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Abstract: Interference alignment (IA) is a novel technique that can effectively eliminate the 

interference and approach the sum capacity of wireless sensor networks (WSNs) when the 

signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into 

different signal subspaces. The traditional alternating minimization interference leakage 

(AMIL) algorithm for IA shows good performance in high SNR regimes, however, the 

complexity of the AMIL algorithm increases dramatically as the number of users and 

antennas increases, posing limits to its applications in the practical systems. In this paper, a 

novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to 

minimize the interference leakage with rapid convergence and low complexity. The 

properties of the AMIL algorithm are investigated, and it is discovered that the difference 

between the two consecutive iteration results of the AMIL algorithm will approximately 

point to the convergence solution when the precoding and decoding matrices obtained from 

the intermediate iterations are sufficiently close to their convergence values. Based on this 

important property, the proposed DQO algorithm employs the line search procedure so that 

it can converge to the destination directly. In addition, the optimal step size can be 

determined analytically by optimizing a quartic function. Numerical results show that the 

proposed DQO algorithm can suppress the interference leakage more rapidly than the 
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traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL 

algorithm with far less iterations and execution time. 

Keywords: wireless sensor networks; multiple-input and multiple-output (MIMO); 

interference channel; interference alignment; line search; iterative algorithms 

 

1. Introduction 

Wireless sensor networks (WSNs) have received considerable attention, and have been applied to a 

large number of scenarios in recent years [1]. With the growth in network scale, interference 

management has become one of the major challenges in WSNs where multiple users often share some 

common resources simultaneously and high data rates are often demanded. A large amount of research 

has focused on interference management techniques in order to increase the sum rate of the  

system [2–5]. One recent interesting interference management scheme that can approach the channel 

capacity is interference alignment (IA), which was firstly studied by Maddah-Ali et al. [6] as well as 

Jafar and Shamai [7] for the multiple-input and multiple-output (MIMO) X channel. Subsequently, 

Cadambe and Jafar [8] proved that the throughput of the system varies linearly with the number of users 

in high signal-to-noise ratio (SNR) regimes by employing IA. In addition, the degrees of freedom 

(DoFs), which serve as one key measure of the channel capacity, were studied by Lee et al. [9] in the 

case of the MIMO Y channel and by Cadambe and Jafar [10] in the case of relay networks. Thanks to 

its bright prospects IA has been extended to use in many scenarios such as OFDM systems [11], 

femtocell networks [12], and cognitive networks [13,14]. In particular, Wu et al. [15] have leveraged the 

IA technique to mitigate the strong interference in large scale WSNs. In heterogeneous networks,  

Sharma et al. [16] have proposed a novel spectral coexistence mechanism which takes advantage of the 

IA technique. 

Essentially, achieving IA is to design proper transmitting precoding matrices V to align the desired 

signal and interference to different signal subspaces, and to design proper receiving decoding matrices 

U to eliminate the interference at each receiver [17]. Tresch et al. [18] have developed closed-form 

solutions to IA for the MIMO interference channel with M + 1 users, one degree of freedom,  

M transmitting antennas, and M receiving antennas. However, the closed-form solutions to IA remain 

unknown except for some special situations [19]. Peters and Heath [20] have shown that it is difficult to 

formulate the closed-form solutions of V and U in the situation of more than three users. In addition, 

Razaviyayn et al. [21] have also shown that searching the optimal V and U is a nonconvex problem.  

Ma et al. [22] have performed a deep analysis on the computational complexity of interference 

alignment, and shown that the problem becomes NP-hard when the number of antennas at each node is 

larger than two. Therefore, many researchers [20–26] have focused on numerical methods to find the 

suboptimal V and U. Gomadam et al. [23] have leveraged the channel reciprocity and proposed the 

alternating minimization interference leakage (AMIL) and Max-SINR algorithms, which only require 

local channel state information (CSI). It has been shown by Xu et al. [27] that the AMIL and Max-SINR 

algorithms show close multiplexing gains in high SNR regimes and the former approach has lower 

complexity than the latter one. A similar alternating minimization IA algorithm has been proposed  
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in [20] without assuming the network reciprocity. Shen et al. [24] have developed the minimum mean 

square error (MMSE) IA algorithm for the case of imperfect CSI. A sequential antenna switch algorithm 

was proposed in [28], in which the quality of service of the IA system was considered. 

Among these methods, the AMIL algorithm can suppress the interference leakage to a low level and 

thus can achieve high throughput in high SNR regimes where the sum rate of the system is determined 

by interference instead of noise. However, it might take a large number of iterations as well as long 

computational time in the case of large numbers of users and antennas. Furthermore, for the reason that 

CSI is time-variable, the practical IA system has limited computational time, which will certainly 

become the bottleneck of the implementation of AMIL algorithm when there are plenty of users and 

antennas. In this paper, we investigate the properties of the AMIL algorithm, and discover that the 

difference between the consecutive iteration results of the AMIL algorithm will approximately point to 

the convergence solution when the precoding and decoding matrices obtained from the intermediate 

iterations are sufficiently close to their convergence values. Based on this property, we propose a rapidly 

convergent low-complexity IA algorithm, i.e., directional quartic optimal (DQO) algorithm. It leverages 

a line search (LS) optimization method, which iteratively generates searching directions and optimal 

step sizes. The searching direction is obtained by subtracting the consecutive results of AMIL algorithm, 

and the optimal step size is calculated by solving a quartic optimization problem. 

The rest of the paper is organized as follows: in Section 2, we describe the system model. The 

properties of the AMIL algorithm are studied in Section 3, which will serve as the foundation of the algorithm 

proposed later. In Section 4, the DQO algorithm is proposed, and the corresponding procedure, optimal step 

size calculation, and complexity analysis are provided. Numerical results to evaluate the proposed 

algorithm are presented and discussed in Section 5. Finally, the paper is concluded in Section 6. As far 

as the notation used in the paper is concerned, we employ (M × N, d)K to represent a K-user MIMO 

interference channel where each user wishes to transmit d data streams with M transmitting antennas and 

N receiving antennas. We use , , M×N, I, and (μ, σ2) to represent the complex domain, the real 

domain, the M × N complex matrix, the identity matrix, and the complex Gaussian distribution with 

mean μ and variance σ2, respectively. Re{a} denotes the real part of scalar a. AT, A*, AH, ||A||, Tr[A] 

and A*(l) mean the transpose, the conjugate, the conjugate transpose, the Frobenius norm, the trace and 

the l-th column of matrix A, respectively. eigl[A] stands for the eigenvector associated with the l-th 

smallest eigenvalue of matrix A. We employ Ai to represent the value of A at the i-th iterations.  

diag(a1, a2, ..., am) represents a diagonal matrix with its diagonal elements equal to a1, a2, …, am. 

2. System Model 

In this paper, the (M × N, d)K MIMO interference channel is considered, and is depicted in Figure 1. 

The received signal of the k-th user can be represented as [23]: 

1

, 1, 2,...,
K

k kl l l k
l

k K
=

= + ∈Y H V s n  (1)

where sk ∈ d×1, Vk ∈ M×d, and Yk ∈ N×1 denote the data vector, the precoding matrix, and the 
received signal vector of the k-th user, respectively; nk ∈  N×1 represents the noise vector with 

distribution of (0, σ2) for each element; Hkl ∈ N×M represents the channel matrix from transmitter l 



Sensors 2015, 15 18529 

 

 

to receiver k. In the network we considered, CSI is obtained through CSI feedback, which serves as one 

critical technique in IA. A large number of researchers such as Ayach [29], Cho [30], and Zhang [31] 

have focused on the CSI feedback strategy. Since we mainly focus on designing the precoding and 

decoding matrices, further investigation on CSI feedback is beyond the scope of the paper and an 

accurate global CSI is assumed to be available at each node throughout this paper. 

 

Figure 1. System model of the K-user MIMO interference channel. 

The k-th user’s covariance matrices of the forward and reciprocal networks are respectively given by: 

H H

1,

K
l

k kl l l kl
l l k

P

d= ≠

= Q H V V H  (2)

H H

1,

K
l

k lk l l lk
l l k

P

d

←

= ≠

= Q H U U H


 (3)

where Pl and P


 denote the transmitting power of the l-th user in the forward and the reciprocal networks, 

respectively. Then the interference leakage at receiver k can be calculated as: 
HTr[ ]k k k kL = U Q U  (4)

where Uk ∈ N×d is the decoding matrix at receiver k. The total interference leakage is defined as the 

sum of the leakage at each receiver, i.e.,: 

1

K

k
k

L L
=

=  (5)

Then the minimal interference leakage problem is to design proper transmitting precoding matrices 

V and receiving decoding matrices U to minimize Equation (5) under the following constraints: 
Hrank( )k kk k d=U H V  (6)

H H,k k k k= =V V I U U I  (7)

 11H
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The former constraint guarantees the feasibility of the desired signal reconstruction and the later one 

ensures the uniqueness of the IA solution [17]. 

3. Properties of AMIL Algorithm 

The AMIL algorithm, whose procedure is summarized in Algorithm 1, was proposed by  

Gomadam et al. [23] to find the IA solution by exploiting the channel reciprocity. In this section, we 

investigate the properties of the AMIL algorithm, and show that the difference of the consecutive 

iteration results of AMIL algorithm will approximately point to the convergence solution when the 

precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their 

convergence values. This interesting property will serve as the foundation of the algorithm  

proposed later. 

Algorithm 1 AMIL Algorithm 
1. Initialize Lth, Imax, and 0

kV , with 0 H 0( )k k =V V I  (k = 1, 2,…, K). 

2. i = 0. 

3. Repeat 

4. i = i + 1 
5. (VU-step):Calculate i

kQ  according to Equation (2). Update i
kU  so that 

6. ( ) eig [ ], 1, 2,.., .i i
k l l k l d= =U Q  

7. (UV-step):Calculate i
k

←

Q  according to Equation (3). Update i
kV  so that 

8. ( ) eig [ ], 1,2,.., .ii
k l l k l d

←

= =QV  

9. Calculate the interference leakage L according to Equation (5). 

10. Until L < Lth or i > Imax. 

As shown in Algorithm 1, the AMIL algorithm calculates the optimal decoding matrices U by fixing 

V in the forward channel, and computes the optimal V by fixing U in the reciprocal channel. It can 

monotonously suppress the interference leakage, and has been proved to converge to a local minimum. 

Although the convergence point is not guaranteed to be the optimal IA solution, it has been verified 

numerically that in many cases AMIL algorithm can achieve a low interference leakage level after 

sufficient iterations. Therefore, in high SNR regimes, where the sum rate is limited by interference rather 

than noise, the AMIL algorithm serves as a good method to increase the sum rate. In addition, the 

procedure of alternating minimization is very effective, and is often employed by many other algorithms. 

In spite of this, the iterations as well as time required by AMIL algorithm to reach a certain level of 

interference leakage increase dramatically with the number of users and antennas. Therefore, the 

properties of AMIL algorithm are studied in order to figure out a way to increase the convergence rate 

and thus to reduce its complexity as well as the required computational time. 
Throughout this paper, i

kV  ∈ M×d and i
kU  ∈ N×d are employed to represent the k-th user’s 

precoding and decoding matrices obtained from the i-th iteration, respectively. The convergence value 

of i
kV  and i

kU  are defined as kV  and kU , respectively. Define i
kΔV  ∈ M×d as the deviation from i

kV  

to kV , and i
kΔU  ∈ N×d as the deviation from i

kU  to kU  so that: 
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i i
k k k= + ΔV V V  (8)

i i
k k k= + ΔU U U  (9)

Define iV , V , iΔV ∈ MdK×1 and iU , U , iΔU ∈ NdK×1 as: 

1(1) 1(1)1(1)

1(2) 1(2)1(2)

1( ) 1( )1( )

(1) (1)(1)

(2) (2)(2)

( ) ( )

... ......

, ,... ......

... ....

i i

i i

i i
d dd

i i

i i
K KK
i i
K KK

i
K d K d

   Δ
   Δ  
  
  

Δ  
  = = Δ =
  

Δ  
   Δ  
  
  

   

V VV

V VV

V VV

V V V

V VV

V VV

V V












1(1) 1(1(1)

1(2) 1(2)

1( ) 1( )

(1) (1)

(2) (2)

( ) ( ) ( )

... ...

, , ,... ...

.. ... ...

i

i

i
d d
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i
K K
i
K K

i i
K d K d K d
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    
    
    
    = = Δ =
    
    
    
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    
    Δ     

U UU

U U

U U

U U U

U U

U U

V U U












1)

1(2)

1( )

(1)

(2)

( )

...

...

...

i

i

i
d

i
K
i
K

i
K d

 
 Δ 
 
 
Δ 
 
 
Δ 
 Δ 
 
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U
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U
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U

 (10)

From Equations (8) and (9), it can be obtained that: 

i i= + ΔV V V  (11)

i i= + ΔU U U  (12)

The investigation begins with the linear transformation property of AMIL algorithm as follows: 

Theorem 1. If AMIL algorithm can converge to a point where the interference leakage is very small, 
there exist fixed linear transformations TV and TU, which do not change with iterations. When iV  and 

iU  are sufficiently close to V  and U , respectively, the deviations of the (i + 1)-th iteration can be 

approximated as follows: 
1

V
i i+Δ ≈ ΔV T V  (13)

1
U

i i+Δ ≈ ΔU T U  (14)

Proof of Theorem 1. In the situation when AMIL algorithm converges to a point where the interference 

leakage is very small, which is easy to achieve for AMIL algorithm, we have: 
H ,j ji i j i≈ ≠U H V 0   (15)

Define the interference covariance matrices at the convergence point as: 

H H

1,

K

k kj j j kj
j j k= ≠

= Q H V V H    (16)

H H

1,

K

k jk j j jk
j j k= ≠

= Q H U U H

    (17)

Assume that the l-th smallest eigenvalue and the associated eigenvector of kQ  are ,k lλ


 and ,k lν , 

respectively. Similarly for kQ

 , we have ,k lλ  and ,k lν . From the procedure of AMIL algorithm, kV  and 



Sensors 2015, 15 18532 

 

 

kU  should be the eigenvectors corresponding to the d smallest eigenvalues of kQ

  and kQ , respectively. 

Therefore, kV  and kU  can be respectively given by: 

,1 ,2 ,[ , ,..., ]k k k k d= ν ν νV  (18)

,1 ,2 ,[ , ,..., ]k k k k d=U ν ν ν
    (19)

At the (i + 1)-th iteration, the VU-step of AMIL algorithm is performed on the precoding matrices 
{ }i

kV  and covariance matrix at the (i + 1)-th iteration can be expressed as: 

1 H H

1,

H H

1,

1

[ ][ ]

= +

K
i i i
k kj j j kj

j j k

K
i i

kj j j j j kj
j j k

i
k k

+

= ≠

= ≠

+

=

= + Δ + Δ

Δ





Q H V V H

H V V V V H

Q Q

 



 (20)

where 1i
k
+ΔQ  is given by: 

1 H H H H

1,

[ ] 
K

i i i i i
k kj j j j j j j kj

j j k

+

= ≠

Δ = Δ + Δ + Δ ΔQ H V V V V V V H   (21)

When iV  and iU  are sufficiently close to V  and U  respectively, the deviation i
jΔV  is very small. 

Therefore, the high order term Hi i
j jΔ ΔV V  can be ignored, and Equation (21) can be simplified as: 

1 H H H

1,

[ ] 
K

i i i
k kj j j j j kj

j j k

+

= ≠

Δ ≈ Δ + ΔQ H V V V V H   (22)

According to the AMIL algorithm, 1U i
k
+  should be the eigenvector corresponding to the d smallest 

eigenvalues of 1Qi
k
+ . From Equations (19) and (20), using the Eigenvalue Perturbation Theory, the l-th 

column of 1i
k
+U  can be approximated by: 

1
1

( )
1, , ,

1
( )

( )
1, , ,

1
(

H
, ,

, ,

,

) ( )

H

,

iN
ki

k l
j j l k l k j

iN
k k l

k l

k j k l

j j l k l k j

i
k l k l

k l k j

k j
k j

λ λ

λ λ

+
+

= ≠

+

= ≠

+

Δ
≈ +

−

Δ
= +

−

= + Δ





Q
U

Q

ν ν
ν ν

ν
ν

U
U

U U

 


 

 


  






 (23)

where 1
( )

i
k l
+ΔU  is given by: 

1
( )1

( )
1,

H
,

,

, ,

iN
k k li

k l
j j l k l k j

k j
k jλ λ

+
+

= ≠

Δ
Δ =

−
Q Uν

νU


 



 (24)

Substitute Equation (22) into (24), and 1
( )

i
k l
+ΔU  can be rewritten as: 

1 H H H
( ) (

H
, )

1, 1,,

,

,

1
{ [ ]  }

N K
i i i
k l kr r r r r kr k l

j j l r r kk l

j

k j

k j kλ λ
+

= ≠ = ≠

Δ ≈ Δ + Δ
− U H V V V V H Uν ν      (25)
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From Equation (15), the terms H H
( )r kr k lV H U   in Equation (25) is approximately zero and thus can be 

omitted. Therefore, Equation (25) can be simplified as: 

H H
( )

1,1
( )

1, , ,

H
,

,

K
i

kr r r krk j

k j

k lN
r r ki

k l
j j l k l k jλ λ

= ≠+

= ≠

Δ
Δ ≈

−




H V V H U

U

ν

ν

 
  



 (26)

From Equation (26), it can be seen that  is approximately the linear combination of the 

elements of ( )i
r

∗ΔV , and the coefficients of the combination are corresponding to H
,k jν


, krH , rV , kU  and

,k jλ


, which are fixed and do not vary with iterations i. Hence there exists a fixed matrix TVU ∈ NKd × MKd 

which does not change with iterations, so that: 
1

VU ( )i i+ ∗Δ ≈ ⋅ ΔU T V  (27)

Similarly for the UV-step, there exists a fixed matrix TUV ∈ MKd × NKd which does not change with 

iterations, so that: 
1 1

UV ( )i i+ + ∗Δ ≈ ⋅ ΔV T U  (28)

From Equations (27) and (28), we have: 
1

UV VU V
i i i+ ∗Δ ≈ ⋅ Δ = ΔV T T V T V  (29)

1
VU UV U

i i i+ ∗Δ ≈ ⋅Δ = ΔU T T U T U  (30)

where: 

V UV VU
MKd MKd∗ ×= ∈T T T   (31)

U VU UV
NKd NKd∗ ×= ∈T T T   (32)

It can be seen that TV and TU determine the properties of AMIL algorithm when the current point is 

sufficiently close to its convergence value. As the analytical forms of TV and TU are extremely complex, 

the features of these two transformations are investigated by simulation and one interesting property 

observed is given as follows: 

Property 1. In the case of (M × M, d)K channel, there exist two nonsingular matrices PV and PU, so that 

TV and TU can be expressed as: 
1

V V V
−= ΛT P P  (33)

1
U U U

−= ΛT P P  (34)

where Λ = diag(κ1, κ2,…, κMKd) with κ1 > κ2 ... > κr and κr + 1 = κr + 2 = ... = κMKd = 0 (1 < r < KMd). 

Based on the properties above, we further study the situation when consecutive applications of TV 

and TU are exerted on the deviation, and come to the following theorem. 

Theorem 2. In the (M × M, d)K channel, if AMIL algorithm can converge to a point where the 
interference leakage is very small, the convergence solutions kV  and kU  (k = 1, 2, ..., K) can be 

1
( )

i
k l
+ΔU
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approximated by the following Equations (35) and (36), when i
kV  and i

kU  are sufficiently close to kV  and 

kU , respectively: 

1( ),i i i
k k k kt t−≈ + − ∈V V V V   (35)

1( )i i i
k k k kt −≈ + −U U U U  (36)

Proof of Theorem 2. At the (i + i1)-th iteration, from Equations (29), (30), (33) and (34), we have: 
1 1

1

1 1 1

V

1
V V

1
V 1 2 V( , ,..., )

i i i i

i i

i i i i
MKddiag κ κ κ

+

−

−

Δ ≈ Δ

= Λ Δ

= Δ

V T V

P P V

P P V

 (37)

1 1

1

1 1 1

1

1

U

U U

U1U 2( , ,..., )

i i i i

i i

i i i i
MKddiag κ κ κ

+

−

−

Δ ≈ Δ

= Λ Δ

= Δ

U T U

P P U

P P U

 (38)

Define ek, gk ∈ MKd×1 and fk, sk ∈  so that: 
1

V 2[ , ,..., ]MKd
− = 1P e e e  (39)

1
U 2[ , ,..., ]MKd
− = 1P g g g  (40)

T
V 2[ , ,..., ]i

MKdf f fΔ = 1P V  (41)

T
U 2[ , ,..., ]i

MKdh h hΔ = 1P U  (42)

Thus Equations (37) and (38) can be written as: 

1 1

1

MKd
i i i

j j j
j

fκ+

=

Δ ≈ V e  (43)

1 1

1

MKd
i i i

j j j
j

hκ+

=

Δ ≈ U g  (44)

According to Property 1, when i1 is large enough, it can be obtained that: 

1 1 1 1 1 1
1 2 1 2... , ... 0i i i i i i

r r r MKdκ κ κ κ κ κ+ += = = =    (45)

Therefore, Equations (43) and (44) can be approximated by: 

1 1
1 1 1

i i i fκ+Δ ≈V e  (46)

1 1
1 1 1

i i i hκ+Δ ≈U g  (47)

At the (i + i1 + 1)-th iteration, it can be obtained that: 

1 1 11 1
1 1 1 1

i i i i ifκ κ+ + + +Δ ≈ ≈ ΔV e V  (48)

1 1 11 1
1 1 1 1

i i i i ihκ κ+ + + +Δ ≈ ≈ ΔU g U  (49)

From Equations (11), (12), (48) and (49), we have: 



Sensors 2015, 15 18535 

 

 

1 1 1 1 11 1 1 11

1

( )
1

i i i i i i i i i iκ
κ

+ + + + + + + + += − Δ ≈ + Δ − Δ
−

V V V V V V  (50)

1 1 1 1 11 1 1 11

1

 )
1

 (i i i i i i i i i iκ
κ

+ + + + + + + + += − Δ ≈ + Δ − Δ
−

U U U U U U  (51)

Define t = κ1/(1 − κ1) ∈  and replace i + i1 + 1 with i, it can be obtained that: 

1

1

( )

( )

i i i

i i i

t

t

−

−

≈ + Δ − Δ
= + −

V V V V

V V V


 (52)

1

1

( )

( )

i i i

i i i

t

t

−

−

≈ + Δ − Δ
= + −

U U U U

U U U


 (53)

Substituting Equations (10) into Equations (52) and (53), then Equations (35) and (36) can be 

obtained. Therefore the difference between the consecutive iteration results of AMIL algorithm, i.e., 
1i i

k k
−−V V  and 1i i

k k
−−U U  will approximately point to their convergence values kV  and kU , when i

kV  and 
i
kU  are sufficiently close to kV  and kU , respectively. 

Theorem 2 provides an enlightenment to reach the convergence point more rapidly. Instead of going 

along the circuitous route of VU-step and UV-step of AMIL algorithm, we can approach the destination 

more directly by searching along the new direction, i.e., 1i i
k k

−−V V  and 1i i
k k

−−U U .This interesting 

discovery inspires us to propose the rapid convergent IA algorithm which will be shown in the  

next section. 

4. Directional Quartic Optimal Algorithm 

The traditional AMIL algorithm suffers from high complexity when there are plenty of users and 

antennas. The large number of iterations and long computational time required by the AMIL algorithm 

limit its application to practical IA systems where the CSI is always changing. Therefore, a high 

efficiency algorithm is needed to reduce the computational cost. In this section, we focus on a rapid 

convergent low-complexity IA approach, and propose the DQO algorithm. As shown in Section 3, the 

direction attained from the difference of the consecutive iteration results of the AMIL algorithm serves 

as a good searching direction, through which we can go to the convergence point almost directly.  

In addition, the optimal step size can be calculated by solving a quartic optimization problem. In this 

section, the details of the proposed algorithm are provided, and the associated computational complexity 

is analyzed. 

4.1. The Procedure of DQO Algorithm 

The procedure of DQO algorithm is summarized in Algorithm 2. The framework of DQO algorithm 

is based on the AMIL algorithm, and the LS procedure is added. In the initial phase of DQO algorithm, 

it operates just like the AMIL algorithm. The VU and UV steps are executed, and the interference leakage 

L is evaluated in each iteration. When L is smaller than the preset threshold th1, as shown in the 21-th 

line of Algorithm 2, the variable flag is set and the current number of iterations is recorded as ib, 

indicating that the current point is close enough to the convergence value and the LS procedure can be 
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implemented. Notice that flag and ib are updated only once and will remain unchanged afterward. After 

flag is set, the algorithm will execute the LS procedure every interval iterations, as shown in the 10-th 

line. The LS procedure cannot be carried out in every iteration for the reason that the approximations 

Equations (46) and (47) can be attained only when i1 is large enough. 

Algorithm 2 DQO Algorithm 
1. Initialize 0

kV , with 0 H 0( )k k =V V I  (k = 1, 2,…, K). 

2. Initialize parameters: th1, th2 (th2 < th1), Imax, and interval. 

3. Set flag = 0, i = 0, and ib = 0. 

4. Repeat 

5. i = i + 1. 
6. (VU-step):Calculate i

kQ  according to Equation (2). Update i
kU  so that 

7. ( ) eig [ ], 1, 2,.., .i i
k l l k l d= =U Q  

8. (UV-step):Calculate i
k

←

Q  according to Equation (3). Update i
kV  so that 

9. ( ) eig [ ], 1, 2,.., .ii
k l l k l d

←

= =QV  

10. If flag = 1 and (i − ib) mod interval = 0, execute the LS procedure as: 

11. (a) Calculate the new iteration direction as: 
12. 1i i

k k k
−Δ = −U U U  

13. 1i i
k k k

−Δ = −V V V  

14. (b) Calculate the optimal step size t*. 
15. (c) Update i

kV  and i
kU  as: 

16. *+i i
k k kt← ΔU U U  

17. *+i i
k k kt← ΔV V V  

18. (d) Normalize each column of i
kV  and i

kU . 

19. else 

20. Calculate the interference leakage L according to Equation (5) 

21. If th2 < L < th1 and flag = 0 

22. Set flag = 1 and ib = i. 

23. end if. 

24. end if. 

25. Until L < th2 or i > Imax. 

Therefore, it has to take several UV and VU steps before 1
1
iκ  takes the dominant proposition so that 

Equations (35) and (36) hold. As a result, the parameter interval cannot be set to be one, and it will be 

further validated by simulation in Section 5.1. During each LS procedure, the new direction is calculated 

by subtracting the consecutive iteration results. The optimal step size t* can be obtained by solving a 

quartic optimization problem, and the associated details will be provided in Section 4.2. The new 

precoders and decoders are updated as the 16-th and 17-th lines. To guarantee the unit norm of the 

precoders and decoders, we normalize each column of U and V in the 18-th line. The algorithm will stop 
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when the interference leakage is smaller than the objective threshold th2 or the maximal iterations 

number Imax is reached. 

4.2. Optimal Step Size Calculation 

The step size in DQO algorithm is an essential parameter which has a significant impact on the 

efficiency. Aiming at minimizing the interference leakage along the line search direction, the optimal 

step size can be calculated analytically by solving a quartic optimization problem. As is shown in 

Equations (35) and (36), the step size t should be a real value. From Equations (2), (4) and (5), the total 

interference leakage in the case of Uk + tΔUk, Vk + tΔVk (k = 1, 2, …, K) can be formulated as: 

H H H H H

1 1,

( ) Tr[( ) ( )( ) ( )]
K K

l
k k kl l l l l kl k k

k l l k

P
L t t t t t

d= = ≠

= + Δ + Δ + Δ + Δ  U U H V V V V H U U  (54)

Without loss of generality, we assume Pl/d = 1 and define: 
H

kl k kl l= Δα U H V  (55)

H
kl k kl l= Δ Δβ U H V  (56)

H
kl k kl l= Δγ U H V  (57)

H
kl k kl l=δ U H V  (58)

Then Equation (54) can be formulated as a real quartic function of t: 
4 3 2 1

4 3 2 1 0( )L t a t a t a t a t a= + + + +  (59)

where: 

H
4

1 1,

Tr[ ]
K K

kl kl
k l l k

a
= = ≠

=  β β  (60)

H H
3

1 1,

2Re{Tr[ ]}
K K

kl kl kl kl
k l l k

a
= = ≠

= +  α β γ β  (61)

H H H H
2

1 1,

{Tr[ ] 2Re{Tr[ ]}}
K K

kl kl kl kl kl kl kl kl
k l l k

a
= = ≠

= + + +  α α γ γ α γ β δ  (62)

H H
1

1 1,

2Re{Tr[ ]}
K K

kl kl kl kl
k l l k

a
= = ≠

= +  δ α δ γ  (63)

H
0

1 1,

Tr[ ]
K K

kl kl
k l l k

a
= = ≠

=  δ δ  (64)

In order to obtain the global minimum value of Equation (59), the following lemma is firstly introduced: 

Lemma 1. For a real quartic function f(t) = a4t4 + a3t3 + a2t2 + a1t + a0, t ∈ , with a4 > 0, there exists 

an optimal t* ∈  that satisfies f′(t*) = 0, so that f(t*) is the global minimal value of f(t). 
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Proof of Lemma 1. As a4 > 0 and 3 2
4 3 2 1( ) 4 3 2f t a t a t a t a′ = + + + , it can be obtained that lim ( )

t
f t

→+∞
′ = +∞  

and lim ( )
t

f t
→−∞

′ = −∞ . Therefore, there exist a, b ∈ , so that f′(t) > 0, t ∈ [b, ∞) and f′(t) < 0, t ∈ (−∞ ,a]. 

Thus, f(t) increases monotonously in t ∈ [b, ∞) and has the minimal value f(b) at t = b. Similarly, f(t) 

decreases monotonously in t ∈ (−∞ ,a] and has the minimal value f(a) at t = a. When t ∈ [a, b], due to 

continuity, f(t) must have the minimal value f(c) at t = c where c ∈ [a, b]. Hence, min{f(a), f(b), f(c)} is 

the global minimum of f(t). In conclusion, there exists t* ∈  (or t* ∈ {a, b, c}) so that f(t*) is the global 

minimal value. For f(t) ≥ f(t*), the left and right derivatives at t* can be formulated as: 

* *
*

0

( ) ( )
( ) lim 0

t

f t t f t
f t

t−−
Δ →

+ Δ −′ = ≤
Δ

 

* *
*

0

( ) ( )
( ) lim 0

t

f t t f t
f t

t++
Δ →

+ Δ −′ = ≥
Δ

 

For * * *( ) ( ) ( )f t f t f t− +′ ′ ′= = , we must have * * *( ) ( ) ( ) 0f t f t f t− +′ ′ ′= = = . Therefore, the global optimal 

value t* must be chosen from the solutions that satisfy f′(t*) = 0. When f′(t*) = 0 has only one real solution, 

it is the optimal t*. When f′(t*) = 0 has 2 or 3 real solutions, t* is the one that has the smallest function value. 

From Equation (60) we have a4 > 0. According to Lemma 1, it can be deduced that there exists  

t* ∈  with zero derivative, which makes L(t*) as the global minimal value of Equation (59). Let: 
3 2

4 3 2 1/ 4 3 2 0dL dt a t a t a t a= + + + =  (65)

The discriminant of Equation (65) is: 2 3
1 2Δ = Δ + Δ , where Δ1 = (bc)/(6a2) − b3/(27a3) − d/(2a),  

Δ2 = c/(3a) − b2/(9a2), a = 4a4, b = 3a3, c = 2a2, and d = a1. And the 3 solutions of Equation (65) are 

given by: 

1 1 2 3= + +t x x x  (66)

32
2 1

( 1 3 )( 1 3 )

2 2

i xi x
t x

− −− += + +  (67)

32
3 1

( 1 3 )( 1 3 )

2 2

i xi x
t x

− +− −= + +  (68)

where x1 = −b/(3a), 3
2 1x = Δ + Δ , and 3

3 1x = Δ − Δ . When Δ > 0 or Δ = Δ1 = Δ2 = 0, there is only 

one real root t1 which is the optimal t*; when Δ = 0 and Δ1 = Δ2 ≠ 0, there are 2 real roots; when Δ < 0, 

there are 3 real roots. If there are more than one real root, t* is the one that has the smallest function value. 

4.3. Computational Complexity Analysis 

The computational complexity of the AMIL and DQO algorithms is analyzed according to the number 

of complex multiplications (NoCM). For the AMIL algorithm, the complexity comes from the 

covariance matrices calculation, eigenvalue decomposition, and interference leakage evaluation with the 

complexity of K(K − 1)(MNd + Md2 + Nd2), 9K(M3 + N3), and K(K − 1)(d2M + d3), respectively [17]. 

Therefore the NoCM per iteration of the AMIL algorithm is summarized as: 
2 2 3 3 2 3

AMIL ( 1)(2 ) 9 ( ) ( 1)( )C K K MNd Nd M d K N M K K d M d= − + + + + + − +  (69)
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For the DQO algorithm, the complexity of the VU-step, UV-step, and interference leakage 

calculations are the same as those of the AMIL algorithm, and the extra complexity comes from the LS 

procedure. The complexity of LS comes from the coefficients calculation of Equations (55)–(58) and  

Equations (60)–(63), solving Equation (65), and normalization. The complexity of each LS procedure is 

analyzed as follows: 

(1) As shown in Equation (55), αkl can be rewritten as H 1 H[( ) ( ) ]i i
kl k kl k kl l

−= −α U H U H V . Since 
H( )i

k klU H  and 1 H( )i
k kl
−U H  have been calculated in k

←
Q  as shown in Equation (3), the complexity of 

computing αkl only comes from the multiplication of H 1 H[( ) ( ) ]i i
k kl k kl

−−U H U H  and lV , with the NoCM 

of d2M. As k and l traverse from 1 to K with l ≠ k, the total complexity of calculating all αkl is  

K(K − 1)d2M. Similarly, βkl, γkl, and δkl have the same complexity as αkl. 

(2) The complexity of calculating a1–a4 mainly comes from the multiplications among αkl, βkl, γkl, 

and δkl. Notice that only the traces of the products are required, and we don’t have to compute all the 

elements of the products. Therefore, the complexity of calculating a1–a4 are 2K(K − 1)d2, 4K(K − 1)d2, 

2K(K − 1)d2, and K(K − 1)d2, respectively. Notice that there is no need to calculate a0. 

(3) The number of real solutions of Equation (65) depends on Δ1, Δ2 as well as Δ, and we consider 

the most complex case of 3 real solutions. The details of the complexity of solving the cubic equation 

are listed in Table 1. NoRM, NoRD, NoSRC, and NoCRC are employed to represent the number of real 

multiplications, real divisions, square root calculations, and cubic root calculations, respectively. 

Table 1. Complexity of solving the cubic Equation (65). 

Types NoRM NoRD NoSRC NoCRC 

a, b, c, d 3 0 0 0 
Δ1 9 3 0 0 
Δ2 4 2 0 0 
Δ 3 0 0 0 
x1 1 1 0 0 
x2 0 0 1 1 
x3 0 0 1 1 
t1 0 0 0 0 
t2 8 0 0 0 
t3 8 0 0 0 

L(t) 21 0 0 0 
Total 57 6 2 0 

(4) i
kV  and i

kU  are normalized so that the norm of each column is one. The normalization of one 

column of i
kV  takes M complex multiplications, one square root calculation and two real divisions. 

Therefore the normalization of all the precoding matrices takes dMK complex multiplications, dK square 

root calculations, and 2dK real divisions. Similarly, the normalization of all the decoding matrices takes 

dNK complex multiplications, dK square root calculations, and 2dK real divisions. 

(5) As the complexity of one complex multiplication equals four real multiplications, the number of 

real multiplications will be replaced with the equivalent number of complex multiplications. And the 

complexity of one line search is summarized in Table 2. 

Therefore the total number of equivalent complex multiplications of one line search is: 
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2 2
LS 4 ( 1) 9 ( 1) ( ) 14.25C K K d M K K d dK M N= − + − + + +  (70)

And the number of real divisions, square root calculations and cubic root calculations in one LS are 

4dK + 6, 2dK + 2, and 2, respectively. As LS is implemented every interval iteration, the average NoCM 

per iteration of DQO algorithm is: 

DQO AMIL LS /C C C interval= +  (71)

Table 2. Complexity of one line search. 

Types NoRM NoRD NoSRC NoCRC 

αkl K(K − 1)d2M 0 0 0 
βkl K(K − 1)d2M 0 0 0 
γkl K(K − 1)d2M 0 0 0 
δkl K(K − 1)d2M 0 0 0 
a1 2K(K − 1)d2 0 0 0 
a2 4K(K − 1)d2 0 0 0 
a3 2K(K − 1)d2 0 0 0 
a4 K(K − 1)d2 0 0 0 

Solve (65) 14.25 6 2 2 
Normalization dK(M + N) 4dK 2dK 0 

The complexity of the AMIL and DQO algorithms with the parameter interval = 20 (the mechanism 

for determining the parameter will be provided in Section 5.1) is compared in Table 3. From the 

comparison, it can be seen that the average NoCM of the DQO algorithm per iteration is only slightly 

higher than that of the AMIL algorithm. Although LS will bring extra complexity per iteration, it can 

reduce the number of iterations significantly and thus lower the overall computational complexity, which 

will be shown in the numerical results. 

Table 3. Complexity of AMIL and DQO algorithms in (M × M, d)K with interval = 20. 

(M × N, d)K CAMIL CDQO CDQO/CAMIL 

(6 × 6, 1)11 5.61 × 104 5.63 × 104 1.003 
(6 × 6, 2)5 2.49 × 104 2.50 × 104 1.006 
(7 × 7, 1)13 1.06 × 105 1.06 × 105 1.003 
(7 × 7, 2)6 4.78 × 104 4.80 × 104 1.005 
(8 × 8, 1)15 1.82 × 105 1.83 × 105 1.002 
(8 × 8, 2)7 8.37 × 104 8.40 × 104 1.004 
(9 × 9, 1)17 2.94 × 105 2.95 × 105 1.002 
(9 × 9, 2)8 1.37 × 105 1.37 × 105 1.004 

(10 × 10, 1)19 4.52 × 105 4.53 × 105 1.002 
(10 × 10, 2)9 2.12 × 105 2.12 × 105 1.003 

5. Numerical Results 

In this section, the performance of the proposed DQO algorithm is evaluated and compared with the 

traditional AMIL algorithm by simulation. We will employ the interference leakage and sum rate as the 

performance metrics. The definition of interference leakage is shown in Equation (5), and that of sum 
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rate can be found in reference [23]. Unless specially specified, 250 realizations of different channel 

coefficients with distribution (0, 1) and the corresponding initial precoding matrices are randomly 

generated to evaluate the average interference leakage and sum rate of the algorithms in each simulation. 

5.1. Parameter Analysis 

There are four parameters in the DQO algorithm: the interference leakage threshold for starting LS 

th1, the desired interference leakage th2, the interval for executing the LS interval, and the maximum 

iteration Im. The parameters th2 and Im are set according to the practical requirements. The other two 

have impacts on the efficiency of DQO algorithm. It is difficult to provide the exact optimal values of 

the two parameters analytically. Therefore, simulations are employed to determine the parameters th1 

and interval in this section. 

The parameter th1 decides the interference leakage threshold for starting line search. It is difficult to 

provide the exact optimal value of th1, and the performance of DQO algorithm is evaluated with different 

th1 for the (5 × 5, 2)4 and (10 × 10, 1)19 channels in Figures 2 and 3, respectively. The parameter interval 

is preseted as 20, and th1 is chosen to be 1, 0.1, 0.01, and 0.001. 

 

Figure 2. Convergence curves of the average interference leakage of DQO algorithm with 

th1 = 1, 0.1, 0.01, and 0.001 in (5 × 5, 2)4. 

As is shown in Theorem 2, the difference between the two consecutive iteration results of AMIL 

algorithm will approximately point to the convergence solution when the current precoding and decoding 

matrices are sufficiently close to their convergence values. In DQO algorithm, the interference leakage 

is employed to be a measure of the distance between the current point and the convergence point, and 

line search is started when the interference leakage is smaller than a preseted threshold th1. If th1 is set 

to be too large, the generated direction does not point to the convergence value. If th1 is set to be too 

small, the line search procedure cannot accelerate the convergence rate in time, and the effectiveness of 

DQO algorithm is degraded. 

As is shown in Figures 2 and 3, th1 = 0.1 has better performance than the too large value 1 and the 

too small value 0.001, which accords with the analysis above. Therefore, the parameter th1 is set to be 

0.1 in the following simulations. 
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Figure 3. Convergence curves of the average interference leakage of DQO algorithm with 

th1 = 1, 0.1, 0.01, and 0.001 in (10 × 10, 1)19. 

The parameter interval controls the frequency of executing line search. The parameter cannot be set 

to be too small. This can be explained by the fact that Equations (46) and (47) can be attained only when 

i1 in Equation (45) is large enough. Therefore, it has to take several UV and VU steps before 1
1
iκ  in 

Equation (45) takes the dominant proposition so that Equations (35) and (36) hold. 

The performance of DQO algorithm with different interval for the (5 × 5, 2)4 and (10 × 10, 1)19 

channels is evaluated in Figures 4 and 5, respectively. The parameter th1 is preseted as 0.1, and interval 

is chosen to be 1, 2, 10, 15, and 20. The curves with interval = 1 converge slowly, which verifies the 

analysis above. On the other hand, when interval is large enough, the convergence curves are very close 

to each other. As interval = 20 has better performance than the others in Figure 4, interval is chosen to 

be 20 in the following simulations. 

 

Figure 4. Convergence curves of the average interference leakage of DQO algorithm with 

interval = 1, 2, 10, 15, and 20 in (5 × 5, 2)4. 
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Figure 5. Convergence curves of the average interference leakage of DQO algorithm with 

interval = 1, 2, 10, 15, and 20 in (10 × 10, 1)19. 

5.2. Comparison of Different Algorithms 

In this subsection, the performance of the DQO and AMIL algorithms is compared and analyzed.  

The parameters for the DQO algorithm are set as th1 = 0.1 and interval = 20. The interference leakage 

with respective to iterations for one realization of randomly generated channel coefficients in the  

(5 × 5, 2)4 channel is shown in Figure 6, which provides us the overall effectiveness of DQO algorithm. 

As reflected in the figure, the interference leakage of the two algorithms remains the same before 168 

iterations since they employ the same VU and UV steps. When the interference leakage is smaller than 

threshold th1, DQO algorithm begins to perform the LS procedure, and a step-like decrease in 

interference leakage can be observed. After 350 iterations, DQO algorithm reaches the interference 

leakage of 1.2 × 10−4, which is one order lower than that of AMIL algorithm. The difference of the 

interference leakage becomes larger as the iterations increase, and DQO algorithm can reach the level 

which is 3 orders lower than that of AMIL algorithm. Therefore, the DQO algorithm can reach the same 

level of interference leakage as the traditional AMIL method with much fewer iterations. 

 

Figure 6. Convergence curves of the interference leakage for one realization of randomly 

generated channel coefficients in (5 × 5, 2)4. 
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As iterations cannot represent the complexity of the two algorithms sufficiently, the average 

performance of the two algorithms is evaluated in terms of execution time in the following simulations. 

Average interference leakage as well as sum rate in (5 × 5, 2)4 and (10 × 10, 1)19 channels are considered. 

The convergence of average interference leakage for (5 × 5, 2)4 channel is illustrated in Figure 7.  

 

Figure 7. Convergence curves of the average interference leakage in (5 × 5, 2)4. 

From the results, it can be seen that the DQO algorithm can suppress the interference leakage to  

6.8 × 10−5 while the AMIL algorithm can only reach the level of 1.2 × 10−3 at 1 s. The difference of the 

average interference leakage between them increases with time, and the DQO algorithm outperforms the 

AMIL algorithm with three orders lower at 2 s. The convergence of the average sum rate with  

SNR = 40 dB for (5 × 5, 2)4 channel is depicted in Figure 8.  

 

Figure 8. Convergence curves of the average sum rate in (5 × 5, 2)4. 
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the same level. Like the (5 × 5, 2)4 case, the convergence curves of average interference leakage as well 

as sum rate for (10 × 10, 1)19 channel are plotted in Figures 9 and 10, respectively. As the number of 

users and antennas has become larger, it requires more iterations as well as computational time to 

suppress the interference leakage and to increase the sum rate. In Figure 9, the DQO algorithm can 

suppress the interference leakage more rapidly than the AMIL algorithm and achieves the interference 

leakage of 5.6 × 10−5 at 60 s, which is one order lower than that of the AMIL algorithm. In particular, 

the AMIL algorithm seems to converge at approximately 60 s while the DQO algorithm has the tendency 

to reach an even lower level of interference leakage afterward. In Figure 10, the average sum rate of the 

DQO algorithm converges much more rapidly than that of the AMIL algorithm during the first 10 s and 

the DQO algorithm achieves a higher average sum rate than the AMIL algorithm. To further compare their 

efficiency, average iterations AMIL and DQO as well as executing time TAMIL and TDQO with th2 = 10−4 

are listed in the cases of different numbers of users and antennas in Table 4. Yetis et al. [32] have 

provided the feasible condition for IA in the (M × N, d)K channel as d ≤ (M + N)/(K + 1), therefore we 

mainly provide the results of the most complex situation when d = (M + N)/(K + 1).  

 

Figure 9. Convergence curves of the average interference leakage in (10 × 10, 1)19. 

 

Figure 10. Convergence curves of the average sum rate in (10 × 10, 1)19. 
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The convergence rate and complexity of the algorithms can be compared by the iterations and 

computational time which are required to reach a certain level of interference leakage. As is shown in 

Table 4, the iterations and executing time of the DQO algorithm are only 22%–33% and 23%–33% of 

those of the AMIL algorithm, respectively. Therefore, simulations above confirm that DQO algorithm 

can converge faster than the AMIL algorithm and save nearly 2/3 of the computational complexity. 

Table 4. Comparison between AMIL and DQO algorithms in (M × N, d)K. 

(M × N, d)K AMIL DQO DQO/ AMIL TAMIL(s) TDQO(s) TAMIL/TDQO

(6 × 6, 1)11 3.38 × 103 7.76 × 102 0.22 17.12 3.89 0.23 
(6 × 6, 2)5 2.63 × 103 8.13 × 102 0.31 4.09 1.27 0.31 
(7 × 7, 1)13 4.93 × 103 1.27 × 103 0.25 35.75 9.03 0.25 
(7 × 7, 2)6 4.60 × 103 1.47 × 103 0.32 9.94 3.18 0.32 
(8 × 8, 1)15 7.23 × 103 1.74 × 103 0.24 64.26 15.35 0.24 
(8 × 8, 2)7 6.16 × 103 2.06 × 103 0.33 17.75 5.91 0.33 
(9 × 9, 1)17 8.35 × 103 2.04 × 103 0.24 99.33 24.16 0.24 
(9 × 9, 2)8 8.12 × 103 2.24 × 103 0.27 30.61 8.41 0.27 

(10 × 10, 1)19 9.44 × 103 2.52 × 103 0.27 140.12 36.71 0.27 
(10 × 10, 2)9 8.94 × 103 2.35 × 103 0.26 42.49 11.10 0.26 

6. Conclusions and Future Work 

In this paper, the properties of the traditional AMIL algorithm for IA have been studied. It has been 

found that if the AMIL algorithm can converge to a point where the interference leakage is very small, 

there exist fixed linear transformations TV and TU that exert on the deviations when the current point is 

sufficiently close to the convergence value. Particularly, successive exertions of the transformations on 

the deviations will lead to an interesting property that the difference of the consecutive iterations of 

AMIL algorithm will approximately point to the convergence value. Based on this discovery, a rapid 

convergent low-complexity minimization interference leakage algorithm, namely the DQO algorithm, 

has been proposed to speed up the convergence rate by employing optimal line search procedure. The 

direction for LS is generated by subtracting the consecutive iteration results of the AMIL algorithm, and 

the optimal step size can be determined analytically by optimizing a quartic function. Complexity 

analysis of the DQO and AMIL algorithms has been provided, and simulation results have shown that 

the DQO algorithm can reduce the number of iterations and execution time significantly under the same 

interference leakage and sum rate conditions. In the future, we will focus on extending the proposed 

algorithm to many more scenarios, such as systems with imperfect CSI [33,34], cooperative 

communications [35], and so on. 
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