.6. In the
following simulation, we take spline interpolation as the comparison with our CS-based method.
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To better show how much energy waste and transmission latency can be reduced by using our
CS-based method for information transmission in lossy links, we take the recovery error of the CS-based
method as a reference to show how many transmissions are needed by the ARQ interpolation method to
achieve the same error. Given the PRR per single transmission, the PRR withNtrans times transmission
is theoretically:

PNtrans
prr = 1− (1− Pprr)Ntrans (22)

Therefore, given the packet neededMneed for interpolation to achieve the same recovery accuracy, the
corresponding PNtrans

prr can be obtained as below:

PNtrans
prr =

Mneed

N
(23)

Then, once the single transmission PRR Pprr is known, the transmission times needed are
represented by:

Ntrans =
log(1− PNtrans

prr )

log(1− Pprr)
(24)

Figure 16 shows that when the link quality is extremely low, both the CS method and ARQ
interpolation method cannot recover the original signal accurately, since many data packets have not
been successfully received. As the quality of links improves, the CS method can recover the signal
when the packets received exceed the threshold, as Equation (3) shows, while the ARQ interpolation
method’s performance is linearly promoted with the PRRs increasing. When the PRR of single data
transmission is 0.3, ARQ interpolation need 6.5-times transmission to achieve the same performance as
CS-based method. Even when the PRR is 0.8, nearly 1.5-times transmissions are still needed to achieve
the same reconstruction accuracy as our method. All in all, the CS-based method can enable almost all
of the lossy links in the transitional region to provide high quality information transmission and also
significantly reduces the energy cost and latency.
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Further, considering that noise usually corrupts the data sampling in a real scenario, the robustness
comparison between our CS-based method and ARQ interpolation is of great significance. Figure 17
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shows the signal reconstruction error comparison with noise corruption. We can see that noise increases
the recovery error, and the CS method outperforms the spline-multiple transmission methods generally.
This is because CS reconstruction algorithms can adopt the noise threshold to improve the recovery
performance, while the traditional interpolation method does not have this function.
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Figure 17. Signal reconstruction error comparison with noise corruption.

6.2. Packet Length Effect on Sparse Signal Transmission

Based on the relationship between packet length and mutual coherence, we present the performance
evaluation of signal transmission efficiency with varying packet length in this part. Compared to using
successfully transmitted data times as the efficiency criterion, we take the IAR at the fusion center (FC)
as the criterion to measure the efficiency of signal/information transmission.

Specifically, considering that the reconstruction error should be less than 30%, so as to satisfy the
engineering requirement in the practical application of structural health monitoring (SHM) [35], we
set threshold = 0.3 in this part. Furthermore, for a high quality requirement application, we set
threshold = 0.001 compared to threshold = 0.3 in SHM applications.

6.2.1. Performance under Varying BER

BER is a fundamental parameter that can be determined by transmitting power, modulation scheme
and transmission distance. In practical applications, transmission distance is fixed once sensor nodes
are deployed, as well as the modulation scheme with chosen hardware chips, for example chips that
offer the IEEE 802.15.4 standard communication adopt the O-QPSK modulation scheme. Without
considering transmitting power control in this paper, BER is almost settled. What is more, BER is
the key parameter that determines the quality of the wireless channel. Therefore, next, we consider the
sparse signal transmission performance under varying BER.
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If the BER is too high, for example BER = 0.1, the packet length is 10 bytes, even without the payload.
According to Equation (15), PRR = 2.1847× 10−4. With such a small measurement number, CS cannot
recover the sparse signal. Both the data and signal transmission efficiency are zero.

As BER increases, for example BER = 0.005, using a signal with sparsity K = 5, comparison
between data and signal transmission efficiency is shown in Figure 18.

 

0

0.5

1

da
ta

 t
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

payload length\ bits

 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

IA
R

 

data efficientcy BER=0.001

data efficientcy BER=0.005

IAR(threshold=0.3 or 0.001)  BER=0.001
IAR(threshold=0.3) BER=0.005 

IAR(threshold=0.001) BER=0.005 

Figure 18. Comparison between data and signal transmission efficiency.

Note that, when the payload length equals 10 bytes, we have the best data transmission efficiency as
being around 0.24. However, for a signal with sparsity K = 5, it can achieve almost the total signal
transmission efficiency with recovery error ε = 3.6191×10−15, since it meets the need for measurement
number used for signal reconstruction. Additionally, in this case, the optimal packet length for this sparse
signal transmission is around 35 bytes, other than 10 bytes.

What is more, when BER decreases, for example BER = 0.001, even using the longest payload
length specified in IEEE 802.15.4, it can still meet the measurement number threshold, which means
that signal transmission efficiency is always one, even when the payload length varies, as shown in
Figure 18. Based on the above discussion, the optimal packet length is determined by both the specific
application requirements and channel condition.

Figure 19 shows the signal transmission efficiency comparison between using RCS and RCS with data
interleaving when BER = 0.005. We can see that signal transmission efficiency varies as the application
threshold for signal recovery changes. When the threshold is larger, a larger packet length can be chosen
under the same channel condition (same BER). While data interleaving mitigates the bursty loss, RCS
with data interleaving also allows one to use a larger packet length.

6.2.2. Performance under Varying Signal Sparsity (Various Applications)

Since the measurement number threshold for signal reconstruction is correlated with sparsity, which is
determined by the specific application, thus varying sparsity changes the signal/information transmission
efficiency. Considering the sparsity of many signals, such as seismic wave, temperature, a density of CO2

being about 5 to 10 [8], we use signals with K = 5 and K = 10 to show the signal’s impact on signal
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transmission efficiency. Figure 20 shows the relationship between signal transmission efficiency and
packet length under various signal sparsities when BER = 0.005 and BER = 0.01. Apparently, the
signal transmission efficiency is getting worse with the increasing signal sparsity, which makes a smaller
optimal packet length. This is due to the reason that larger signal sparsity needs a greater measurement
number to accurately reconstruct the sparse signal.
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7. Experimental Verification

In this section, we first use a pair of STM32W108 chips in our building corridor to conduct the lossy
link transmission experiment, as shown in Figure 21, to obtain the lossy packet pattern, and this loss
pattern is further utilized to show the packet length effect on mutual coherence and recovery error for
sparse signal transmission. A real Porsche car sound, as shown in Figure 2b, is sampled, and its data then
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can be transmitted to the receiver node. There are more than 160 coefficients that are larger than five
after Fourier transformation. Various packet reception rates are obtained through changing the distance
between the sender and receiver nodes. The transmitting power is −10 dBm for both the sender and
receiver nodes, and there is no retransmission during this experiment. This section aims to further verify
sparse signal transmission performance, the packet length effect on mutual coherence and the recovery
error presented in the simulation results of the last section. We first show that sparse signal transmission
using compressive sensing outperforms traditional methods. The packet length effect is present to show
that a larger packet length has an adverse impact, which increases mutual coherence and, thus, increases
recovery error with the sameM/N . Then, with the knowledge that correctly-received packets correspond
to a deterministic projection matrix, which shows inefficiency when using a large packet length, we
further verify the interleaving improvement on mutual coherence and recovery error, respectively.

7.1. Sparse Signal Transmission Performance

Figure 22a shows the packet reception rate and recovery error comparison with varying transmitting
distance. The distance area between the blue and green dotted link is the transitional region in the spatial
characteristic of the lossy link; these two dotted lines respectively represent the 90% and 10% packet
reception rates [28].We can see in the transitional region that using compressive sensing-based sparse
signal transmission outperforms the transitional interpolation methods. This is because the compressive
sensing method can recover the original sparse signal using only part of its sampled data, and the
compressive sensing recovery algorithm is resistant to the noise in the signal.
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Figure 21. Spatial characteristic of the wireless link.

Figure 22b further shows that our methods expand the feasible communication range taking SMH
application’s requirement as an example [35]. The work in [35] states that the reconstruction error
should be less than 30%, so as to satisfy the engineering requirement in practical the application of SHM.
Therefore, next, we denote the recovery error threshold to be 30%, which means that the IAR equals one
if the recovery error is less than 30%, and the IAR equals zero otherwise, as specified in Equation (11). In
Figure 22b, we can see that when the transmitting power is −10 dBm, the range of the connected region
is around 7 m and the range of transitional region is about 19 m, which is from 8 m to 27 m. Using
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traditional interpolation methods, one can only use the connected region for communication. While
using compressive sensing-based methods, one can expand the feasible communication range from 7 m
(connected region) to 23 m. The feasible communication range is promoted by almost 230%. This is
only the result when the transmitted power is −10 dBm, and we know that the larger the transmitting
power is, the larger the relative range is between the transitional region and the connected region [28].
We can conclude that when the transmitting power is 0 dBm, which is practical, our method’s superiority
will become even more prominent.
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Figure 22. Sparse signal transmission performance. (a) Packet reception rate (PRR) and
recovery error comparison with varying transmitting distance; (b) PRR and information
acquisition rate (IAR) comparison with varying transmitting distance.
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Figure 23. Mutual coherence and recovery error comparison with different packet lengths.
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7.2. Packet Length Effect Verification

Figure 23 shows the mutual coherence and recovery error comparison with the packet length being
a four-byte payload and a 32-byte payload, respectively. Just as the simulation results presented, when
M/N is the same, a larger packet length yields larger mutual coherence, and as the M/N increases,
the coherence difference caused by the packet length decreases. Furthermore, when M/N is the
same, a shorter packet length generally can achieve a lower recovery error, and once its measurement
number exceeds the threshold required for accurate recovery (Equation (3)), its recovery error diminishes
drastically. Note that the value of the error in this part may be different from the recovery error in the
simulation results, which is because the signal used in the experiment has a much larger sparsity. Another
reason is that the signal has been corrupted with noise in the data sampling process. However, the trend
is the same, which is consistent with the simulation results.

7.3. Interleaving Improvement Verification

In this part, we further verify the interleaving improvement as presented by the simulation
results earlier.

Figure 24a shows the interleaving improvement on mutual coherence with different packet lengths.
We can see that using only RCS as the projection matrix, when M/N is the same, a larger packet length
yields larger mutual coherence, and as the M/N increases, the coherence difference caused by packet
length decreases. While using RCS with the interleaving technique, their mutual coherence is almost the
same with identical M/N . When considering that coherence increases with a larger packet length using
RCS projection, we attribute the cause to the larger packet length, making data loss bursty, which is
bad for signal recovery; while data interleaving is actually rearranging the data sampling sequence and,
thus, can make data loss more random. Therefore, after interleaving, the packet length effect on mutual
coherence is almost eliminated, and with the same M/N , their mutual coherence is almost the same.
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Figure 24. Interleaving improvement with different packet lengths. (a) Interleaving
improvement on mutual coherence with different packet lengths; (b) interleaving
improvement on recovery error with different packet lengths.
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Figure 24b further shows interleaving improvement on the recovery error with different packet
lengths. When M/N is the same, a shorter packet length generally can achieve a lower recovery error,
and once its measurement number exceeds the threshold required for accurate recovery (Equation (3)),
its recovery error diminishes drastically. While interleaving eliminates the packet length effect, the trend
of recovery error with varying M/N is almost the same.

8. Conclusions

In this paper, we propose a CS-based framework for sparse signal transmission to solve the bottleneck
of expensive lossy link utilization in the transitional region. Specifically, the lossy link transmission is
modeled as a random compressive sampling process. Then, the original signal is reconstructed based on
the correctly-received packets using CS reconstruction algorithms. Moreover, the packet length effect on
signal/information transmission is investigated, which enlightens us to choose different optimal packet
lengths to optimize different communication demands.

Extensive simulations have been conducted, and the results show that compared to traditional
link-layer automatic repeat request (ARQ) interpolation technique, the proposed method delivers a higher
quality reconstructed signal while significantly reducing energy consumption at the transmitter side.
Moreover, the packet length effect on signal transmission efficiency can be quite different compared to
data transmission efficiency, which is influenced by the specific application and channel condition.

Further experiments using STM32W108 chips conforming to the IEEE 802.15.4 standard verify
the sparse signal transmission performance and packet length effect on sparse signal transmission.
Interleaving’s improvement is also investigated to validate its performance on enlarging optimal
packet length.

Our future work will concentrate on utilizing the link’s characteristics to enhance our CS-based
method’s performance on medium access control and routing. Furthermore, the combination of source
coding and channel coding will be further studied.
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