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Abstract: A method for measuring shaft diameters is presented using structured light vision 

measurement. After calibrating a model of the structured light measurement, a virtual plane 

is established perpendicular to the measured shaft axis and the image of the light stripe on 

the shaft is projected to the virtual plane. On the virtual plane, the center of the measured 

shaft is determined by fitting the projected image under the geometrical constraints of the 

light stripe, and the shaft diameter is measured by the determined center and the projected 

image. Experiments evaluated the measuring accuracy of the method and the effects of some 

factors on the measurement are analyzed. 
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1. Introduction 

Shafts are one of most important machine elements and the accuracy of machined shafts has a 

significant effect on the properties of any mechanical device that employs one. The accuracy of a 

machined shaft can be ensured using a Computer Numerical Control lathe, but mechanical wear in a 

CNC lathe system, system deformation, and the radial wear of the machining tools will reduce the 

accuracy of the machined shaft. If the variation of the shaft diameter could be monitored during its 

machining, the dimensional accuracy of the product could be ensured by the automatic compensation 

system of the CNC lathe. Therefore, on-line measurement of shaft size is very important in machining.  

A variety of noncontact machine vision methods for measuring the product diameters have been 

proposed [1–5]. These methods can be classified as active methods and passive methods. Passive 
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measurement methods use a camera or two cameras to obtain shaft diameters [6,7]. In 2008, Song et al. [8] 

proposed a method where both edges of a shaft were imaged onto two cameras through two parallel light 

paths as shown in Figure 1 [8]. Using this approach, the shaft diameter was obtained by measuring the 

length of the photosensitive units on the shadow field of the two CCDs (Charge-Coupled Device) and the 

distance between the two parallel light paths. This method can amplify the measurement range while 

ensuring the measuring accuracy; however, it is very difficult to calibrate the position of the two cameras.  

 

Figure 1. The optical principle of the parallel light projection method with double light 

paths (with permission from [8]). 

In 2013, Sun [9] used a camera to obtain shaft diameters, employing a theory of plane geometry in the 

cross-section, which is perpendicular to the axis of the shaft, as shown in Figure 2 [9]. This method can 

achieve a high measuring accuracy, but it requires the calibration of the plane of the center line of the 

shaft before the measurement. In practice, the position of the center line changes each time the shaft is 

clamped by the jaw chucks of the lathe. This change of position will decrease the accuracy of measurement.  

 

Figure 2. The orientations of the shaft and the measurement plane in 3D space (with 

permission from [9]). 
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Active measurement methods generally use one or more cameras and lasers to achieve accurate 

measurements of shaft diameters. In 2001, Sun et al. [10] used a pair of line-structured lasers and 

cameras to measure shaft diameters, as shown in Figure 3 [10]. The lights was projected onto the pipe, 

then captured by two cameras, and the diameter of a steel pipe could be determined by fitting the ellipse 

with the two developed arcs. It is difficult to ensure that the two arcs are on the same plane, so the 

accuracy of the method is limited. In 2010, Liu et al. [11] reported a method for measuring shaft 

diameters using a line-structured laser and a camera, as shown in Figure 4 [11]. The coordinates of the 

light stripe projected on the shaft were obtained using a novel gray scale barycenter extraction algorithm 

along the radial direction. The shaft diameter was then obtained by circle fitting using the generated 

coordinates. If the line-structured light is perpendicular to the measured shaft, the shaft diameter can be 

obtained by fitting a circle. Thus, this method is limited by the measurement environment. 

 

Figure 3. Sketch of the measurement system (with permission from [10]). 

 

Figure 4. Mathematical model of the system (with permission from [11]). 

In this study, a method for measuring shaft diameter is proposed using a line-structured laser and a 

camera. Based on the direction vector of the measured shaft axis, which is calibrated before the 

measurement, a virtual plane is established perpendicular to the axis and the image of a light stripe on the 

shaft is projected to the virtual plane. The shaft diameter is then determined from the projected image on 

the virtual plane. To improve the measuring precision, the center of the projected image was determined 

by fitting the projected image using a set of geometrical constraints. 

This report is organized as follows: Section 2 calibrates the structured light system. Section 3 outlines 

the model of the proposed method. Section 4 reports the experimental results used to test the measuring 

accuracy and influences of several factors. Section 5 provides the study’s conclusions.  
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2. Calibration of the Structure Light Measuring System 

2.1. Calibration of Camera Parameters 

The calibration of the measurement system employed world coordinate systems (Oi
WXi

WYi
WZi

W), a 

camera coordinate system (OCXCYCZC), a image coordinate system (oxy), and a pixel coordinate system 

(Ouv), which were established as shown in Figure 5. 

 

Figure 5. Calibration model of the line structured light. 

Based on pinhole projection and lens distortion models, the mapping from the world coordinates to 

the pixel coordinates can be expressed as reported by Zhang [12] and shown in Table 1, where R is the 

rotation matrix; T is translation vector; k1, k2, p1, and p2 are the coefficients of radial and tangential 

distortions; 
0

00

0 0 1

u

A v

α γ 
 = β 
  

 is the interior camera parameters; ZW = 0 in the model. A nonlinear 

function can be established by minimizing the distance between the calculated pixel coordinates of the 

corner points in the calibration board and the actual pixel coordinates. The function was solved using the 

Levenberg-Marquardt algorithm [13]. 

Table 1. Coordinate transformation of camera model. 

Transformation Equations 

From world coordinates  
to camera coordinates

1

C W

C W

C

X X

Y R Y T

Z

   
   = +   
      

 (1) 

From camera coordinates  
to image coordinates

1u c

u c c

x X

y Z Y

  
=   

   
 (2) 

Introduce the distortion  
model, where, r2=x2

d+y2
d,

( )
( )

2 2
1 22 4

1 2 2 2
1 2

2 2
(1 )

2 2

d d du d

u d d d d

p x y p r xx x
k r k r

y y p r y p x y

 + +     = + + +     + +     
 (3) 

From image coordinates  
to pixel coordinates

0

00

1 0 0 1 1

d

d

u u x

v v y

α γ     
     = β     
          

 (4) 
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2.2. Calibration of Structured Light Parameters 

The calibration model of the structured light is shown in Figure 5. Here, AB is the intersection  

line between the light plane and the calibration board, P is a point on AB. The pixel coordinate of P  

can be extracted as described by Steger [14], and camera coordinates of P are determined using 

Equations (1)–(4). Different intersection lines can be obtained by turning the board, so Pi
j is the jth point 

on the intersection line when the board is in the ith position. 

Setting the equation of the light plane under OCXCYCZC: 

 1 2 3 1000 0C C Cb X b Y b Z −+ + =  (5)

The parameters b1, b2, b3 can be determined by the objective function: 

1 2 3
1 1

min 1000 0
n k

i i i
C j C j C j

i j

b X b Y b Z
= =

+ + − =  (6)

where n is number of board turns, k is the number of sample points on the intersection line when the 

board is in the ith position, and (Xi
Cj,Yi

Cj, Zi
Cj) are camera coordinates of Pi

j. According to the principle 

of least squares, the coefficients of Equation (5) can be solved as:  
1

2

1 1 1 1 1 1

1
2

2
1 1 1 1 1 1
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2

1 1 1 1 1 1

1000

n k n k n k
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 
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

 (7)

Because the camera parameters and coordinates of the sample points have errors, the coefficients 

obtained by Equation (7) will be used as initial values for optimizing the light plane. The objective 

function of the optimized plane is established by the distances between the points and the plane: 

1 2 3

2 2 2
1 1 1 2 3

+ 1000
min

i i in k
Cj Cj Cj

i j

b X b Y b Z

b b b= =

+ −

+ +
  (8)

The parameters of the plane can be obtained using the Levenberg-Marquardt algorithm. In the 

experiment, when the constant term of Equation (5) is 1, the parameters of the plane are small and the 

denominator of Equation (8) is around 0. To improve the optimization results, the constant term of  

Equation (5) is set at 1000 in the paper. 

3. The Principle and Model of the Measurement 

The model for measuring the shaft diameters is shown in Figure 6. A shaft is clamped at two centers, 

images of the shaft are captured by a CCD camera, п1 is the light plane, and MN is the axis of the shaft. 

The stripe ab is formed by projecting the light plane п1 onto the measured shaft. The pixel coordinates 

1,2,...,( , )i i i
p p i NP u v =  of ab stripe centers are extracted by Steger’s algorithm. The virtual plane п2 

perpendicular to the measured shaft is created and the normal vector of п2 is the directional vector of the 
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axis MN. Although the position of the axis changes slightly every time a shaft is clamped, the direction 

of the axis does not change. Thus, the equation of the virtual plane п2 can be obtained in OCXCYCZC (see 

Appendix A for the details): 
' ' '

1 2 3 1000 0C C Cb X b Y b Z+ + − =  (9)

The arc cd is formed by the virtual plane п2 intersecting the measured shaft. 

(a) (b) 

Figure 6. The measurement model of the shaft. (a) global view, (b) local view. 

Since the light plane п1 is not perpendicular to the shaft, the cross-section is an ellipse and the shaft 

diameter can be obtained by fitting the ellipse with stripe centers Pi. The elliptic equation is: 
2 2 0x Axy By Cx Dy E+ + + + + =  (10)

The parameters of Equation (10) can be obtained by the least squares method, and the length of the 

minor axis d is the measured shaft diameter:  

2 2 2

2 2 2

2( 4 )
2

( 4 )( (1 ) 1)

ACD BC D BE A E
d

A B B A B

− − + −= ×
− + + − +

 (11)

Since the virtual plane п2 is perpendicular to the shaft, the cross-section is a circle and the diameter 

can be obtained by fitting the circle with points Qi, which are Pi projecting on the virtual plane п2. The 

circle equation is  
2 2 0x y ax by c+ + + + =  (12)

The parameters of Equation (12) can be obtained by the least squares method, and the circle diameter 

d1 is the measured shaft diameter:  

2 2
2

1 2
4

a b
d c

+= × −  (13)

Since the pixel coordinates of the extracted stripe centers have errors, from the numerical analysis, the 

measuring accuracy of the shaft diameter by circle fitting is better than by ellipse fitting (see Appendix B 

for the detail).  
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The image coordinates u 1,2,3...( , )i i i T
u u i NP x y ==  of Pi can be achieved using Equations (3) and (4), so the 

equations of OCPi are: 

x i
P u P

i
P u P

X Z

Y y Z

 = ⋅
 = ⋅

 (14)

The camera coordinates 1,2,3...( , , )i i i i
P P P i NP X Y Z ==  can be obtained using Equations (5) and (14): 

1 2 3

1 2 3

1 2 3

1000 / ( )

1000 / ( )

1000 1/ ( )

i i i i
P u u u

i i i i
P u u u
i i i
P u u

X x b x b y b

Y y b x b y b

Z b x b y b

 = × ⋅ + ⋅ +
 = × ⋅ + ⋅ +
 = × ⋅ + ⋅ +

 (15)

A set of lines PiQi are made by passing through the extracted centers iP  and parallel to the 

measured shaft axis, as shown in Figure 6b. Since the axis MN is perpendicular to the plane п2, the 
direction vectors of the lines are the normal vector of п2, ' ' '

1 2 3( , , )b b b . Thus, the equations of lines  

PiQi are:  

1 1 1

1' ' '
1 2 3

2 2 2

2' ' '
1 2 3

' ' '
1 2 3

z

z

z

p p p

p p p

N N N
p p p

N

x X y Y Z
t

b b b

x X y Y Z
t

b b b

x X y Y Z
t

b b b

 − − −
= = =


 − − − = = =



 − − −

= = =



 (16)

Each line PiQi has an intersection point Qi on the plane п2. The camera coordinates

1,2,3...,( , , )i i i i
i NQ x y z =  of the intersection points are obtained using Equations (9) and (16), respectively. 

 

Figure 7. Oe—XeYeZe and OC—XCYCZC. 

To facilitate the circle fitting, a coordinate system (Oe—XeYeZe) is established on the plane п2, as 

shown in Figure 7. In Oe—XeYeZe, XeYe plane is the plane п2, OeZe axis is perpendicular to the plane п2, 

and the origin of coordinate Oe is the intersection point of the plane п2 with OCZC axis. Additionally, 
camera coordinates of the origin of Oe '

3(0,0,1000 / )b  can be obtained by Equation (9). Thus, 



Sensors 2015, 15 19757 

 

 

translations of the camera coordinate system are '
3(0,0, 1000 / )b−  relative to Oe—XeYeZe and the 

camera coordinate Qi can be changed into Oe—XeYeZe by Equation (17):  

'
3

1 0 0 cos 0 sin 0

= 0 cos sin 0 1 0 0

0 sin cos sin 0 cos 1000 /

i i
e
i i
e
i i
e

x x

y y

z z b

   ψ ψ     
        θ − θ +        
        θ θ − ψ ψ −        

 (17)

where, ψ  is the rotation angle round OCYC, θ  is the rotation angle round OCXC, and e ( , , )i i i i
e e eQ x y z=  

are the coordinates of iQ  in Oe—XeYeZe.  

Normal vector ' ' '
1 2 3( , , )Tn b b b=  of the plane п2 is converted by the coordinate rotation into

'
3(0,0, )Tb a  in Oe-XeYeZe, where, ' 2 ' 2 ' 2

1 2 3( ) ( ) ( )a b b b= + + . Thus, n  values before and after the 

conversion are substituted into Equation (18):  
'
1
'
2

' '
3 3

0 1 0 0 cos 0 sin

0 0 cos sin 0 1 0

/ 0 sin cos sin 0 cos

b

b

b a b

 ψ ψ     
      = θ − θ       
      θ θ − ψ ψ       

 (18)

θ  and ψ  are obtained by Equation (18). In Oe-XeYeZe, because points Qi are on п2, the coordinates Qi 

are ( , ,0)i i i
e e eQ x y= . 

Since arc cd is at a side of the shaft and the coordinates of points Qi on cd have errors, the accuracy of 

the shaft diameter which is directly measured by fitting points on cd is poor, as shown in Figure 8. In 

Figure 8, the red circle is a cross-section formed by the virtual plane п2 intersecting with the shaft and Ow 

is the center of the red circle. The circle obtained by fitting the black points on cd is blue with its center 

at O. To improve the measuring accuracy, the center is determined by fitting black points under the 

geometrical constraints of arc cd, and the geometrical constraints for a circle center are shown in  

Figure 9.  

In Figure 9a, A, B, C, D are the fitting points in the circle and O is the center. Point E is the 

intersection point of AC and BD. From the geometrical feature of a circle, the following relation holds:  

2 2* * rAE CE BE DE OE= = −  (19)

where r is radius of the shaft. Setting the center coordinate as (x0,y0), the coordinates of the points A, B, 

C, D are (xa,ya), (xb,yb), (xc,yc), (xd,yd). The coordinate (xe,ye) of point E can be obtained from points A, 

B, C, D. Thus, the first objective function can be presented as: 

1

min
n

i i
i

D DD
=

+  (20)

2 2 2 2 2 2 2
0 0( ) ( ) ( ) ( ) ( ) ( )i ai ei ai ei ci ei ci ei ei eiD x x y y x x y y r x x y y= − + − × − + − − + − + −  

2 2 2 2 2 2 2
0 0( ) ( ) ( ) ( ) ( ) ( )i bi ei bi ei di ei di ei ei eiDD x x y y x x y y r x x y y= − + − × − + − − + − + −  

where the value of r is estimated when optimizing Equation (20); n is number of the points. 
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Figure 8. Fitting circle by limited data. 

(a) (b) 

Figure 9. Geometrical features of a circle. (a) constraint condition1; (b) constraint condition2. 

As shown in Figure 9b, F is the midpoint of the chord L. Thus, line OF is perpendicular to the chord L 

and can be presented as: 

1

min
n

i i
i

d dd
=

+  (21)

0 0( )( ) ( )( )
2 2

ai ci ai ci
i ai ci ai ci

x x y y
d x x x y y y

+ += − − + − −  

0 0( )( ) ( )( )
2 2

bi di bi di
i bi di bi di

x x y y
dd x x x y y y

+ += − − + − −  

Therefore, the center coordinate can be determined by Equations (20) and (21): 

i
1

min
n

i i i
i

D DD d dd
=

+ + +  (22)

Minimizing Equation (22) is a nonlinear minimization problem, which can be solved by the 

Levenberg-Marquardt algorithm. The initial value of the center is obtained by fitting the circle with the 

points in cd.  

Finally, the shaft diameter is obtained by the distance between the points in cd and the  

optimized center: 
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2 2
0 0

1

( ) ( )
2

n

i i
i

x X y Y
d

n
=

− + −
= ×


 

(23)

where d is the diameter of shaft, (xi,yi) are coordinates of the points in cd, (X0,Y0) is the coordinate of the 

optimized center, and n is the number of fitting points. 

4. Experiments and Analysis 

Experiments were conducted to assess the utility of the proposed method. The experimental 

equipment employed is shown in Figure 10 and the main parameters of the equipment are shown in 

Table 2. The interior parameters of the camera were calibrated by the method presented in Section 2. 

Two shafts were used in the experiments; shaft 1 was a four-segment shaft and the shaft surface’s 

reflection was reduced using a special process, as shown in Figure 10a. Shaft 2 was a seven-segment 

shaft, as shown in Figure 10b. The shafts’ diameters were measured using a micrometer with a resolution 

of 1 μm. 

(a) (b) 

Figure 10. Experimental equipment for measuring shafts: (a) shaft 1; (b) shaft 2. 

Table 2. Experimental equipment parameters. 

Equipment Mold NO. Main Parameters 

CCD camera JAI CCD camera Resolution: 1376 × 1024 
Lens M0814-MP Focal length: 25 mm 

Line projector  LH650-80-3 Wavelength: 650 nm 

Mold plane CBC75mm-2.0 Precision of the grid: 1 μm 

First, the images of the shafts were captured using the camera, as shown in Figure 11. The diameters 

of the shafts were measured using the method described in Section 3. The measurement data are listed in 

Tables 3 and 4, and the measurement error was less than 25 μm. 
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(a) (b) 

Figure 11. Images of stripes by camera: (a) shaft 1; (b) shaft 2. 

Table 3. Measurement results for shaft 1 (mm). 

NO. 1 2 3 4 

Measurement results 47.05 39.749 34.915 29.796 
Known values 47.062 39.76 34.924 29.8 

Errors 0.012 0.011 0.009 0.004 

Table 4. Measurement results for shaft 2 (mm). 

NO. 1 2 3 4 5 6 7 

Measurement results 24.761 27.661 31.456 27.474 24.596 21.696 20.091 
Known values 24.753 27.664 31.473 27.492 24.621 21.687 20.113 

Errors 0.008 0.003 0.017 0.018 0.025 0.009 0.022 

To compare the proposed method with the other methods, the diameters of the shafts were obtained 

by directly fitting the ellipse and circle. The data for these methods are shown in Tables 5 and 6. The 

measuring accuracy of the present method was found to be better than that of the other two methods. 

Table 5. Comparison of the measured diameters in shaft1 (mm). 

NO. D 
Fitting Ellipse Fitting Circle Present Method 

D1 Errors D2 Errors D3 Errors 

1 47.062 46.992 0.07 47.034 0.028 47.05 0.012 
2 39.76 39.659 0.101 39.698 0.062 39.749 0.011 
3 34.924 34.773 0.151 34.827 0.097 34.915 0.009 
4 29.8 29.741 0.059 29.73 0.07 29.796 0.004 

Mean error   0.095  0.064  0.009 

To test the influence of the angle between the light plane and cross-section of the shaft on the 

proposed method, the shaft diameters were measured by light planes with three different light angles, as 

shown in Figure 12. Measurement results are listed in Tables 7 and 8. 
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Table 6. Comparison of the measured diameters in shaft 2 (mm). 

NO. D 
Fitting Ellipse Fitting Circle Present Method 

D1 Errors D2 Errors D3 Errors 

1 24.753 24.203 0.55 24.62 0.133 24.761 0.008 
2 27.664 27.193 0.471 27.632 0.032 27.661 0.003 
3 31.473 30.877 0.596 31.395 0.078 31.456 0.017 
4 27.492 27.098 0.394 27.415 0.077 27.474 0.018 
5 24.621 24.097 0.524 24.512 0.109 24.596 0.025 
6 21.687 21.224 0.463 21.624 0.063 21.696 0.009 
7 20.113 19.705 0.408 19.935 0.178 20.091 0.022 

Mean error   0.487  0.096  0.015 

 

 
(a) (b) (c) 

Figure 12. Images of stripes at three different angles. 

From Tables 7 and 8, the light angle appears to have very little effect on the measuring accuracy of the 

proposed method.  

Table 7. Errors for different angles in shaft 1 (mm). 

NO. 1 2 3 4 Mean Error 

a/Errors 0.012 0.011 0.009 0.004 0.009 
b/Errors 0.014 0.012 0.012 0.012 0.013 
c/Errors 0.01 0.016 0.013 0.008 0.012 

Table 8. Errors for different angles in shaft 2 (mm). 

NO. 1 2 3 4 5 6 7 Mean Error

a/Errors 0.008 0.003 0.017 0.018 0.025 0.009 0.022 0.015 
b/Errors  0.005 0.007 0.004 0.016 0.026 0.013 0.018 0.013 
c/Errors 0.008 0.013 0.025 0.017 0.028 0.009 0.022 0.017 

In order to test the influence of noise on the proposed method, noise with a variance of 0.01 and a 

mean of zero was added to the stripe images of shaft 1 and shaft 2, as shown in Figures 13 and 14. The 

center coordinates of the stripe images with the added noise were extracted by Steger’s algorithm [14]. 

The shaft diameters can be determined respectively by the ellipse, circle, and the proposed method 

fitting the center coordinates. The results are listed in Tables 9 and 10. 
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(a) (b) 

Figure 13. Images of stripe on shaft 1. (a) normal; (b) added noise. 

(a) (b) 

Figure 14. Images of stripe on shaft 2. (a) normal; (b) added noise. 

Table 9. Measurement results for shaft 1 (mm). 

 D 
Fitting Ellipse Fitting Circle Present Method 

D1 Errors D2 Errors D3 Errors 

Normal 34.924 34.924 0.151 34.827 0.097 34.915 0.012 
Added noise 34.924 34.896 0.028 34.837 0.087 34.918 0.006 

DΔ    0.123  0.01  0.003  

Table 10. Measurement results for shaft 2 (mm). 

 D 
Fitting Ellipse Fitting Circle Present Method 

D1 Errors D2 Errors D3 Errors 

Normal 31.473 30.877 0.596 31.395 0.078 31.456 0.017 
Added noise 31.473 30.762 0.711 31.421 0.052 31.47 0.003 

DΔ    0.115  0.026  0.014  

Here, the shaft diameters D were obtained by a micrometer, and DΔ  is change of the shaft diameter 

measurements before and after the added noise. As seen in Tables 9 and 10, the noise has little effect on 

the measuring accuracy of the proposed method. 
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5. Conclusions 

A method for the measurement of shaft diameters is proposed which is based on a structured light 

vision measurement. A virtual plane is established perpendicular to the measured shaft axis and an 

equation for the virtual plane is determined using a calibrated model of structured light measurement. To 

improve the measurement accuracy, the center of the measured shaft can be obtained by fitting the 

projected light stripe image on the virtual plane under the geometrical constraints. Using specific 

experimental conditions, measurement errors of the method were less than 25 μm and the angle between 

the structured light plane and the measured shaft barely affected the measurement accuracy. 

Acknowledgments 

The work described in this paper is partially supported by the Foundation of Jilin Provincial 

Education Department under Grant 201591. 

Author Contributions 

Siyuan Liu proposed the algorithm, designed and performed experiments, and wrote the initial 

manuscript. Qingchang Tan conducted the analysis of the algorithm. Yachao Zhang performed experiments. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

Appendix A 

Since the virtual plane п2 is perpendicular to the measured shaft, the direction vector of the axis is the 

normal vector of п2. As shown in Figure A1, the calibration board is fixed by fixtures, and they are 

clamped by the two centers and the connecting line of the two centers is the axis of the shaft MN. 

Turning the calibration board, the images of the board can be captured by a camera and MN is the 

intersecting line of the calibration board planes. 

(a) (b) 

Figure A1. The model of the calibrating axis. (a) sketch map; (b) image of equipment. 
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Based on Equation (1), Equation (A1) can be obtained:  
j

1
1

2

3

j
C W

j j
j C W

j j
C W

X t X

R Y t Y

Z t Z

−

   −
   ⋅ − =   
   −   

 
(A1)

Set to 
11 12 13

1
21 22 23

31 32 33

j j j

j j j
j j

j j j

d d d

R D d d d

d d d

−

 
 = =  
  

, where, Rj and tj are the rotation matrix and translation vector of the 

calibration target at the jth position and can be obtained by the method provided in Section 2, j = 1,2. 

Since world coordinate systems Oj
WXj

WYj
WZj

W are built on the calibration target plane, Zj
w = 0. The 

equation of the calibration target plane at the jth position is: 

31 32 33 31 1 32 2 33 3
j j j j j j j j j

C C Cd X d Y d Z d t d t d t+ + = + +  (A2)

The normal vector of the plane is ( )j 31 32 33, ,j j jS d d d= . MN is the intersecting line of the two planes, so 

the direction vector of MN can be represented as: 

( ) ( )1 2 1 2 1 2 1 2 1 2 1 2
1 2 32 33 33 32 33 31 31 33 31 32 32 31, , d , ,MN x y zS d d d S S d d d d d d d d d d d= = × = ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅  (A3)

As shown in Figure 6, Or is a point in п2 and set Or is the intersection point of MN and п1, and the 

camera coordinate of Or is Or = (Xr,Yr,Zr).  

The equation of п2 in OCXCYCZC is  

( ) ( )( ) 0x C r y C r z C rd X X d Y Y d Z Z− + − + − =  (A4)

Thus, equation parameters of the virtual plane can be obtained using Equations (9) and (A4): 

'
1 r
'
2 r
'
3 r

1000 ( )

1000 ( )

1000 ( )

x x y r z r

y x y r z r

z x y r z r

b d d X d Y d Z

b d d X d Y d Z

b d d X d Y d Z

 = × ⋅ + ⋅ + ⋅
 = × ⋅ + ⋅ + ⋅
 = × ⋅ + ⋅ + ⋅

 (A5)

Appendix B 

i
eQ  are the points for circle fitting, and the coordinates e 1,2,3...,( , )i i i

e e i NQ x y ==  can be obtained  

by Equation (17). The coordinates 
i
eQ  are substituted into Equation (12). Then Equation (12) is handled 

by the principle of least squares as: 

1 1 1A x b=  (B1)

where, 
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1 1 1
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1 1 1

1 1 1
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=

=
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, 1
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c

 
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. 

Using 
1x  obtained by Equation (B1), the measured shaft diameter can be obtained by Equation (13). 
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The coordinates of points for ellipse fitting are 1,2,3...,( , )i i i
t t t i NP x y == . To facilitate the ellipse fitting, a 

new coordinate system is established on the structured light plane п1, and the camera coordinates iP  

can be converted into 1,2,3...,( , )i i i
t t t i NP x y ==  in the coordinate system. The coordinates 

i
tP  are substituted 

into Equation (10). Then Equation (10) is handled by the principle of least squares as: 

2 2 2A x b=  (B2)

where, 

2 2 3 2 2
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.  

Using 
2x  obtained by Equation (B2), the measured shaft diameter can be obtained by Equation (11). 

Since the matrixes (A1, A2) and the vectors (b1,b2) in Equations (B1) and (B2) consist of the 

coordinates of the light stripe centers, the matrixes and vectors are influenced by errors of the light stripe 
centers’ coordinates, which show that 

1x  and 
2x  are inaccurate. From Numerical Analysis (Seventh 

Edition) by Burden and Faires [15], the influence is analyzed as shown below.  

Considering the errors of the light stripe centers’ coordinates, matrix A1 and vector b1 in  

Equation (B1) are expressed as: 

' '
1 1 1 1 1 1;A A A b b b= +δ = +δ  

where 
1Aδ  and 

1bδ  are caused by errors of the light stripe centers’ coordinates. Thus, 
1x  in  

Equation (B1) becomes 
'

1 1 1x x x= +δ , and Equation (B1) can be expressed as: 

1 1 1 1 1 1( )( ) ( )A A x x b b+ δ + δ = + δ  (B3)

1 1 1 1 1 1 1( ) ( )A A x A A x b b+ δ + + δ δ = + δ  

1 1 1 1 1 1( )A A x b A x+ δ δ = δ − δ ⋅  (B4)

Set 
1 1( )A A+ δ  is an invertible matrix, and from Equation (B4) we get: 

1
1 1 1 1 1 1( ) ( )x A A b A x−δ = +δ δ −δ ⋅  (B5)

In order to analyze the error of the fitting circle equation’s parameters, the norm of Equation (B5) is:  

1
1 1 1 1 1 1( )x A A b A x−δ ≤ + δ ⋅ δ − δ ⋅  (B6)

where 1xδ  is error of the circle equation’s parameters 
1x  obtained by the circle fitting.  

In the same way, the error of the equation’s parameters 
2x  for the ellipse fitting can be obtained by  

Equation (B2) 

1
2 2 2 2 2 2( )x A A b A x−δ ≤ + δ ⋅ δ − δ ⋅ (B7)
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From Equations (B1) and (B2), 
1

1 1( )A A −+δ  and 
1

2 2( )A A −+δ  can be calculated by the light stripe 

centers’ coordinates. 

When the measured shaft diameter is 24.753 mm, 1
1 1 2( )A A −+ δ  and 1

2 2 2
( )A A −+ δ  can be 

calculated by the coordinates of the light stripe centers. 

1
1 1 2

( ) 27.04A A −+ δ =  

1
2 2 2

( ) 2454.06A A −+ δ =  

So 

1 1 1 12 2
27.04x b A xδ ≤ δ −δ ⋅  (B8)

2 2 2 22 2
2454.06x b A xδ ≤ δ −δ ⋅  (B9)

From Equations (B8) and (B9), 2 2 2 2
b A xδ −δ ⋅  must be very small if 2 12 2

x xδ ≈ δ . From  

Equation (B4), 2 2 2b A xδ − δ ⋅  cannot be a zero vector. So, a very small 2 2 2 2
b A xδ −δ ⋅  requires that 

the absolute values of elements in the matrices 
2Aδ  and the vector 

2bδ  must be very small. This shows 

that the errors of the light stripe centers’ coordinates for the ellipse fitting must be smaller than the ones 

for the circle fitting. On the other hand, if the coordinate errors of the light stripe centers for the circle 

fitting are the same as those for the ellipse fitting, the error of the circle equation parameters obtained by 

the circle fitting is smaller than the one of the ellipse equation parameters obtained by the ellipse fitting. 

From Equations (11) and (13), the measuring accuracy of the shaft diameter by circle fitting is better 
than by ellipse fitting. When the measured shaft diameter is 27.664 mm, 1

1 1 2
( ) 19.03A A −+ δ =  and 

1
2 2 2

( ) 1670.7A A −+ δ = , the same results can be obtained.  
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