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Abstract: Unmanned aerial vehicles (UAVs) combined with different spectral range 

sensors are an emerging technology for providing early weed maps for optimizing 

herbicide applications. Considering that weeds, at very early phenological stages, are 

similar spectrally and in appearance, three major components are relevant: spatial 

resolution, type of sensor and classification algorithm. Resampling is a technique to create 

a new version of an image with a different width and/or height in pixels, and it has been 

used in satellite imagery with different spatial and temporal resolutions. In this paper,  

the efficiency of resampled-images (RS-images) created from real UAV-images  

(UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible 

plus near-infrared spectra) captured at different altitudes is examined to test the quality of 

the RS-image output. The performance of the object-based-image-analysis (OBIA) 

implemented for the early weed mapping using different weed thresholds was also 

evaluated. Our results showed that resampling accurately extracted the spectral values from 

high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at 

altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide 

application maps compared with UAV-images from real flights. 
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1. Introduction 

Even when the patchy distribution of weeds in sunflower fields, as well as the variability in the 

abundance and type of weeds, has been demonstrated using on-ground sampling [1–3], herbicides are 

usually broadcast over the entire field, including weed-free zones, using a unique kind of herbicide. 

This extensive application of herbicides has not only relevant economic and environmental 

implications, but also plays a role in the development of herbicide-resistant weed biotypes [4–7]. 

To overcome this situation, site-specific weed management (SSWM) could be used as an alternative 

to adjust the herbicide treatment to the weed patches only and to consider different herbicide 

applications according to the weed species, weed group composition (e.g., against broadleaved, grass 

or resistant weeds) or weed thresholds (i.e., the weed infestation cover above which a treatment is 

required) [8–11]. Moreover, recent findings have led to a changing perception on weed thresholds in 

agro-ecosystems. The main findings are that some groups of weeds have numerous beneficial 

interactions with other organisms (e.g., pollinators) or are important to maintain biodiversity, and some 

of these interactions can have direct effects on the functioning of the agro-ecosystem [12].  

A combination of SSWM according to the weed threshold would provide efficient weed control 

allowing both biodiversity provision and crop production. Therefore, an effective strategy may consist 

of the use of a single herbicide treatment for weed patches where a unique group of weeds are present, 

the use of several herbicides depending on the presence of different weed species or group 

compositions, or the use of a herbicide treatment based on percentage weed cover or weed threshold. 

To make this possible, remotely sensed imagery from satellite or piloted aircraft have successfully 

been used to create accurate weed maps at flowering or late phenological stages to facilitate decision 

making and reach the objective of SSWM [13–17]. However, the use of these remote platforms for 

mapping weeds within crops at very early phenological stages is limited due to their coarse image 

spatial resolution (usually >50 cm pixel). This is not sufficient to distinguish between weeds and crop 

species, because of their small size and spectral appearance similarities at that early stage [18]. 

Unmanned aerial vehicles (UAVs) are emerging as an appropriate technology to collect the images 

required for this task [19,20]. The UAVs can fly at very low altitudes to generate fine spatial and 

temporal resolution imagery (flights can be programmed on demand depending on the objective of 

each study), their acquisition costs are low, and different sensors with diverse spectral ranges can be 

embedded. These characteristics facilitate the procurement of high spatial, spectral and temporal 

resolutions, which are required for the agronomic goal of detecting weeds at early stages [21]. 

However, similar to most technology, the UAVs have some limitations and technical problems,  

e.g., stabilization may not be constant at high flight altitudes (e.g., 100 m) due to wind being more 

noticeable, the battery determines the duration of the flight and flight altitude is restricted to 120 m by 

the Spanish regulation for UAVs <25 kg. This affects the pixel size and dimensions of the surface 

covered by each flight because the lower the flight altitude, the higher the spatial resolution but the 
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lower the surface coverage. Consequently, a set of overlapping images is required to cover the whole 

study area. These images must be stitched together to create an ortho-mosaicked image that requires 

aerotriangulation and ortho-rectification, which are time-consuming processes. This is facilitated by  

a number of invariant features (generally present in any scenario) and geo-locating targets (Ground 

Control Points, GCP), which are placed in the field and ultimately used in a geo-registration process to 

determine the spatial quality of the mosaicked image [22]. These steps become more complicated for 

real crop scenarios, such as herbaceous row crops that are flown over because of their repetitive 

pattern and the difficulty in identifying invariant or specific features. 

Resampling is a mathematical technique that is used to create a new version of a remotely sensed 

image with a different width and/or height in pixels, i.e., a process that geometrically transforms 

digital images [23,24]. Increasing the size of an image (making the pixel size smaller and consequently 

increasing both the number of pixels of the original image and the spatial resolution) is called 

upsampling, whereas reducing the size of an image (larger pixel size but fewer number of pixels and 

lower spatial resolution) is called downsampling [25]. Digital image resampling originated in the early 

1970s [23] and has mostly been used for improving the amount of information that can be extracted 

from satellite imagery with a coarse spatial and fine temporal resolution (such as NOAA-AVHRR:  

1.1 km spatial resolution and 1–3 images per day, or TERRA-MODIS: spatial resolution of 250 m and 

one image every two days), and medium spatial but low temporal resolution (e.g., Landsat 7 ETM:  

30 m spatial resolution, one image every 16 days) [26–28]. The objective of these works was to 

combine the advantageous characteristics of every sensor, i.e., the Landsat 7 ETM spatial information 

and the temporal frequency of NOAA-AVHRR or TERRA-MODIS data. The resulting RS-image 

must have high quality to ensure the accuracy of the numerical and visual output. In the case of 

working to resample a UAV-image, the objective would be to create an RS-image to simulate higher 

flight altitudes with a corresponding larger pixel size and lower number of pixels by using the  

UAV-images obtained at a low altitude with a higher spatial resolution (i.e., lower pixel size) and a 

high number of pixels. That is, this resampling will allow a flight at low altitude to be used as a 

baseline (high spatial resolution) to obtain a new image at a higher altitude (lower spatial resolution) 

without carrying out the real flight at a high altitude. This will reduce the personnel, economic and 

time resources involved with the flights. In addition, the data post-processing and image analysis can 

be optimized (due to a lower number of pixels), which avoids new image ortho-rectification and 

mosaicking because these two procedures would already have been conducted for the low altitude 

flight or for flight altitude optimizing for a specific objective in scientific studies. 

Object-based image analysis (OBIA) is a powerful procedure and an efficient and accurate 

alternative to pixel-based methods [29–32] to discriminate crops, bare soil and early weeds, and can be 

used to generate weed maps. The OBIA approach first identifies spatially and spectrally homogeneous 

units (objects) created by grouping adjacent pixels according to a procedure known as segmentation. 

Then, automated and auto-adaptive classification methods are developed using the objects as the 

minimum information units, and their spectral, contextual (position, orientation), morphological and 

hierarchical information is combined. Peña et al. [33] used the OBIA strategy for early-season weed 

discrimination in maize using non-mosaicked UAV-imagery and a three-step automatic classification 

approach focused on crop line detection. However, it would be necessary to obtain the weed patch 
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information over the whole crop field using an ortho-mosaicked image to facilitate a complete 

georeferenced map of weed cover for the SSWM equipment. 

Taking into account the factors introduced above, the objectives of this work were to: (1) resample 

imagery from UAVs at different flight altitudes and evaluate the similarity and quality of the resulting 

RS-images based on visual and mathematical criteria; (2) apply an OBIA procedure for crop and weed 

patch detection in RS-images and UAV-images; (3) evaluate and compare the weed map outputs 

obtained from UAV-images vs. RS-images by establishing different weed thresholds; and (4) evaluate 

and discuss the resampling limitations and opportunities that are related to optimizing the UAV 

technology and time-consuming processes under several potential scenarios. 

2. Experimental Section 

2.1. Locations, Flights and Sensors 

The study was conducted in two sunflower fields (named Fields 1 and 2) located in Monclova farm 

(province of Seville, southern Spain) of approximately 1 ha each. The flights were authorized  

by a written agreement between the farm owners and our research group. The geographic coordinates 

(UTM, zone 30N, WGS-84) of the upper left corner of the images were X = 295,400 m Y = 4,156,107 m, 

and X = 295,112 m Y = 4,155,611 m, respectively. Both sites were naturally infested by broadleaved 

weeds such as Amaranthus blitoides S. Wats, Sinapis arvensis L., Convolvulus arvensis L. and 

Chenopodium album L. The vegetative growth stage of weeds and crop in both fields were in  

the principal stage 1 (leaf development) four to six true leaves in both fields from the BBCH  

extended scale [34]. 

For each study plot, a set of overlapped images (60% forward-longitudinal-lap and 30% side-lap) 

was captured from an MD4-1000 multi-rotor UAV (Microdrones GmbH, Siegen, Germany). The 

remote images were acquired using two different cameras, a conventional still visible camera,  

an Olympus PEN E-PMI (RGB, acquires 12-megapixel images in true colour, Red, R; Green, G;  

and Blue, B; image size 4032 × 3024 pixels, is equipped with a 14–42 mm zoom lens and sensor size 

17.3 × 13 mm), and a multispectral camera, Tetracam mini-MCA-6 (TTC, 1.3-megapixel images in  

B (450 nm), G (530 nm), R (670 and 700 nm), R edge (740 nm) and near RS-Infrared (NIR, 780 nm); 

image size 1280 × 1024 pixels, focal length 9.6 mm and sensor size 6.66 × 5.32 mm). The aerial 

images were collected on 7 May 2014 at different flight altitudes (30, 60 and 100 m) using both 

cameras, although the flight at 60 m that used the RGB camera in Field 1 was not available because it 

was not correctly downloaded to the computer due to a processing problem. The flight lengths and 

areas flown and the associated altitudes and cameras are shown in Table 1. 

The flight routes for each camera were programmed and automated, and only the take-off and 

landing were manually performed by the pilot. To create the geo-referenced ortho-mosaicked images, 

a total of six artificial GCPs were geo-referenced using a Trimble Geo-XH Differential GPS (DGPS) 

for each field. To construct the mosaicked image and facilitate the process, these GCPs had to be 

identified in all the images. The software used to process the images was Agisoft Photoscan 

Professional Edition (Agisoft LLC, St. Petersburg, Russia). Detailed information on the configuration 

of the UAV flights and specifications of the vehicle and cameras can be found in [21]. 
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Table 1. Flight length and area flown over as affected by flight altitude and type of camera. 

Field Flight Altitude (m) Sensor * 

  RGB TTC 

  Length (min) Area (ha) Length (min) Area (ha) 

1 30 12 0.4 27 0.07 
 60 - ** -   
 100 5 1.7 7 0.4 

2 30 11.5 0.3 28 0.06 
 60 5.4 0.6 11.1 0.14 
 100 5 1.77 7 0.38 

* RGB: Red-Green-Blue (visible range), TTC: Tetracam, Blue-Green-Red-Near Infrared range; ** data not available. 

2.2. Resampling: Spatial Degradation of Fine Quality Images 

In this study, the resulting ortho-mosaicked images for the 30 m flight altitude had a spatial 

resolution of 1.07 and 1.6 cm for the RGB and TTC, respectively, in both fields. The spatial resolution 

is defined automatically by the software that performs the mosaicking. This imagery was degraded 

through resampling to simulate pixel resolutions of 60 m (1.84 cm for the RGB and 3.25 cm for the 

TTC) and 100 m altitudes (3.07 and 5.42 cm for the RGB and TTC, respectively). Because the pixel 

size of the new RS-image is related to the altitude, focal length and resolution of the camera, the 

resampled pixel size has to be derived. Therefore, to obtain the corresponding pixel size, the nearest 

neighbour (NN) resampling method was used, which consists of the simplest reconstruction method 

whereby each pixel is assigned the intensity of the sample nearest to that pixel using ENVI software 

(ENVI 5.0, Research Systems Inc. Boulder, CO, USA, User Manual). This method does not modify 

the numerical value of the pixels, referred to as the digital number, and it is widely used because of the 

speed with which it can be implemented and its sheer simplicity [23,24]. The NN method simply 

chooses the pixel that has its centre nearest the point located in the image and this pixel is then 

transferred to the corresponding display grid location. This is the preferred technique if the new image 

is to be classified because it then consists of the original pixel brightness, simply rearranged in position 

to yield correct image geometry [35]. It is necessary to apply two factors, named xfactor and yfactor, 

which are calculated as the relationship between the pixel sizes of the image to the resample (i.e., the 

image taken at 30 m altitude) divided by the resampled pixel targeted. A total of seven RS-images 

were created, three for Field 1 and four for Field 2 (two flight altitudes and two sensors). There are 

other resampling methods, e.g., bilinear and cubic convolution interpolations. The main difference 

compared with the NN method is that these methods do not preserve the original values because 

averages are used to obtain the digital number of the new pixels [23,36]. 

Once the seven RS-images were created at 60 and 100 m flight altitudes for both cameras, and due 

to the availability of real UAV-images for these conditions, this latter imagery was used to establish  

a visual inspection and mathematical comparison of the quality of the spatial resolution and the 

spectral values of the output images. Spatial quality is usually judged by visual inspection; however, 

the human visual system is not equally sensitive to various types of distortion in an image. The spatial 

quality of the perceived image strongly depends on the observed scene as well as the viewing and the 

observer conditions [36]. To solve this matter, the positional accuracy of the RS-image was evaluated 
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through a test of the American Society of Photogrammetry and Remote Sensing (ASPRS) [37]. This 

test establishes three quality classes according to horizontal accuracy defined by the root mean square 

error (RMSE) for a specific scale, where class 1 is the most precise and classes 2 and 3 are two and 

three times less precise, respectively. The RMSE is defined as the square root of the average of the 

squared discrepancies. A minimum of 20 points for each field that were easy to identify and distributed 

randomly over the entire field had to be selected from across the study areas to perform the test (Figure 1). 

The X and Y coordinates are evaluated separately and the one that had the worst results determined the 

quality of the RS-images. That is, ASPRS test defines horizontal accuracy classes in terms of their 

RSME X and Y values. Under the 1990 ASPRS standard, the allowable horizontal RMSE for Class 1 

accuracy at 1:50 scale is 0.0125 m (1.25 cm). That represents a test condition that has to be 

accomplished to be classified in that class. In this work, the discrepancies are the differences in the 

coordinate values of the 20 selected points in the RS-image and the real UAV-image. Spectral values 

were also compared through information deduced from histograms to check that the NN method did 

not modify the digital number of the pixels. 

 

Figure 1. Representation of the 20 selected points for the American Society of 

Photogrammetry and Remote Sensing (ASPRS) test for Field 1. 

2.3. Weed Detection 

Once resampled, the following process was applied to the output RS-image. As a first step, a 

common area was delimited in both fields by creating a mask covering the area of interest (for the two 

cameras and the 60 and 100 m altitudes) to reduce the processing time. Subsequently, an OBIA 

procedure designed for the weed mapping tasks that was based on the weed mapping algorithm for 

maize crops in non-mosaicked imagery described in [33] was developed using the software eCognition 

Developer 8.9 (Trimble Geospacial, Munich, Germany). This algorithm was adapted and modified to 

this particular study according to the specific values of the sunflower fields. The OBIA algorithm 

developed was able to generate the weed maps, which provided information for site-specific weed 

control decision making. This algorithm consists of a three-step automatic classification approach:  

(1) image segmentation that defines vegetation and soil background objects; (2) discrimination of 

vegetation objects based on spectral information; and (3) classification of crop and weed plants based 

on the position of each plant relative to the crop-row structure. 
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The coincidence (or lack thereof) between the RS-image and UAV-image classifications was taken 

into account when the resampling accuracy was determined. Therefore, the ability of the OBIA 

algorithm to detect weeds in the RS-image was evaluated by studying the similarity of the results 

obtained from the real UAV-image equivalent under the simulated conditions (cameras, flight altitudes 

and fields). That is, the OBIA procedure was also applied to the ortho-mosaicked images created from 

the series of real UAV pictures acquired by the two sensors at 60 and 100 m altitudes in both fields. 

Because the hypothesis that weed patch detection was based on the specification that every plant 

not located in the crop line was classified as a weed, the performance of the OBIA algorithm in every 

case study (camera, flight altitude and field) was evaluated by comparing the results obtained for  

crop-row identification and weed discrimination with observed real data obtained from 32 ground-truth 

1 × 1 m (1 m2) sampling frames located in every field. These sampling areas were distributed across 

the entire study area and were representative of the weed infestation observed in the field and thus also 

included a number of weed-free sampling frames. The frames were visually divided into four categories 

of weed infestations ranging from 0 to 3 (eight samples in each category); 0 corresponded to  

no-presence (free of weeds), 1 corresponded to low infestation (approximately 30–50 pixels infested, 

around a 5% of area covered by weeds, corresponding to the image acquired at a 30 m flight altitude), 

2 corresponded to medium infestation (approximately 75 pixels infested, around a 10%–15% of area), 

and 3 corresponded to high infestation (more than 100 pixels infested, around a 20% of area).  

To assess the accuracy of the results, a comparison of the area covered by weeds using all the frames 

in the RS-image vs. the UAV-image was established for each case. As stated previously, the term  

weed was applied to any type of vegetation that emerged between the crop lines. In addition, weed 

maps obtained using the OBIA procedure that were applied to both types of imagery (RS-image and 

UAV-image) were compared visually frame by frame. The objective was to determine whether weeds 

were detected or overlooked as a way to support the efficiency of the procedure in the RS-image. 

Finally, an estimation of the weed-infested area was obtained and a strategy for SSWM was 

designed accordingly. This SSWM programme was based on the weed cover maps in which weed-free 

and weed-infested areas according to seven thresholds for every frame were considered. The 

thresholds assessed ranged from 0% (herbicide must be applied just when there is presence of weed) to 

15% of the infested area (herbicide must be applied if weed coverage > 15%) with an increase ratio of 

2.5. The frames were then classified as Treatment or No-Treatment depending on whether the 

threshold was exceeded or not. That is, seven herbicide treatment maps resulting from a given 

threshold value were studied for both the RS-image and the UAV-image at every flight altitude and for 

each camera. 

3. Results and Discussion 

3.1. Evaluation of Similarity and Quality between RS-Image and UAV-Image 

The spatial resolution of the RS-image using the UAV-image acquired at 30 m and the UAV-image 

at 60 and 100 m are shown in Table 2. Taking into account that the pixel size of the UAV-image is 

directly related to the technical specifications of each camera and the flight altitude, the resampled 

pixel sizes were 1.84 cm and 3.25 cm at 60 m, and 3.07 and 5.42 cm at 100 m for the RGB and TTC 
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cameras, respectively. Therefore, the new RS-image was downsampled and it has a lower file size than 

the UAV-image at 30 m due to pixel size increase and degradation of the image used as the baseline 

(i.e., 150 MB for the UAV-image captured using the RGB at 30 m and 18.4 MB for the RS-image at 

60 m for Field 1). The file size for the UAV-image at 30 m RGB and TTC are 150 MB and 122 MB 

for Field 1 and 237 MB and 237 MB for Field 2, respectively. 

Table 2. Pixel resolution of UAV-image and RS-image, spatial quality (RMSE) and file 

size of RS-image according to flight altitudes and sensors in two sunflower fields. 

Field Sensor * Flight Altitude (m) 

  60 100 

  Pixel Size (cm) File Size 
(MB) 

RMSE (cm) Pixel Size (cm) File Size 
(MB) 

RMSE (cm) 

  UAV-I ** RS-I X Y UAV-I RS-I X Y 

1 RGB - § - - - - 3.31 3.07 18.4 0.89 1.19 
 TTC 3.2 3.25 13.3 1.22 1.12 5.41 5.42 4.82 1.13 1.21 

2 RGB 1.99 1.84 75.8 0.87 0.67 3.37 3.07 27.2 1.24 1.11 
 TTC 3.2 3.25 24.3 1.12 1.08 5.41 5.42 8.75 1.19 1.24 

* RGB: Red-Green-Blue (visible range), TTC: Tetracam, Blue-Green-Red-Near Infrared range; ** UAV-I: 

UAV-imagery, RS-I: Resampled-imagery; § data not available. 

The results of the spatial quality test according to the RMSE calculated from a total of 20 points for 

every sensor, flight altitude and coordinate are presented in Table 2. The RMSEs were similar 

regardless of the flight altitude and sensor used. They ranged from 0.87 to 1.24 cm and from 0.67 to 

1.24 cm for the X and Y coordinates, respectively. The X coordinate showed the worst results and 

determined the quality of the RS-images. The RMSEs were lower than 1.25 cm for 1:50 scale, 

therefore the RS-images belonged to Class 1, which is the most precise class according to the ASPRS 

test conducted between the two types of imagery. The points selected for the ASPRS test in Field 1 are 

presented in Figure 1. It is likely that these results are accurate because the NN resampling method did 

not modify the digital values of the image, as expected. Moreover, the spectral values of the images 

and histograms from bare soil, crops and weeds for the UAV-image and the RS-image were analogous 

(spectral quality test). The information obtained from the histograms is shown in Table 3. The 

histograms were calculated from all the RS-images, but only those from the values from Field 2 and 

the RGB sensor are shown so as not to clutter Table 3. This similarity is very important for a further 

high matching of weed patch detection results from the RS-image vs. the UAV-image. 

Table 3. Mean and Standard deviation of RGB-bands of UAV-image and RS-image 

created by Nearest-Neighbor resampling. 

Band 
UAV-I *  

30 m 
RS-I  
60 m 

RS-I  
100 m 

R 161.11 ± 24.25 161.11 ± 24.25 161.11 ± 24.25 

G 121.64 ± 24.94 121.64 ± 24.93 121.64 ± 24.94 

B 86.73 ± 22.98 86.73 ± 22.97 86.73 ± 22.98 

* UAV-I: UAV-imagery, RS-I: Resampled-imagery. 
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3.2. Weed Detection: Mapping and Accuracy 

The OBIA procedure identified and mapped the sunflower crop rows with 95% accuracy in the  

RS-image and the UAV-image. Crop rows correctly identified and mapped are shown in Figure 2. This 

was due not only to the performance of the resampling procedure, but also to the high matching of the 

crop-line continuity of the ortho-imagery during the mosaicking process of the UAV-image used as  

a baseline. If these mosaics were not sufficiently accurate, the crop rows would appear interrupted or 

broken, and would be inaccurately geo-referenced and consequently, in an incorrect location, which 

would affect further resampling and classification [22]. Peña et al. [33] reported 100% accuracy in 

maize crops, although these authors analysed non-mosaicked UAV-images, i.e., the UAV images were 

studied one by one. 

 

Figure 2. (a) Illustration of the UAV-image taken with the visible camera at 60 m; and  

(b) corresponding weed seedling map using object-based image analysis (OBIA) (green: 

crop rows, red: weed, grey: bare soil); (c) illustration of the RS-image at 60 m; and  

(d) corresponding weed seedling map using OBIA. 

Therefore, our results surpass these because they are able to offer a crop-row map of the whole 

study area. Other authors have reported difficulties in obtaining ortho-mosaicked imagery from row 

crops such as maize, even when their objective was to determine the effect of topography on the rate of 

cross-pollination, i.e., they did not map the crop rows [38]. Hence, the excellent results obtained for 

crop-row detection and mapping were related to the robustness of the mosaicking of the 30 m flight 

used as a baseline together with the resampling procedure and the OBIA methods developed. This has 

strong implications for the success of the next step, i.e., the detection of weeds located in the areas 

between the rows. To evaluate the accuracy of this classification process, a comparison of the weed 
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coverage in 32 frames was performed between the RS-image and the UAV-image for both fields and 

sensors. Field 1, using the TTC camera, and Field 2, using the RGB camera, are shown in Figures 3 and 4, 

respectively. The percentages of the weed patches in the RS-image were close to those obtained in the 

UAV-image; this was supported by the narrow width of the coincidence of the fitting line, and the 

coefficient of determination was also evaluated. In the case of the RGB camera in Field 2 (Figure 3c), 

there was a slightly higher variation and lower fitting between the two types of images (RS-image  

and UAV-image). 

As a first result, the percentage of the weed coverage estimated for both types of sensors and 

altitudes in the RS-image and the UAV-image is shown in Table 4. In all cases, except for the images 

from the RGB camera at an altitude of 100 m, resampling tended to detect more weed cover and 

consequently the possible site-specific area to treat would be larger. From an agronomic point of view, 

the over-estimation of weeds for generating weed maps is more acceptable than non-detection or 

under-estimation. Farmers would choose to treat weed-free areas rather than assume the risk of 

allowing weeds to go untreated [14,39]. Even if the area covered by weeds to be treated differed 

between RS-images and UAV-images, an important reduction in herbicide would be reached 

compared with the traditional management, which would consist of herbicide application over the 

entire field. The observed differences could be due to variations in the quality in terms of the spectral 

information (i.e., the RS-image pixels at 60 m were resampled, preserving the original spectral values 

from the UAV-image at 30 m; the pixel sizes were 1.07 cm for RGB and 1.6 cm for TTC. In contrast, 

the UAV-image pixels at 60 m could represent a spectral mixture due to a greater pixel size at that 

altitude, i.e., pixel sizes were 2 cm and 3.2 cm for RGB and TTC, respectively) or variation in the 

performance of the OBIA algorithm, which may have detected more weed cover in the RS-image 

compared with the UAV-image in some cases. 

Table 4. Percentage of area covered by weed estimated. 

Field Sensor Flight Altitude (m) 

 
60 100 

Estimation of Area Covered by Weed (%) 
UAV-I * RS-I UAV-I RS-I 

1 RGB - ** - 23 17 
 TTC 25 40 29 46 

2 RGB 10 12 20 12 
 TTC 16 19 20 21 

* UAV-I: UAV-imagery, RS-I: Resampled-imagery; ** data not available. 
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Figure 3. (a) Portions of UAV-image taken with the visible camera and RS-image; (b) maps obtained using OBIA; and (c) graphics 

comparing UAV-image and RS-image estimated weed cover in the 32 frames established in Field 2. 
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Figure 4. (a) Portions of UAV-image taken with the multispectral camera and RS-image; (b) maps obtained using OBIA; and (c) graphics 

comparing UAV-image and RS-image estimated weed cover in the 32 frames established in Field 1. 
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The percentage matching in the weed-patch and weed-free discrimination areas based on the 

Treatment or No-Treatment classification of the 32 frames as affected by flight altitude and camera 

using the seven threshold values established is shown in Figure 5 for both sunflower fields. The 

algorithm for weed detection performed better for the RS-image created from imagery captured using 

the multispectral camera (TTC). The best results were obtained for the 60 m altitude, and 100% 

coincidence in the classification was reached for the 5% and 12.5% weed thresholds, although a slight 

decrease can be observed for the other cases. Almost all of the cases followed the same trend, i.e., the 

percentage accuracy improved with an increase in the weed thresholds. A possible explanation for 

these results is that the OBIA algorithm easily detects larger weed patches compared with small ones, 

because of the low number of pixels corresponding to weeds. In that case, there are not enough weed 

pixels to form the weed objects, and these objects are not correctly built and consequently present  

a mixture of bare soil and weeds. Then, the OBIA is not able to detect the spectral differences between 

the weeds and bare soil, which reduces the performance of the algorithm. The representation of the 

percentage match in both fields is shown in Figure 5. The values of the different thresholds established 

as a decision making tool could vary depending on the crop and its ability to compete for resources 

compared with the ability of the weeds [11]. 

The agreement or disagreement in the classification of Treatment and No-Treatment for the eight 

frames corresponding to the 0 and 3 infestation levels for the RS-image and the UAV-image for both 

sensors and altitudes in Field 1 is illustrated in Figure 6. Each of the eight points of every quadrant 

corresponds to the frames of its infestation category. A higher classification matching for any of the 

quadrants was obtained when the eight frames of every infestation category coincided with the 

corresponding Treatment or No-Treatment approach for the RS-image and the UAV-image. A poorer 

classification was recorded when the eight frames were dispersed between Treatment and No-Treatment. 

In Field 1, there was a total (100%) coincidence in the classification for categories 2 (medium 

infestation, data not shown) and 3 (high infestation, Figure 6b), which was independent of the sensor 

and altitude considered. This can be observed in the figure where the cloud of points matched their 

corresponding treated and untreated areas. The two other categories, no-presence (category 0, Figure 6a) 

and low infestation (category 1, data not shown) exhibited a lower agreement, showing that 71% and 

63% of the frames matched, respectively. 

In Field 2, 100% accuracy was reached for category 3, whereas 72%, 72% and 63% of the frames 

showed concordance for categories 0, 1 and 2, respectively. Generally, slightly better results were 

obtained at 60 m for both fields. From a weed control point of view, the critical infestation that can 

affect the sunflower yield corresponds to the medium and high infestation categories [8]; therefore,  

an agreement for Treatment and No-Treatment for all the frames involved is highly desired when 

comparing the results for the RS-image and the UAV-image. There is no doubt that farmers have to 

treat those areas where weeds emerge at high densities because competition with sunflower for 

available resources is more relevant. 



Sensors 2015, 15 19701 

 

 

 

Figure 5. Accuracy (%) of match in the classification (Treatment or No-Treatment) of the 

32 frames according to seven weed thresholds for the RS-image with the still visible and 

multispectral cameras (blue: RGB; red: TTC) at 60 m and 100 m altitude for (a) Field 1; 

(b) Field 2. 
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Figure 6. Representation of concordance of Treatment and No-Treatment for every  

eight frames corresponding to the weed infestation level category 0 and 3 infestation level 

(a and b, respectively) for RS-image and UAV-image at 60 and 100 m altitudes, both types 

of sensors in Field1. Abscissa and ordinate axis correspond to UAV-image and RS-image 

classification respectively. Percentage of concordance in every case is shown in blue. 

Some of the possible cases that can occur in the classification of the RS-image and the UAV-image 

are shown in Figure 7. As an example, Figure 7a illustrates the difference in the classifications when 

weeds were present (ground-truth data); however, they were only detected in the frame of the RS-image 

at 100 m, but not in the UAV-image acquired at 100 m. Consequently, this classification would have  

a poorer match, even though the OBIA procedure worked correctly in the RS-image. One of the 

disagreements in the detection of weeds for the low infestation frames in both the RS-image and the 

UAV-image (underestimation of weed cover) is displayed in Figure 7b, indicating that in this case the 

classification matched (low infestation was not detected in any of the imagery) although the OBIA 

procedure operated with certain limitations and was not able to detect this small infestation. Another 

misclassification was observed in the areas affected by an extremely high weed infestation (Figure 7c), 

where objects corresponding to weeds and the crop were mixed together and the OBIA procedure was 

not able to perfectly distinguish crop lines. This type of disagreement has less relevance than the others 

because this field area will likely be included in a large weed-infested area that would be easily 

mapped without many difficulties. In addition, when distortions or loss of sharpness are present in the 

UAV-image used as the baseline for the resampling, these will also be apparent in the RS-image. 

Conversely, if the UAV-image appears sharper, then the RS-image quality is also visually better. This 

can be observed in the upper and right side illustrations of Figure 7d. 
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Figure 7. Examples of events that occurred in the classification of frames between  

UAV-image (left) and RS-image (right) for both sensors. Upper and bottom figures display 

the ground truth data of corresponding squared frames and classified image, respectively. 

Sunflower crop rows and weeds are represented in green and red color, respectively.  

(a) UAV-image using TTC at 100 m altitude and RS-image at 100 m (weed is detected 

only in the RS-image); (b) UAV-image using RGB at 60 m altitude and RS-image at 60 m 

(weed is not detected in any case); (c) UAV-image using TTC at 100 m and RS-image at 

100 m (mixture between line crop and weed pixels); and (d) UAV-image using RGB at  

60 m altitude and RS-image at 60 m (distortion in the UAV-image avoids a correct crop 

shape definition). 

The results obtained were satisfactory and will allow the optimization of high overlapping and low 

altitude UAV flights that require early weed patch mapping. Both parameters are crucial for generating 

very high spatial resolution imagery, although they increase the computational costs, human resources 

and the time consumed in mosaicking. This inconvenience could be solved by resampling from low to 

high altitude flights to improve the efficiency of the whole methodology. For example, the application 

of OBIA to the study area using the UAV-image at a 30 m altitude took approximately 90 min 

compared with 15 min (85% less) for the RS-image at a 100 m altitude; here, the accuracy was 

maintained but there was a smaller number of pixels in the RS-image. According to our results, the 



Sensors 2015, 15 19704 

 

 

spatial resolution of the RS-image (3.07 and 5.42 cm for the RGB and TTC cameras, respectively) 

would still be suitable for the accurate detection of weed patches at an early growth stage. The 

horizontal accuracy (RMSEs) for the RS-image at 60 and 100 m ranged between 0.87 and 1.24 cm, 

which are acceptable for assessing high quality images according to the 1990 ASPRS test. These 

results together with the fully automated OBIA methodology show the clear advantage of resampling 

because using an image from a low altitude flight and degrading its spatial resolution makes it possible 

to obtain an accurate RS-image for studying weed patch detection. 

Weed patch mapping resulting from imagery acquired from a UAV flying at an altitude of 100 m is 

quite similar to the RS-image at this altitude. However, our suggestion for the scientific community 

and general users interested in weed control decision making would be to not fly at 100 m (even if  

a greater field area is covered), but preferably to resample a UAV-image acquired at a lower altitude 

with a high spatial resolution to obtain the RS-image with the corresponding pixel size. The reasons 

for this recommendation are: (1) the incidences attributable to wind (even if it is lower than 6 km·h−1, 

which is the maximum limit for the UAV used in this research) are more noticeable at higher altitudes 

due to distortions and lack of sharpness similar to those observed in Figure 7d. These problems are 

much less evident flying at a 30 m altitude and consequently they do not appear in the RS-image;  

(2) although the RS-image at a 100 m altitude has a spatial resolution (pixel size) similar to the  

UAV-image at that altitude, the RS-image maintains the high spectral information of the UAV-image 

at a 30 m altitude used as the baseline for the resampling (as observed in Table 3); and (3) this high 

quality spectral information is crucial for a better performance of the OBIA algorithm for early  

weed patch detection in the RS-image (Figure 7a). That is, when the size of any weed seedling  

(e.g., approximately 3 cm) is lower than the pixel size of the UAV-image acquired at a 100 m altitude 

(around 5.4 cm), a mixture of bare soil and weeds is present in that pixel and the creation of weed 

objects may be inadequate. Even when the pixels of this imagery also have a 5 cm size, this is less 

evident in the RS-image at 100 m because they originated from the UAV-image at 30 m with 1.07 cm 

pixels, which would correspond to pure weed pixels (i.e., a weed seedling of 3 cm would cover  

3 pixels) and this would favour both the better sharpness of the RS-image and the performance of the 

classification algorithm. 

The differences observed could be tolerable as the resampling tended to over-estimate weed cover, 

and farmers usually prefer a conservative option and treat a greater area than needed to ensure crop 

development. These results are also essential for providing accurate information to a SSWM plan, 

because it is feasible to establish different zones that are adequate for a site-specific weed control 

strategy. This is relevant not only for reducing herbicide use, but also for optimizing energy (fuel) and 

field operating time and money. This is because there are areas where the equipment used to spray 

herbicide would not enter at any time as the lack of weed emergence, independent of the weed 

threshold applied. 

Slightly better results were obtained for the TTC. This is important because this sensor presents 

more limitations related to the area covered and flight length due a higher number of images required 

to cover the study area compared with the RGB camera. This means that ortho-mosaicking of UAV 

imagery could present some computational limitations due to the requirements involved in the 

stitching of the numerous sets of images. These problems could be solved by accurately simulating 

what will occur at higher altitudes using resampling, therefore reducing time processing. 
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Another possible advantage of using the RS-image is when a set of different flight altitudes are 

tested in a study and any incidence occurs due to the UAV-battery limitations or the worsening of 

weather conditions. Our results show that the experiment could be completed if resampling is applied 

to the available UAV imagery acquired at lower altitudes. An additional possibility for using 

resampling may be related to the optimization of tests in a preliminary study in which it is necessary  

to extrapolate the results to a larger surface. That is, if the results obtained from an RS-image at 100 m 

are accurate and satisfactory, they could be very useful for the decision making process of capturing 

new images from 100 m to try to expand the analysis and increase the extent of the surface flown over. 

If these preliminary tests are not convincing, it is not worth planning further flights. Regarding the 

computation costs and the improvements made when using the RS-image, it was shown that the 

application of the image analysis procedures took less time for the RS-image compared with the 

original UAV-image acquired at a 30 m altitude due to the RS-image having a lower spatial resolution 

than the UAV-image and a much lower number of pixels. This will have a considerable influence on 

the efficiency of the image analysis (time processing). 

4. Conclusions 

The results obtained support the use of resampling in our study cases. This study shows an NN 

resampling procedure to extract the digital spectral values from high spatial resolution imagery as  

an alternative methodology for optimizing the limitations usually present in the UAV imagery. To the 

best of our knowledge, no quantitative evaluation of RS-image ortho-mosaicked quality from UAV-images 

for early weed detection and mapping using OBIA has been reported or published so far. The assessment 

was performed to evaluate the image quality and the spatial resolution of the RS-image on the early 

weed discrimination for two cameras and in two fields demonstrated the consistence of our results 

when the pixel resolution was within the range of 3 to 5 cm. These results are useful to enhance the 

current advantage of the UAV because accurate weed cover maps were generated from the degraded 

spatial resolution of the RS-image data at 60 and 100 m compared with the UAV-image from real 

flights at those altitudes. This has many potential applications in other agronomic tasks in which a 

timely and fine resolution map must be produced. 
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