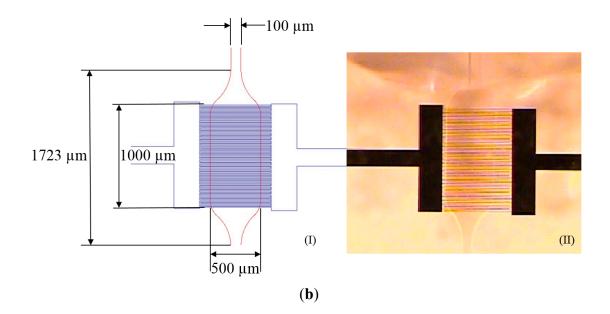



Supplementary Information

## An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. *Sensors* 2015, *15*, 18565-18578


Jacob Lum <sup>1</sup>, Ronghui Wang <sup>2</sup>, Billy Hargis <sup>3</sup>, Steve Tung <sup>4</sup>, Walter Bottje <sup>3</sup>, Huaguang Lu <sup>5</sup> and Yanbin Li <sup>2,3,\*</sup>

- <sup>1</sup> Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail: jlum@pacificvetgroup.com
- <sup>2</sup> Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail: rwang@uark.edu
- <sup>3</sup> Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; E-Mails: bhargis@uark.edu (B.H.); wbottje@uark.edu (W.B.)
- <sup>4</sup> Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail: chstung@uark.edu
- <sup>5</sup> Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA 16802, USA; E-Mail: hx115@psu.edu
- \* Author to whom correspondence should be addressed; E-Mail: yanbinli@uark.edu; Tel.: +1-479-575-2881; Fax: +1-479-575-2846.



**(a)** 

Figure S1. Cont.



**Figure S1.** (a) Microfluidic chip with inlet port and embedded interdigitated microelectrode; (b) Gold interdigitated array microelectrode (I) drawing and (II) picture. The microfluidic channel is 40  $\mu$ m deep and 100  $\mu$ m wide with an oval-shaped microfluidics chamber (40  $\mu$ m deep, 500  $\mu$ m wide, and 1723  $\mu$ m long; 34.5 nl volume). Each electrode consisted of 25 pairs of 10  $\mu$ m wide electrode fingers spaced 10  $\mu$ m apart.

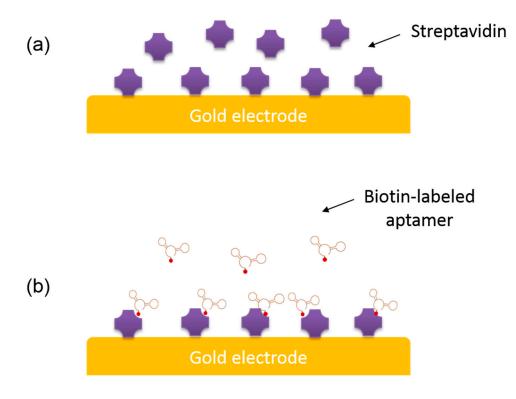



Figure S2. Cont.

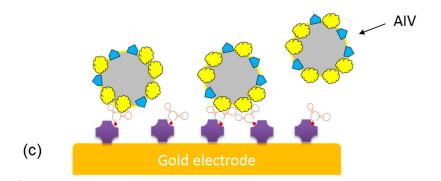
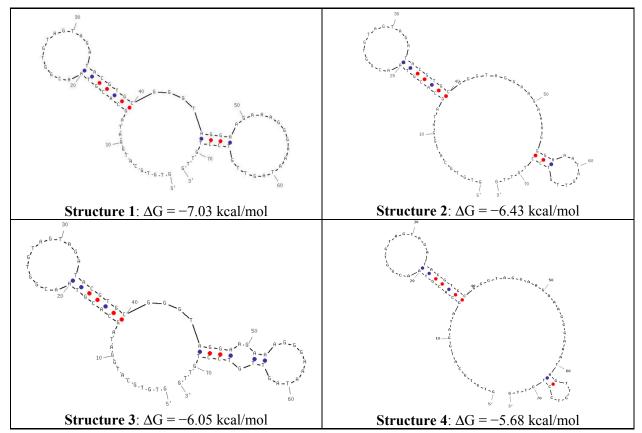
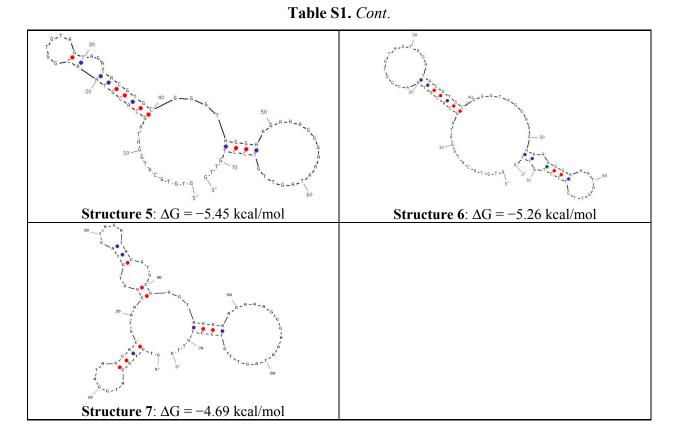





Figure S2. Design of the impedance aptasensor for the detection of AIV H5N1. (a) The microelectrode surface was modified using streptavidin; (b) The biotin-labeled aptamer was then immobilized through biotin-streptavidin binding; (c) Target AIV H5N1 was captured and the impedance was measured. After each step the flow cell was washed to remove unbound particles.

**Table S1.** Secondary structures of the H5N1 aptamer predicted by web-based UNAFold software using the OligoAnalyzer 3.1 program from IDT (Integrated DNA Technologies).





**Table S2.** A comparison study between the developed aptasensor and other methods for AIV H5 subtype detection based on the same virus unit (HAU).

| Methods                      | <b>Detection</b> Time | <b>Detection</b> Limit | Label-Free Detection | Reference  |
|------------------------------|-----------------------|------------------------|----------------------|------------|
| SPR aptasensor               | 1.5 h                 | 0.128 HAU              | Yes                  | 6          |
| Hydrogel QCM aptasensor      | 0.5 h                 | 0.0128 HAU             | Yes                  | 13         |
| QCM aptasensor               | 1 h                   | 1 HAU                  | Yes                  | 36         |
| QCM immunosensor             | 2 h                   | 0.0128 HAU             | No                   | 11         |
| Impedance aptasensor         | 2 h                   | 0.0008 HAU             | No                   | 38         |
| Impedance immunosensor       | 1 h                   | 0.5 HAU                | Yes                  | 48         |
| Bio-nanogate based biosensor | 1 h                   | 0.00195 HAU            | Yes                  | 49         |
| RT-PCR                       | 3 h                   | 0.0256 HAU             | Yes                  | 4          |
| Impedance aptasensor         | 0.5 h                 | 0.0128 HAU             | Yes                  | This study |

 $\bigcirc$  2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).