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Abstract: Among the key aspects of the Internet of Things (IoT) is the integration of 

heterogeneous sensors in a distributed system that performs actions on the physical world 

based on environmental information gathered by sensors and application-related 

constraints and requirements. Numerous applications of Wireless Sensor Networks 

(WSNs) have appeared in various fields, from environmental monitoring, to tactical fields, 

and healthcare at home, promising to change our quality of life and facilitating the vision 

of sensor network enabled smart cities. Given the enormous requirements that emerge in 

such a setting—both in terms of data and energy—data aggregation appears as a key 

element in reducing the amount of traffic in wireless sensor networks and achieving energy 

conservation. Probabilistic frameworks have been introduced as operational efficient and 

performance effective solutions for data aggregation in distributed sensor networks. In this 

work, we introduce an overall optimization approach that improves and complements such 

frameworks towards identifying the optimal probability for a node to aggregate packets as 

well as the optimal aggregation period that a node should wait for performing aggregation, 

so as to minimize the overall energy consumption, while satisfying certain imposed delay 

constraints. Primal dual decomposition is employed to solve the corresponding 

optimization problem while simulation results demonstrate the operational efficiency of the 

proposed approach under different traffic and topology scenarios. 
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1. Introduction 

Internet of Things (IoT) is based on the vision of a worldwide network of intercommunicating 

devices, ranging from wearable devices such as smartwatches to sensors and mobile phones, capable 

of supporting the public good and leading to economic growth and personal enrichment of life. IoT is 

expected to connect tens of billions “things” to the Internet by the next decade, which contributes to 

the mashup of new synergistic services.  

Smart cities are to be created upon this technology and while several definitions exist on how a city 

is considered a smart one [1], all agree on the potential to improve its citizens’ quality of life. By 

utilizing the networked infrastructure different city’s functions can be greatly improved and aspects of 

social, cultural and urban development are enabled, through the use of smart devices, computers, 

sensors and actuators [2]. The importance of defining and creating smart cities has become a trend, yet 

little academic research has sparingly discussed the phenomenon. However lately, an increasing 

amount of initiatives can be observed such as the Array of Things (AoT) project [3] in the city of 

Chicago, which is built on a network of interactive, modular sensor boxes that collect real-time data on 

the city’s environment, infrastructure, and activity for research and public use.  

In this smart city vision, sensors and sensor networks play a vital role since they can serve as 

collector and/or distributor of data (e.g., related to weather conditions, traffic information etc.) that can 

contribute to the creation of enhanced services both for public and private use. Given the enormous 

requirements that emerge in such a setting—both in terms of data and energy—data aggregation 

appears as a key element in reducing the amount of traffic in wireless sensor networks and achieving 

energy conservation. 

Data aggregation has been proposed as a data gathering paradigm in wireless sensor networks for 

improving energy usage efficiency and increasing the lifetime of wireless sensor networks. Data 

aggregation refers to any process in which information is gathered and expressed in a summary  

form, for purposes such as statistical analysis, and in sensor networks has been mainly implemented 

either by distributed source coding [4] and header compression [5], or by the utilization of some form  

of aggregation function in the gathered data, such as calculation of mean, maximum, minimum  

value etc. [6,7]. Data aggregation is performed either at each or at certain nodes while packets traverse  

the network.  

By exploiting the correlations of measurements gathered from neighboring nodes, transmission of 

fewer data packets with aggregated information is achieved, instead of sending individual data items 

from sensors to sinks. This, in turn, results in a decrease in the amount of traffic and corresponding 

queuing delay at each node. On the other hand, having sensors wait for data from their neighbors in 

order to realize aggregation, introduces some delay that adds on to the overall delay that a data packet 

experiences as it traverses the network. 
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However, though there has been observed a tradeoff between the energy savings and the delay in 

the delivery of the packets as data aggregation is enforced, most research efforts do not account for the 

aggregation time, and assume that the aggregation operation is performed on the fly. We argue that, in 

several cases, and mainly when significant energy savings are achieved, this time is not negligible and 

should be considered, especially for delay sensitive sensor applications. 

Our prior work includes the introduction of a general probabilistic framework for data aggregation 

and processing in distributed sensor networks [8], where aggregation is performed at each node in a 

probabilistic and distributed manner. Specifically, each node may aggregate packets according to some 

pre-assigned probability for a certain pre-defined period, and after this period expires the node 

forwards a single aggregated data packet containing the information of all packets. Numerical 

evaluation results have demonstrated the significant improvements that can be achieved by such an 

approach both in terms of performance and operational efficiency under different settings and 

environments [9]. However it is noted that in that framework the values of both the aggregation 

probability and aggregation period at each node are pre-determined mainly through experimentation 

and they remain static throughout the system operation. The issue of the optimal and adaptive 

identification and configuration of these critical parameters, though of high research and practical 

importance in terms of performance improvement and operational effectiveness especially for dynamic 

and challenging operation environments has not yet been sufficiently addressed in the literature.  

Motivated by the above observations, the goal of this work is to introduce an overall optimization 

framework that identifies the optimal probability value for a node to aggregate packets as well as  

the optimal aggregation period that a node should wait, so as to minimize the overall energy 

consumption, while satisfying certain imposed delay constraints. The proposed approach is adaptive to 

the network traffic and therefore is suitable for dynamic operation environments and delay sensitive 

sensor network applications. 

The rest of this paper is organized as follows. In Section 2, significant related work is presented 

while our work is clearly differentiated and positioned within the existing literature body. Section 3 

illustrates initially the system model, and then the problem formulation along with the corresponding 

solution is presented. In Section 4, an algorithm is presented for minimizing the energy consumption in 

wireless sensor networks based on the solution provided in Section 3. In Section 5, the operational 

effectiveness of the proposed framework is validated and evaluated through modeling and simulation 

under various scenarios. Finally, Section 6 concludes the paper. 

2. Related Work and Paper Contribution 

Data aggregation is a technique that has been proposed in order to reduce the amount of data 

packets traversing the network thus increasing the lifetime of the sensor networks. Therefore, 

numerous relevant research efforts can be found in the literature that present data aggregation schemes 

and algorithms each one having different objectives and goals. 

Heinzelman et al. [7] introduced an energy conserving cluster formation protocol called LEACH, 

which organizes sensor nodes into clusters having a designated node serve as cluster head, which 

among other things performs data fusion. Intanagonwiwat et al. [10] have developed an energy 

efficient data aggregation protocol, called directed diffusion, where the collection center, or any other 
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node, requests data from the sensor nodes based on specific values. Sensor nodes having the 

corresponding data send them back to the requester, forming paths of information. In order to reduce 

the communication costs and the energy that is dissipated, data is aggregated along the way to the sink. 

The Cougar approach [6] treats the sensor network as a huge distributed database system where each 

sensor node holds part of the data. In the proposed architecture a leader node is elected where the  

in-network aggregation will take place or alternatively partial aggregation can be executed at the 

intermediate nodes to reduce the data size. A similar approach is presented by Madden et al. [11] 

where a generic aggregation service, namely the Tiny AGregation (TAG), is developed for ad hoc 

networks. Within the context of this scheme a user from outside the network poses queries to the sink 

which are forwarded to all nodes. Sensors that respond to the query send their data back to the sink 

following a routing tree rooted at the sink. As data flow to the sink it is aggregated to the intermediate 

nodes according to a defined aggregation function.  

Other aggregation strategies take into consideration Quality of Service (QoS) metrics while 

performing in-network processing. He et al. [12] have proposed an aggregation scheme that adaptively 

performs application independent data aggregation (AIDA) in a time sensitive manner. The 

aggregation function is performed at a completely different layer employed between the data link 

control layer and the network layer. Zhu et al. [8] presented a quality of service data aggregation and 

processing approach to determine whether and when to perform data aggregation. The results have 

shown that this method performs well both at the energy savings level as well as meeting certain QoS 

parameters, and therefore some of the basic principles of this approach, are adopted and extended 

within our framework. 

However, most approaches consider data aggregation process as data traverse the network along 

with the routing scheme each approach uses, while most recently, researchers deal with the 

aggregation approach by means of optimization techniques. In [13] the authors consider the problem of 

optimizing the system lifetime of sensor networks in terms of the number of rounds of operation, i.e., 

before the first network node fails. Their approach takes the data gathering operation and reduces it to 

a restricted flow problem with quota constraint. Based on that, they propose a polynomial time 

algorithm that finds an integer solution that specifies the number of data packets to be transferred 

between two neighboring nodes at each round. In [14] a distributed energy optimization method for 

target tracking applications is proposed. The sensor field is divided in clusters, following the maximum 

entropy clustering method, and the partial energy-efficient coverage problems are assigned to cluster 

heads. The cluster heads perform particle swam optimization according to some coverage and energy 

metrics. Moreover, a Radial Basis Function (RBF) prediction based dynamic energy management 

method is developed which approximates the target’s trajectory, so nodes wake up when needed, 

sensing accuracy is succeeded and energy consumption is minimized. In [15] the authors formulate the 

problem of data transport in sensor networks as an optimization problem whose objective function is to 

maximize the amount of information collected at sinks, subject to the flow, energy and channel 

bandwidth constraints. In addition, based on a Markov model, the link delay and the node capacity in 

both single and multi-hop environments are derived. This approach achieves high utility and low delay 

without congesting the network. In [16], the data aggregation scheduling problem is presented and 

solved. The authors base their work on maximal independent sets and present a distributed algorithm 

that generates a collision-free schedule for data aggregation in wireless sensor networks. The proposed 
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algorithm operates in two phases: during phase one, a data gathering tree is produced while phase two 

results in the aggregation schedule. The time latency of the aggregation schedule generated by the 

proposed algorithm is minimized using a greedy strategy. 

Most of the approaches presented above, however, do not account for the time spent for the 

operation of data aggregation, time which we argue plays an important role especially on delay 

sensitive sensor network applications. The works presented in [17–19] are among the very few that 

include in their calculations the aggregation time and attempt to determine its value. The authors  

in [17] consider the problem of optimal selection of aggregation nodes with time delay constraint, with 

the objective being the minimization of the overall energy consumption. They create a data 

aggregation tree and provide a mathematical model to describe the aggregation node selection 

problem. For the calculation of the aggregation points, the gathering tree is transformed into an 

equivalent binary tree and the problem is solved by dynamic programming procedure in polynomial 

time. In [18] two algorithms are presented which have the objective of improving the energy efficiency 

of the system by determining the aggregation points as well as the aggregation time, while at the same 

time satisfying some delay constraints. The authors adopt a localized approach that avoids the use of 

global information for determining the aggregation delays and therefore optimality is partially 

sacrificed in favor of feasibility. Moreover, a key element in this approach is the introduction of the 

Aggregation Gain parameter, which is a comprehensive measure of the benefits of applying 

aggregation to the system in terms of communication traffic reduction. Within this context, the gain 

has to be calculated for every possible choice of aggregation delays along the path of a message. To 

tackle this problem, a brute-force algorithm was presented at first; however, due to its high complexity 

its applicability to typical sensor nodes with low computational capabilities is quite limited. Therefore, 

a heuristic algorithm was presented which selects only one node for performing data aggregation, in 

which the whole available amount for aggregation is spent. Finally, in [19], a lifetime balanced data 

aggregation scheme for asynchronous and duty cycle sensor networks is presented, which dynamically 

adjusts the aggregation holding time between two neighboring nodes and hence balances their  

nodal lifetime. 

Our work, though, shares similar objectives with the works presented in [17–19], as it significantly 

differs from existing literature, in that it is capable of obtaining the optimal values for the period of 

aggregation along with the corresponding probability of aggregation in order to achieve energy 

minimization. It is important to note that all the relevant works presented above, either perform 

aggregation at one single node or for a constant aggregation delay. The proposed framework in this 

paper, essentially introduces a novel optimization framework that simultaneously determines not only 

the nodes along the routing path of a message to perform aggregation but also the time to be spent for 

aggregation purposes at each node. More importantly the optimization problem is solved in a 

distributed fashion, by employing primal dual decomposition approach. Every node, at given time 

intervals, i.e., at the beginning of every frame, determines the optimal values for the period and the 

probability of aggregation with ultimate the goal to achieve energy minimization at the network level, 

by utilizing only local information. The computation of the aforementioned optimal values at several 

time intervals in a distributed and dynamic manner ensures that the proposed approach is adaptive to 

the network traffic conditions, and therefore is suitable for dynamic operation environments and delay 

sensitive sensor network applications. 
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3. System Model and Problem Statement 

3.1. System Model 

Consider a wireless sensor network represented by a graph ( , )=G N L , where N  is the set of | |N  

nodes and L  is the set of | |L  links. Two nodes, , ∈i j N  form a link ( , )∈i j L , if they can 

communicate with each other (i.e., are within communication range). The set of nodes that node i , can 
communicate with, form its neighborhood, denoted by ( )N i . Moreover, in order to collect the data 

from the overall network at a predetermined point/sensor, called the collection center, a data gathering 

tree is used, where the collection center is the root and each node belongs to the tree either as an 

internal node or as a leaf. According to the tree structure, each node i receives packets from its children 
nodes ( )∈j Ch i  in the tree, and then forwards them to its father node, forming data gathering  

sub-trees. Let ( )F i  be the list of nodes belonging to the upper layer of the same sub-tree of i.  

Every node generates packets destined to the collection center with rate ia  where 

1 | | = ( , , , , )α ⋅⋅⋅ ⋅⋅⋅i Na a a  denotes overall system’s generated packet rates vector. We further denote as jir  

the incoming flow rates from all the children ( )∈j Ch i  of node i , and as ikr  the corresponding 

outgoing flow, as depicted in Figure 1. 
Moreover, each node  with probability ip , where 1 | |p = ( , , , , )⋅ ⋅ ⋅ ⋅⋅ ⋅i Np p p , enters a waiting stage of 

period τi  during which all incoming or newly created packets are queued, while after the period 

expires the node forms and sends a single aggregated data packet containing the information of all 
packets in its queue. Otherwise, with probability 1− ip , the node sends the first packet in his queue 

without performing any aggregation. Each node decides whether or not to perform aggregation in a 

distributed manner, exploiting only locally available information.  

i
ijn

u
uin w

win

ια

 

Figure 1. Data aggregation procedure in data gathering tree. 

Each node is assumed to consume energy each time a packet is sent or received ( trE  and recE  

respectively). Therefore, following [7], we have: 

=rec elecE e k , and 2= +tr elec ampE e k e kd  
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where, elece  denotes the energy that the radio dissipates to run the transmitter or receiver circuit, ampe  

the energy consumed by the transmitter amplifier, k  equals to the data packet size in bits and d  

represents the distance in meters of the communication pair. 

3.2. Problem Statement and Formulation 

In accordance with the previous system model and considering an aggregation period, the total 

cumulatively energy consumed by a node for a given timeframe T is modeled as: 
2 2

( )

( , , , ) ( ) (1 )( ) 
∈

= + + + − + u i i
i elec ui i elec amp i elec ij amp ij

u Ch i

E k d p n e k n p e k e kd p e n e n kd  
(1)

It is noted, the recE  for each node depends on the number of the data packets 
( )∈

 u
ui

u Ch i

n  received 

from all its children, whereas the trE  depends on the number of packets sent, which in turn depend on 

the aggregation probability, i.e., with probability ip  the node enters the aggregation mode and after the 

aggregation period expires sends only one packet with k bits, and with probability 1− ip  sends i
ijn  

separate packets for a total of i
ijn k  bits of information. 

Considering a fixed packet size k and given a known topology, where the distances  between 

neighboring nodes, as well as the number of incoming and outgoing packets are known, the energy 
function ( , , , )iE k d n p  depends on the aggregation probability ip . Thus, ( , , , ) ( )≡i iE k d n p E p  is a 

strictly concave, decreasing and twice continuously differentiable in the interval [0,1]  function of the 

probability aggregation variable ip  ( 0 1≤ ≤ip ). 

Moreover, we assume that each packet is associated with a delay constraint representing its 
remaining lifetime to arrive to the collection center before expiring. The delay constraint cD  of a 

packet depends on the QoS requirements posed by the application, is assumed to have an initial value, 

and is reduced as the packet stays in the network. The delay constraint is an application specific 

parameter, and thus each corresponding application can set its own value. This constraint is simply 

taken as an input parameter to our proposed framework, and should be propagated to the sensor 

network through the sink gateway, so that it can be considered and respected throughout the operation 

of the algorithm. Though the determination of the actual value of this parameter is not the main focus 

of the paper, it is expected that the delay QoS metric relates more to monitoring applications,  

such as indoor living monitoring [20,21] and event detection and reporting [22], as well as other  

delay sensitive applications such as emergency response [23], plant automation and control [24],  

healthcare [25], etc. 

Our main objective is to minimize the overall energy consumption of the network towards 

increasing its lifetime, while satisfying packets’ Quality of Service prerequisites posed by the initial 
delay constraint D . Thus, the optimal aggregation probability ip  along with the corresponding 

optimal aggregation period τi , for every node ∈i N , that minimizes the total energy consumption in 

the network while satisfying the packet delay constraints have to be determined. 

In line with the previous analysis the Global Problem (GP) is defined as:
 

min→ 
N

i
p i

E (2)
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.     e2e ≤i cn
st D  (3)

0 1≤ ≤ip  (4)

0τ ≥i  (5)

where 2 in
e e  corresponds to the total delay that a packet in  experiences from its generation at node i  to 

its arrival at the collection center, and comprises of (a) the time spent at node i (aggregation, service 
and queuing - iQ - time; (b) the time needed for the transmission of a packet to the collection center, 

which depends on the position of node i to the data gathering tree, as well as (c) the time spent at the 
upper layer nodes of node , ( )∈i j F i . cD  refers to the delay constraint, that is the time within which 

each packet should arrive at the collection center before expiring. Therefore, each packet has to satisfy 

Constraint (3). 

3.3. Assumptions and Justification 

AS1: Problem (1) is strictly feasible (Slatter condition qualification [26]), that is there always exists 
a vector → that Constraints (2) and (3) strictly hold. 

AS2: We assume that time is divided into frames and each frame into T timeslots. Nodes can send 

and receive only one packet of fixed size k in each timeslot. At the beginning of each frame, problem 
GP is solved deriving the probability ip  for performing aggregation and the corresponding τi  

aggregation period for the aggregation process.  

AS3: Given the difficulty in the calculation of the end-to-end delay for a packet  prior to its 

arrival to the collection center, we adopt the following approximation approach. Each node i  
periodically informs its children nodes ( )∈u Ch i  of the average queuing and processing delay, as well 

as the values of ip , τi  observed during the previous timeframe. Then each node ( )∈u Ch i  adds its 

own average delay with its father and informs its corresponding children. This way, exploiting only 

locally available information, each node, independently of its location in the data gathering tree is able 

to estimate the queuing and processing delay that will be incurred from the upper layer nodes. 

Moreover, in a similar fashion, using past information each node is able to estimate the number of 

packets that is expected to receive from its children nodes. More specifically, at the beginning of each 
timeframe, nodes receive values ip  and τi  from their neighbors, while using exponential averaging 

techniques the long term behavior of their neighbors can be calculated. We argue that this kind of 

information can be easily incorporated in existing signaling. 

AS4: During the aggregation process, a single packet is formed containing the aggregated 

measurement information of all packets in the queue. The aggregation function performed (e.g., min, 

max, average, etc.) depends on the application. Moreover, the aggregated packet is assumed to have 

the same size k as any other measurement data packet. 

AS5: We consider an ideal Medium Access Control (MAC) layer, i.e., we do not account for 

retransmissions and dropped packets due to collisions. A packet delivery is considered successful if it 

arrives at the collection center within D , otherwise it is dropped. 

Based on AS2 and AS3, we can further analyze Constraint (3) as follows: 
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[ ]
( )

(1 ) min , ( (1 ) min , )
∈

τ + − + + τ + − ≤  i i i i tr j j j j c
j F i

p p Q T t p p Q T D  
(6)

In accordance to this a data packet, arriving or generated at a node, experiences in the worst case the 
following delay: With probability ip  waits for time τi , i.e., for the aggregation period to expire, while 

with probability 1− ip  waits for its turn to be served from the queue without performing aggregation. 

We argue that this time is the minimum between the length of the queue iQ  and the timeslots T that 

constitute a frame. Note that trt  corresponds to the time needed for the transmission of a data packet 

from node i to the collection center, and it depends on the position of the node in the data gathering 

tree. The rest of the left hand side of Equation (6) corresponds to the delay a packet will sustain on its 

way to the collection center, emanating from the behavior and status of the upper layer nodes (i.e., 

aggregation or not) in the same sub-tree in line with AS3. 

3.4. Primal Dual Decomposition on GP 

The convex optimization problem GP has two features which facilitate a distributed solution. First, 
objective (2) is a sum of | |N  energy cost functions ( )i iE p  that depend only on ip , pertaining one for 

each sensor node i. Moreover, the domain of GP enjoys the property of natural decomposing into a 
Cartesian product, i.e., [0,...1] [0,...1]p = ×⋅⋅⋅× .  

Based on the latter features, we devise a Lagrangian-based algorithm that obtains the solution of 

problem GP (i.e., deriving optimal values of p∗  and *τ  for each node i ). 

Applying primal-dual decomposition [27] on GP, results in: 

I. N independent Sensor sub-Problems (SP). Considering first primal decomposition of GP by 

fixing τ, GP breaks into N independent sensor sub-problems, each one responsible for 
computing the optimal aggregation probability *

ip  for a given aggregation period. 

II. A Master Problem (MP), responsible for updating the value of τ towards obtaining *τ . To 

solve (MP), we use a subgradient method exploiting the information of SPs’ Lagrange 
multipliers *,  | |λ ∈i i N  associated to the Constraint (3). 

It is important to note, that since GP is a convex optimization problem, both the master problem 

(MP) and sub-problems (SP) are also convex optimization problems [28]. In the following, we provide 

the solutions of SP and MP. 

SP:     min ( )i iE p  (7)

[ ]
( )

(1 ) min , ( (1 ) min , )
∈

 τ + − + + τ + − ≤ i i i i tr j j j j c
j F i

p p Q T t p p Q T D  (7a)

0 1≤ ≤ip  (7b)

Given the monotonically decreasing nature of energy cost function ( )i iE p , combining  

Constraints (7a) and (7b), and after some mathematical manipulation, for a given iτ  we have: 
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( )

min[ , ] (1 ) min[ , ]

min ,1 , for min[ , ]
min[ , ]

1                                                                                               , for min[

∈

 − − − τ + −
  τ ≥ = τ −
  

τ ≤

c i tr j j j j
j F i

i i
i i i

i

D Q T t p p Q T

Q T
p Q T

, ]    






 iQ T

 (8)

Let λi  (or 1( ,..., )λ = λ λN  and be the Lagrange multiplier corresponding to the relaxation of  

Constraints (8). The Lagrangian of (SP) is then given by: 

( )

min[ , ] (1 ) min[ , ]

( , ) ( ) min ,1
min[ , ]
∈

  − − − τ + −
  λ = − λ −  τ −    

 c i tr j j i j
j F i

i i
i i

D Q T t p p Q T

L p E p p
Q T

 (9)

The dual function and problem are respectively (Λ collectively denotes all multipliers): 

{ }
( ) : min ( )Λ = Λ

ip
g L  (10)

0
min ( )
Λ≥

Λg  (11)

st. 0λ ≥i  (11a)

Taking into consideration AS1 as well as the convexity of the primal and the dual problems, strong 

duality holds (duality gap is zero) and therefore solving the dual problem can equivalently solve the 

primal. Furthermore, taking into account the second order necessary conditions for optimality, i.e., 
*

*

( , ) | 0
=

λ=λ

∇ Λ =p p p
L p , after some manipulation we get: 

[ ]*
/ min ,

  
λ = −   τ  

i tr rec i
i

T
E Q T  (12)

Concluding the above analysis, the SP algorithm for sensor i, takes as input any τ and obtains the 
corresponding *

ip  as well as the optimal value of *( )iE p . 

In line with the previous analysis, given the optimal aggregation probability vector *


ip , | |∀ ∈i N  , 

the Master Problem (MP) can be defined as: 

*min ( )
N

iip
E p  (13)

st. 0τ ≥i  

Towards solving MP, we apply a subgradient method [27], in which it has been shown that in 
primal dual decomposition the subgradient of each *

iE  is equal to the optimal Lagrange multiplier 

corresponding to the Constraint (7a) in SP. Therefore * *( ) ( )∇ = λi i iE p p . Finally, the global subgradient is 

* *( ) ( )
∈

∇ = λp i i i
i N

E p p  

Thus, the MP can be solved using the following subgradient method via updating the aggregation 

period , as follows: 
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*
1 1 1 1

*
N N

( 1) ( ) ( ( ))

        ( )       

( 1) ( ) ( ( ))

 τ + τ λ   
    = ± ε     
    τ + τ λ     

  

N N

t t p t

t

t t p t

 

where t denotes algorithm’s iteration and ε(t) is the subgradient step. 

Therefore, the pre-described subgradient update can be performed independently by each sensor 
node i, simply with the knowledge of its correspondent (SP) problem Lagrange multiplier *λi , which in 

turn is also independently computed and updated by each node’s i (SPi).  

3.5. Convergence and Optimality 

The selected step for the proposed subgradient method is a diminishing step size rule ε(t), with the 

following properties: ( ) 0,ε ≥t  lim ( ) 0
→∞

ε =
t

t  and ( )
∞

ε = ∞
t

t . In accordance to [26], using a diminishing 

step size rule, for example ( )ε =
β +

t
t

t
 where 1β >  is a fixed constant, the subgradient algorithm 

converges, i.e., *( ) →p t p  as → ∞t . 

4. Aggregation-Based Energy Management (AEM) 

In this section, following the reasoning and analysis presented above, a distributed algorithm, 

namely Aggregation-based Energy Management (AEM), is presented and applied to a wireless sensor 

network with the purpose of minimizing the overall energy consumption. Specifically, we first 

illustrate the algorithmic steps of the proposed optimization framework and then discuss how it can be 

applied to a wireless sensor network operating in a distributive fashion. 

As already stated, the algorithm assumes the existence of a routing scheme/structure, preferably a 

tree based, for the collection of the sensor data from the overall network at a predetermined 

point/sensor, called the collection center. The first time of its operation, initialization takes place where 
each node initializes the aggregation probability ip  to any value in the range of , and the aggregation 

period equal to τ =i T , where T  the number of timeslots in the frame. For the subsequent operation of 

the algorithm, at the beginning of each timeframe every node ∈i N  receives from its children 
( )∈u Ch i  and from its father ( )j F i∈  the corresponding aggregation probabilities as well as the 

aggregation periods for the previous timeframe. These values are used for the calculation of the 

expected delay that a packet is most likely to experience in the upper layer of the data gathering tree, in 
accordance with Relation (8). Moreover, each node 	solves the (SP) problem and obtains the *( )ip t  

and the Lagrange multiplier *( ( ))λi ip t  for a given ( )τi t . After that, the MP problem is solved, where 

with knowledge of the Lagrange multipliers the value of τ ( 1)+i t  is retrieved and used again in the SP. 

The algorithm iterates until it converges to the optimal values of *p  and *τ . Table 1 illustrates the 

steps of the AEM along with the expected inputs and outputs. 

It should be noted that, if the delay constraint cannot be met, there is no feasible solution and 

therefore the packets cannot be delivered to the destination within the required time constraint. 

Therefore, in cases where at some nodes the delay constraint cannot be satisfied during one or multiple 
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frames, the data packets generated during that period are dropped to avoid further congesting the 

network. A schematic representation of the AEM algorithm is illustrated in Figure 2. 

Table 1. Operation of aggregation-based energy management (AEM) algorithm. 

Initialization For = 0, =  and ∈ [0,1] 
Step Operation Input Output 

1 
Transmission to every node ∈  of ( − 1), ( − 1),		 ∈ ℎ( ), and ( − 1), ( − 1), ∈ ( ) 

2 

Solve SP for every node in accordance with 
Section 3.4, determining the optimal aggregation 
probability ∗( ) and the Lagrange multiplier ∗( ( )), for given ( )  ( ) ∗( ) ∗( ( )) 

3 
Solve the Master Problem (MP) for minimizing 
the system energy consumption and update ( + 1) ∗( ) ∗( ( )) ( + 1) 

4 

Set ← + 1 and send ( + 1). If termination 
condition does not hold go to step 2. Else 
algorithm has converged and optimal ∗ and ∗values have been determined. 
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w

w
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Figure 2. Schematic representation of the AEM algorithm. 
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5. Evaluation Results 

In this section, we will comprehensively evaluate the integrated performance of the proposed AEM 

algorithm through modeling and simulation, on a uniform distributed deployed network with general 

parameter configuration.  

5.1. Simulation Setup 

The MATLAB tool was used for conducting simulations in a uniform distributed network area of 

size 200 m × 200 m. comprising of 50 nodes. The collection center is situated at the lower left area and 

constitutes the root of the created routing tree, which is created by use of the HELLO algorithm as 

described in [9].The transmission range of nodes is set to 48 m and nodes have known locations and 

distances one from another 20–30 m. Nodes consume energy each time the send and/or receive data 

packets according to the model presented in [7], as well as a constant amount of energy each time they 

produce a sensing measurement from the environment. Each packet, either single or aggregated, has 

size of 100 bytes. Moreover, the length of the frame T is 20 timeslots each one with duration 1 s. 

Overall, for each simulation 50 independent experiments were conducted for 1000 frames. It is noted 

that we have also experimented with larger frame sizes, such as ones comprising of 100 timeslots, 

where it was discovered that the size of the frame does not affect the operation of the proposed 

framework, either in terms of energy consumption or the probability of successful delivery. Finally, 

nodes store information related to the aggregation probability and period for their neighbors for the last 

frame and an exponential averaging function 1( 1) (1 ) −= − + −t tS aY t a S  is used for the calculation of 

current values as required by AS3, where constant a is set to 0.5. 

5.2. Simulation Results 

The key metrics used for evaluation are the probability of successful delivery of packets at the 

collection center (i.e., within the time delay constraint), the overall energy consumption, as well as the 

information gain. The proposed algorithm is initially compared against (a) operation without data 

aggregation (i.e., ip  = 0); and (b) operation scenarios with constant probability of aggregation (i.e.,  

ip = 1 and ip  = 0.5) and scenarios with fixed aggregation period (i.e., τi  = 5 s, τi  = 10 s, τi  = 15 s, 

and τi  = 20 s). Please note that the selected scenarios with their corresponding parameters are generic 

enough to account for different data aggregation approaches that can be found in the literature, 

representing several generic data gathering algorithms that either perform aggregation as data traverse 

the network or just forward the data to their next hop neighbor. Simulations were conducted for three 

types of traffic (light—2 pkts/frame, medium—4 pkts/frame and high—10 pkts/frame) and for two 

delay constraints D, one strict—20 s and one more conservative 40 s.  

In addition, in order to provide a comprehensive and comparative evaluation of our proposed 

framework for benchmarking mainly purposes, we have further compared AEM with: (a) the algorithm 

presented in [18] which determines the aggregation points and corresponding aggregation delays and 

(b) a basic algorithm [29] that uses an equal distribution of the maximum allowed delay among all 

nodes on the path. The selected evaluation metric is the total aggregation gain—explained in detail 
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later in the paper in Section 5.2.4—which measures the benefits of aggregation in terms of 

communication traffic reduction. For fairness purposes, all compared algorithms use the same data 

routing tree for the collection of data to the collection centers.  

5.2.1. Probability of Successful Delivery 

As can been observed in Figure 3, for the case of light traffic and for strict delay constraint, the case 

where no aggregation is performed exhibits better performance compared with the algorithms where 

aggregation is performed. This is due to the fact that under light load, a packet may miss the delay 

constraint due to the introduction of the deferred period for aggregation, since some packets that 

otherwise could have been transmitted may have to wait for the aggregation. However, as the traffic 

load increases, in a system without data aggregation, the network becomes congested and the queuing 

time at each node becomes the dominant factor. On the other hand, performing data aggregation 

implicitly results in a reduction of the network traffic load. While conducting the series of simulations, 

it was observed that, for high traffic load, the AEM algorithm decides for more aggregations to occur 

(higher values of aggregation probability) but for smaller aggregation periods τ . Moreover, as 

illustrated in Figure 4, the proposed AEM algorithm outperforms the other approaches for a less strict 

delay constraint. Finally, it is worth noticing that the approaches where aggregation is performed with 

probabilities ip  = 1 and ip  = 0.5 and with constant aggregation periods τi , result in low probability 

of successful delivery, especially for strict delay constraint. 

 

Figure 3. Probability of successful delivery for D = 20 s.  

 

Figure 4. Probability of successful delivery for D = 40 s. 

5.2.2. Energy Consumption 

Figures 5 and 6 illustrate the energy consumption for all compared methods under different traffic 

loads and delay constraints. As expected, the case where aggregation occurs is more energy efficient 
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since less data is transmitted, and in particular the higher the probability of aggregation the less the 

energy consumption. However, as it was observed in the previous section, the methods with constant 

aggregation probability and period demonstrate low probability of successful delivery, and therefore 

the low power consumption is also attributed to the small amount of packet transmissions. In order to 

properly evaluate our AEM algorithm as far the minimization of energy consumption is concerned, we 

compare AEM with the method where aggregation period is set to τ = 5 s and the delay constraint is set 

to D = 40 s, Figure 6, where we observe that AEM consumes 10% less energy. 

 

Figure 5. Energy Consumption for D = 20 s.  

 

Figure 6. Energy Consumption for D = 40 s.  

5.2.3. Information Gain 

Another interesting aspect of the data aggregation is the loss of information that occurred when 

concatenating data packets. Therefore, we define the Information Gain, gainInfo , metric, where we 

calculate the quality of information, i.e., the percentage of initial information that is finally received at 

the collection center. Information gain is defined as: 1 / _= −gain lossInfo Info Pkts arrivals , and the value 

of lossInfo  is defined as: 

| |

1

. cos  ( )*    
=

= 
levels

loss
i

Info aggr t function i Pkts aggregated i times  (14)

More specifically, we consider that each time aggregation is performed in a data packet, the 
information conveyed in the packet experiences a loss in accordance with the . cos  ( )aggr t function i  

function. We argue that each data packet will at most be aggregated as many times as the levels of the 

data gathering tree, i.e., the distance in number of hops from the node that the packet originates until it 

reaches the collection center. At the collection center, we can infer the number of aggregations that a 
packet has experienced as it traverses the network (    Pkts aggregated i times ). Information loss is also 
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affected by the aggregation function that is used, i.e., different losses occur by averaging the values 

rather than keeping the largest one. For the sake of simplicity, we have used the following aggregation 
function: . cos  ( ) (10 ) / 10aggr t function i i= − , which for 2=i , i.e., a packet has been aggregated two 

times, the data loss is 20%. Though the used function is rather a simplistic and somewhat strict one, 

more complex functions can be used to simulate different aggregation types. 

Figure 7 presents the Information gain for the AEM algorithm compared against methods that 

perform aggregation with a constant value ( 1=ip  and 0.5ip = ) for delay constraint D = 40 s. As it can 

been observed, the higher the aggregation period, the less the Information gain, due to the fact that 

more packets are aggregated. The AEM algorithm succeeds in increasing the accuracy of the 

transmitted data, since it does not perform aggregation at every node as a packet traverses the network 

but selects the optimal ones. It is interesting to notice that most aggregations occur at the upper levels 

of the data gathering tree where congestion is usually more intense. 

 

Figure 7. Information gain for D = 40 s. 

5.2.4. Total Aggregation Gain 

For benchmarking purposes and in order to provide a comprehensive comparative evaluation of our 

proposed framework which better helps positioning our framework within the existing literature, 

further simulation experiments were conducted that compare the proposed AEM algorithm with two 

different algorithms that primarily share the same objective, i.e., minimize the total energy 

consumption. In the following, we refer to the first algorithm as Algorithm 1 presented in [18] and  

to the second one as Algorithm 2 presented in [29], taking into consideration the time spent at  

nodes for the aggregation operation and properly determining the aggregation nodes. In particular,  

Algorithm 1 [18], which has already been thoroughly discussed in Section 2, determines the 

aggregation points and corresponding aggregation delays, while Algorithm 2 adopts an equal 

distribution of the maximum allowed delay among all nodes on the path. Algorithm 2 is based on a 

basic aggregation algorithm [29] that performs data-centric routing. The routing scheme used is the 

data gathering tree constructed at the beginning of the network operation and aggregation is performed 

at every node for a constant amount of time, i.e., equally distributing the allowed aggregation delay 

among all the nodes in the path. The selected evaluation metric for this comparative evaluation is the 

total aggregation gain which measures the benefits of aggregation in terms of communication traffic 

reduction. The aggregation gain G is calculated based on the following equation (as defined  

in [18]):	 = 1 − , where  corresponds to the number of transmissions when aggregation is applied 

while  accounts for the number of transmissions for the data gathering to be performed (without 
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applying any aggregation approach). The maximum allowed aggregation delay is set to 20 s for all 

approaches, and different packet generation rates were considered thus producing a varying number of 

packets during the corresponding interval. The simulation setup that was used is the same one 

described in Section 5.1. 

As observed by the results presented in Figure 8, our approach outperforms both compared 

algorithms by showing a great increase with reference to the aggregation gain. It can be seen that as the 

traffic in the network increases, the Aggregation Gain also increases for all algorithms, confirming the 

benefits of aggregation with respect to the decrease in the amount of messages in the network, 

especially under heavy traffic scenarios. Furthermore, it is clearly demonstrated that the proposed 

AEM algorithm significantly outperforms both other considered algorithms for all simulated scenarios 

This is accounted for the fact that AEM neither spends all the aggregation delay in one node (as 

Algorithm 1 does), nor distributes the allowed aggregation delay equally to every node (as Algorithm 2 

does). Instead, through the proposed optimization framework, it selects different nodes with  

optimal aggregation delays resulting in performing more efficient aggregation decisions resulting in  

fewer transmissions. 

 

Figure 8. Total aggregation gain as a function of network traffic.  

5.2.5. Capability to Adapt in Changing Conditions 

Finally, the capability of the proposed framework to changes in the traffic load and the application 

requirements is also evaluated. To achieve this, the following scenario is considered. A sensor 

network, consisting of fifty randomly deployed environmental sensor nodes in an area of 50 m × 50 m, 

is used to produce measurements for an air pollution application. Under this scenario, sensor nodes 

generate packets, with air quality readings, at a rate of 0.2 packets per second with time delay 

constraint of 40 s. After a period of 50 time frames, an elevated value of the measured element is 

reported triggering a “high” air pollution event, and therefore it needs to be reported at the collection 

center within a strict delay constraint, i.e., 20 s, while at the same time, nodes generate packets at a 

quicker rate (i.e., 0.5 packets per second). When the event expires (e.g., after 50 frames), the sensor 

network continues its normal operation.  
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As before, our AEM algorithm is compared with several other operation scenarios of constant 

aggregation probability and scenarios with fixed aggregation periods. 

As is illustrated in Figure 9, our approach succeeds in transmitting 90% of the generated packets, 

significantly outperforming all other alternatives, even when enforcing strict delay constraint and 

under high traffic conditions. Moreover, AEM achieves higher energy consumption efficiency 

compared to the other approaches since it consumes roughly the same amount of energy for 

transmitting significantly more packets, as observed in Figure 10. 

 

Figure 9. Probability of successful delivery of packets.  

 

Figure 10. Energy Consumption. 

6. Conclusions 

Wireless sensor networks have been regarded as one of the promising and feasible solutions that 

may play an important role in the process of information sensing, collection and monitoring for various 

physical environments and, by extension, in several different smart city applications where services 

can be built upon, both for public and private use. Moreover, data aggregation techniques are 
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considered an effective and viable paradigm for reducing the amount of traffic in sensor networks, thus 

increasing their lifetime and processing load. In this paper, an overall Optimization Framework for 

data gathering in resource-constrained sensor networks is introduced and evaluated. The proposed 

framework complements relevant work that can be found in the literature by identifying the optimal 

probability value for a node to aggregate packets as well as the optimal aggregation period that a node 

should wait, so as to minimize the overall energy consumption, while satisfying certain imposed delay 

constraints. Primal dual decomposition is employed to solve the corresponding optimization problem, 

while extensive simulation results demonstrate the efficiency of the proposed framework as well as its 

ability to adapt in challenging environments. The proposed algorithm, Aggregation-based Energy 

Management (AEM), which is based on the presented analysis, was compared with approaches that 

either do not perform aggregation or perform aggregation with constant probabilities and for fixed 

periods, under different traffic loads and application scenarios. As demonstrated by the performance 

evaluation process and respective simulation results, the proposed framework provides a robust 

paradigm, which achieves energy minimization, high probability of successful delivery and increased 

information gain at the cost of only a very small loss in the information accuracy. Finally, one of  

the key attributes of our framework is that is able to quickly adapt to changing environmental  

conditions, thus making it an ideal candidate for employment in harsh and dynamic environments  

and/or applications. 
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