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Abstract: Air temperature (AT) is an extremely vital factor in meteorology, agriculture,
military, etc., being used for the prediction of weather disasters, such as drought, flood,
frost, etc. Many efforts have been made to monitor the temperature of the atmosphere,
like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized
AT sensors, they cannot be deployed within a large spatial density. A novel method named
the meteorology wireless sensor network relying on a sensing node has been proposed for
the purpose of reducing the cost of AT monitoring. However, the temperature sensor on
the sensing node can be easily influenced by environmental factors. Previous research has
confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this
paper presents a method to decrease the error of sensed AT, taking SR into consideration.
In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the
numerical correspondence between AT error (ATE) and SR. This corresponding relation was
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used to calculate real-time ATE according to real-time SR and to correct the error of AT in
other months.

Keywords: air temperature; solar radiation; wireless sensor networks; data correction

1. Introduction

Meteorology monitoring is highly required in many domains, e.g., weather forecasting, agricultural,
traffic [1], etc. Unexpected meteorological calamities, such as floods, bring much damage to our
community and ourselves. Thus, it is imperative for us to take drastic measures by monitoring
meteorological factors and forecasting weather disasters.

The prosperity of sensors and automated devices has fostered the feasibility of automatic
meteorological observation [2] applications, in which air temperature (AT) [3,4] is regarded as one of
the most significant meteorological factors [5].

In recent years, numerous approaches have been presented for AT monitoring, in which a conventional
scheme, called automatic weather stations (AWS) [6–8], has been applied widely in the meteorological
departments all over the world. Based on the use of meteorological temperature sensors, accurate AT
data can be collected. However, a meteorological sensor costs too much to be applied in a large-scale
scenario. HMP45D is a typical AT sensor used in AWS with its price ranging from 500 to 600 dollars.
Plus, an AWS will cost more to guarantee the accuracy of AT sensing due to the requirement of
additional facilities, such as a thermometer screen. It accordingly becomes challenging when applying a
high-density AWS system for weather disaster monitoring.

In order to reduce the cost and to advance the flexibility of AT observation, wireless
sensor networks (WSNs) [9–13] have been take into consideration. During the last decade,
WSNs have been broadly utilized in various fields, including air temperature observation [8],
water monitoring [14–17], forest monitoring [18,19], industrial monitoring [20,21], agriculture
monitoring [22,23], battlefield surveillance [24,25], intelligent transportation [26,27], smart homes [28],
animal behavior monitoring [29,30] and disaster prevention [31,32]. The high flexibility of WSNs makes
it possible to deploy nodes swiftly in a disaster spot, and the low cost of the sensing node provides the
possibility to control the cost of AT monitoring at an acceptable level.

Due to these advantages of WSNs, we established a meteorological WSN using our own sensing
nodes to collect data of AT and other meteorological factors in a practical environment, involving our
campus and other weather stations of meteorological departments. These exquisite sensing nodes can be
deployed in a variety of locations without additional infrastructure. In addition, as a low-cost temperature
sensor, SHT15 [33] is embedded in our sensing node for both air relative humidity and temperature
sensing, which successfully reduces the cost of the specialized temperature sensor from over $500 to $5.

At the same time, however, the accuracy of SHT15 is influenced by numerous external factors, such
as solar radiation (SR) [34–36], precipitation [3,37], wind [37], etc. Deviations [38] happen between AT
values collected by the sensing node (NodeAT) and actual ones, which require correction.
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Early work in [1] has given an approach to improve the accuracy of AT collected by SHT15 in a
WSN. The method depends on the principle of a back propagation (BP) neural network [1,5,39]. Having
improved data accuracy, this method suffers from the establishment of a data correction model by training
data for days under similar weather conditions [40], which cannot fit all seasons or weather conditions.
Even in the same month, it has to build different data correction models corresponding to the weather
conditions [1]. Real-time data correction becomes a challenge via that approach.

Previous studies have shown that AT is determined by many factors [3,41]. Solar radiation, surface net
radiation, advection and heat storage are related to the variation of AT, but SR drives other components
as a forcing factor and is found to be closely correlated with AT, which therefore is considered to be the
key factor in our correcting method of AT.

There are various radiometric quantities [34,42,43] to represent SR (refer to Appendix A.1), but we
only adopt irradiation [44,45] as the measurement of SR in this work. Irradiation refers to the quantity of
solar energy arriving at a surface during a given period of time, and the unit of irradiation is kJ·m−2·h−1

or MJ·m−2·day−1. Radiation is employed in a generic sense, and it stands for irradiation in this paper.
Furthermore, There are two kinds of radiation that reach the Earth from the Sun through the

atmosphere (refer to Appendix A.2). One is direct radiation, and the other is diffuse radiation. Direct
radiation [44] is the radiation arriving on the ground directly in line of the solar disk, which is strong
under cloudless skies and low under cloudy skies. Diffuse radiation [44] is the solar radiation arriving
at the Earth’s surface scattered by air molecules, aerosols and clouds. The quantity of total direct and
diffuse radiation reaching the ground is very vital to the temperature variation on the Earth’s surface.
The sensing node used in the project suffers not only from direct radiation, but also diffuse radiation
due to the outdoor arrangement. Thus, it is necessary to take both direct and diffuse radiation into
account in the experiment. Global solar radiation [44] is the sum of the direct plus diffuse radiation on a
horizontal surface. It can be used to describe the total radiation and is measured by pyranometers, which
are radiometers with hemispherical fields of view. The data of SR collected by AWS (AwsSR) and used
in this experiment is hourly global solar irradiation. No matter how the air condition is, global solar
radiation is the real radiation, which the pyranometer measures and from which the sensing node suffers.

Besides, the standard data of air temperature and solar radiation used in this study are all collected
by the AWS at Nanjing University of Information Science and Technology (NUIST). This AWS was
founded according to the AWS construction technical standard and has a national base station Number
59606. The measurements in the AWS also follow the requirements of the World Meteorological
Organization (WMO) and can be treated as correctly measured data. What is more, the sensing node
with ID Number 105 used in this study is placed in the AWS. Geographically, the location of node
No. 105 is close to the pyranometer, which is used to sense solar radiation in the AWS, so we can treat
solar radiation collected by the AWS as the same as that from which the node suffered. Hence, AT
collected by the AWS (AwsAT) can be treated as corrected AT, and AwsSR can be treated as the standard
SR in the experiment.

According to the figures of NodeAT, AwsAT and AwsSR on the 10th, 13th, 25th and 27th day with
different weather conditions in May, NodeAT is closely related to AwsSR, as is shown in Figure 1.
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It is quite reasonable to take SR into account in the research of NodeAT correction. In this work, we
found the relevance among NodeAT, AwsAT and AwsSR and proposed an original approach to reduce
the error of NodeAT based on the value of SR.

This work is motivated by our real-time [11] meteorological factor collecting project at NUIST. We
launched an ongoing WSN consisting of dozens of sensing nodes continuously collecting scientific data.
In this application, sensing nodes have to sustain solar radiation, for they are arranged in an open area.
Therefore, it is urgent to discover the relation among NodeAT, AwsAT and AwsSR and to invent an
effective method to correct the value of NodeAT.

Figure 1. Air temperature (AT) values collected by the sensing node (NodeAT), AT collected
by the automatic weather station (AWS) (AwsAT) and AwsSR (SR, solar radiation) sensed
directly by different kinds of sensors on four days in May. (a) Thundershowers with
early/moderate rain late on 10 May 2014; (b) cloudy on 13 May 2014; (c) showers on
25 May 2014; (d) clouds that are early/clearing late on 27 May 2014. The SRs in (a,c) were
weak compared to the SRs in (b,d), which were in fine weather. Though there are different
weather conditions, the trend of NodeAT is similar to AwsSR. Deviations between NodeAT
and AwsAT are increasing or decreasing along with the rise or reduction of AwsSR.

2. Methodology

2.1. Overview

There are two key parts in our methodology: one is data processing and analyzing, and the other one
is data correcting.

In the first part, the data of NodeAT, AwsAT and AwsSR are processed and analyzed to get
intermediate data, like NodeATinterp (interpolated NodeAT), NodeATinterpshift (shifted NodeATinterp),
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etc. These intermediate data are used as the medium to achieve the functional relationship of AT error
(ATE) and SR and to get the ATE-SR function eventually.

Then, in the second part, the errors of NodeAT are corrected by using the ATE-SR function and
AwsSR. There are three key correcting procedures: (1) correcting the time coordinates of NodeAT to
eliminate the time phase difference between NodeAT and AwsAT; (2) calculating the theoretical AT error
through the ATE-SR function according to real-time AwsSR; and (3) subtracting the AT error acquired
in (2) from the AT data obtained in (1) to achieve the corrected AT.

2.2. Terms

In order to make it convenient to state the method, several accessible abbreviations of terms were
defined in this paper, as is presented in Table 1.

Table 1. All terms involved in the manuscript have two forms. One is the generic form, as
is listed in the column “Abbreviations”, which is used generally in the text. The other is the
mathematical form, as is listed in the column “Mathematical Forms”, which is used to state
the course of the methodology. Terms with the suffix interp mean that the data are processed
by interpolation and with the suffix shift mean that the data are processed by time shifting.
NodeAT, AwsAT, AwsSR, NodeATinterp, AwsATinterp, AwsSRinterp, NodeATinterpshift,
AwsSRinterpshift, NodeATE, NodeATtime, AwsATtime, AwsSRtime and Interptime are
involved in the part for the data preprocessing and analysis. NodeAT, AwsSR, NodeATshift,
AwsSRshift, CalcATE and NodeATcorr are used in the part for data correction.

Descriptions Abbreviations Mathematical Forms
AT collected by Node NodeAT Tnode

AT collected by AWS AwsAT Taws

SR collected by AWS AwsSR Raws

Interpolated NodeAT NodeATinterp TInode

Interpolated AwsAT AwsATinterp TIaws

Interpolated AwsSR AwsSRinterp RIaws

Shifted NodeATinterp NodeATinterpshift TISnode

Shifted AwsSRinterp AwsSRinterpshift RISaws

Shifted NodeAT NodeATshift TSnode

Shifted AwsSR AwsSRshift RSaws

Deviation between NodeATinterpshift and AwsATinterp NodeATE TEnode

ATE Calculated by using ATE-SR function CalcATE TEcalc

Corrected NodeAT NodeATcorr TCnode

sample points of time corresponding to NodeAT NodeATtime ttnode

sample points of time corresponding to AwsAT AwsATtime ttaws

sample points of time corresponding to AwsSR AwsSRtime traws

sample points of time corresponding to interpolated data Interptime tinterp
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2.3. Framework

There are two key steps in the part for the data preprocessing and analysis and three steps in the part
for the data correction, as is depicted in Figures 2 and 3.

Tnode

Taws

Raws

Cubic Spline

Interpolation

TInode

TIaws

RIaws S = Shift(x)

TISnode

RISaws

TEnode
Error

Calculation

S = Shift(x)

ATE-SR

Table

Statistical

Analysis

Data Intput Data Output

Err = A(r)

Data Preprocessing Statistical Analysis

Figure 2. The procedure of data preprocessing and analysis.

Tnode

Raws

TSnode

RSaws

TCnode

S = Shift(x) TEcalc

Err = A(r)

TCnode = TSnode - 

TEcalc

Data Intput Data Output

Time Correction Value Correction

Error Calculation

Figure 3. The procedure of data correction.

In Figure 2, cubic spline interpolation is applied to process raw data Tnode, Taws and Raws and to
get interpolated data TInode, TIaws and RIaws. Then, the time coordinates of TInode and RIaws are
shifted to get TISnode and RISaws. TISnode and TIaws are used to compute TEnode. Lastly, an
ATE-SR tabular function Err = A(r) is acquired by the correlation analysis of TEnode and RISaws.

In Figure 3, TSnode is obtained by shifting the time coordinate of Tnode to decrease the time
deviation between Tnode and Taws. RSaws is also obtained by shifting the time coordinate of Raws
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to fit the time coordinate of TSnode. Then, TEcalc is calculated by using RSaws as the parameter of
the ATE-SR function Err = A(r). Lastly, TSnode and TEcalc are used to calculate TCnode.

2.4. Data Preprocessing

2.4.1. Interpolation

Due to the different sampling frequencies of NodeAT, AwsAT and AwsSR, we use the methods of
interpolation to regulate these data at the same time sampling points. It is justified to describe the
principle of interpolation used in our work by referring to Appendix B.1. Moreover, the cubic spline
function is elected as the interpolation function to process raw data in our experiment. The advantages
of the cubic spline function can be seen in Appendix B.2.

Suppose that the function Tnode = f(ttnode) is known at the M + 1 points (ttnode0, Tnode0), . . . ,
(ttnodeM , TnodeM), where the values ttnodek are spread out over the interval [a, b] and satisfy:

a ≤ ttnode0 < ttnode1 < · · · < ttnodeM ≤ b and Tnodek = f(ttnodek)

Then, a function TInode = F (tinterp) is established at the L + 1 points (tinterp0, Tnode0), . . . ,
(tinterpL, TnodeL), where the values tinterpk are spread out over the same interval [a, b] of ttnodek,
but satisfy:

a ≤ tinterp0 < tinterp1 < · · · < tinterpL ≤ b and TInodek = F (tinterpk)

F (tinterp) is the piecewise polynomial constructed by the function of cubic spline interpolation and
is used to approximate f(ttnode) over the entire interval [a, b].

Similarly, functions TIaws = G(tinterp), RIaws = H(tinterp) can be established at the L + 1

points of time tinterp ∈ Φ = {tinterp0, tinterp1, . . . , tinterpL} ⊆ [a, b] in order to approximate
corresponding functions Taws = g(ttaws), Raws = h(traws). Then, the sampling points of TInode,
TIaws and RIaws are unified.

The cubic spline interpolation applied in our practical work is a good method to process row data of
AT and SR, which can be fortunately acquired in MATLAB as a built-in function:

vq = interp1(x, v, xq)

In this function, it returns interpolated values of a 1D function at specific query points using spline
interpolation. Vector x contains the sample points, and v contains the corresponding values v(x).
Vector xq contains the coordinates of the query points [46]. For example, we can get TInode by using
this function:

TInode = interp1(ttnode, Tnode, tinterp)

2.4.2. Time Shift

Due to the outdoor arrangement of nodes, they were affected by radiation, involving solar
(or short-wave) radiation [35], terrestrial (or long-wave) radiation [47], atmospheric radiation [47],
etc. Additionally, the integrated sensor in the sensing node can be influenced by solar radiation by a
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significant measure. The trend of NodeAT and AwsSR in Figure 1 also shows that NodeAT changes along
with AwsSR. However, specialized temperature sensors in the thermometer do not suffer from solar
radiation. AwsAT, which is sensed by the specialized sensors, can be regarded as the actual temperature.
Moreover, AT is an indicatrix of the energy of the atmosphere, and the atmospheric energy mostly
derives from solar radiation. Due to the duration of the transmission of energy from solar radiation
to the atmosphere, there is a sensing delay between the low-cost sensor and the specialized sensor. In
conclusion, the trend of NodeAT is synchronized with AwsSR, but there is a phase difference between
NodeAT and AwsAT. Hence, it is imperative for us to transform the time coordinate of TInode and
RIaws to fit TIaws.

Suppose that the function S = Shift(x) is used to transform the time coordinate. Then, there is no
doubt of getting the function TISnode = FS(t) by the transformation as follows:

TISnode = Shift(TInode)

= Shift(F (t))

= FS(t), t ∈ Φ

Similarly,

RISaws = HS(t), t ∈ Φ

2.4.3. Error Calculating

The data processing executed above makes it possible to calculate the authentic deviation between
NodeAT and AwsAT. TEnode can be obtained as follows:

TEnode = TISnode− TIaws

= FS(t)−G(t)

= E(t), t ∈ Φ

2.5. Statistical Analysis

Comparing TEnode and RISaws, we can find that there is a strong relevance between them.
Therefore, it is conceivable to gain a numerical correspondence between them.

The corresponding relation of ATE and SR is established by using statistical analysis. Theoretically,
every value of SR should map a single value of ATE, but there are several ATE values corresponding
to one SR value in the real experiment. Thus, it is necessary to do some statistical analysis to obtain
a single valued mapping from SR to ATE. We calculated the average of ATE corresponding to every
possible value of SR (from 0.01 to 3.60 increasing by 0.01) in May and acquired a tabulation between
ATE and SR. Then, the ATE-SR function Err = A(r) at r ∈ Ψ = {0.01, 0.01, . . . , 3.60} is constituted
based on this tabulation, where r is every possible value of SR in May and Err is the homologous ATE.
The real-time ATE can be calculated by using real-time SR as the input parameter r in Err = A(r).
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2.6. Correction

2.6.1. Time Correction

The time coordinate of Tnode and Raws can be corrected by using function S = Shift(x), and
TSnode and RSaws can be achieved simultaneously. Thus, the trends of TSnode, RSaws and Taws

are synchronal to each other.

2.6.2. Error Calculation

The value of TEcalc can be calculated according to the value of RSaws, using the ATE-SR function
Err = A(r):

TEcalc = A(RSaws)

2.6.3. Value Correction

It is possible to get the corrected AT TCnode:

TCnode = TSnode− TEcalc

= TSnode− A(RSaws)

3. Experimental Section

3.1. Experiment Foundation

We designed the sensing nodes and carried out the ongoing WSN of the meteorological factor
monitoring project by using these nodes. Our sensing nodes were designed based on the technology
of WSN, on-board sensor, ZigBee, integrated circuit, etc. The sensing node is also equipped with a solar
panel to guarantee the supply of electric power. The sensing node can generate electricity for its battery
pack in the daytime and consume reserved electric energy in the evening. That is also the reason why we
tend to arrange the node in open air. We have deployed several meteorological WSNs in Beijing, Xi’an,
Wuhan, Changsha and Nanjing in China. We can use the on-board temperature and relative humidity
sensor integrated in the node to sense real-time AT. Besides the on-board sensor, the node also can
be connected to specialized meteorological sensors, like an AT sensor, anemometer, pyranometer, etc.,
to collect different kinds of meteorological factors. Figure 4a presents the internal circuit structure of
the sensing node, which contains the power module, on-board sensor, interface circuits, etc. We adopt
SHT15 as the on-board temperature sensor, which is integrated on the bottom circuit board, as is shown
in Figure 4b. In Figure 4a,b, the universal interfaces in the node are highlighted by the big ellipses. It is
convenient for users to connect external meteorological sensors though these ports. However, for saving
on the costs of the project, we adopt the on-board sensor to collect AT in most sensing nodes.

NodeAT employed in this experiment was sensed by the on-board temperature sensor in node No. 105.
This node was contained in the wireless meteorological sensing network deployed in the campus of
NUIST, as is shown in Figure 5a.
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The numerical labels marked on the map represent every node deployed in the campus. We circle the
label of node No. 105 with the small ellipse in Figure 5a. This node was deployed in the AWS of NUIST.
Owing to the SR sensing work being conducted with the AWS, we can apply AwsSR as the same one
as node No. 105 suffered. Figure 5b shows a single node that just collects AT by using the on-board
temperature sensor. The node in Figure 5c is connected to the anemometer, pluviometer and other
meteorological sensors to collect numerous varieties of meteorological factors. This meteorological
WSN at NUIST has been set up since August 2013 and has been collecting meteorological data
continuously. There are sufficient data for us to execute the experiment.

(b)(a)

Figure 4. Sensing nodes and the deployment at Nanjing University of Information Science
and Technology (NUIST). (a) The circuit board inside of the sensing node; (b) the bottom
circuit board containing the on-board sensor SHT15 and providing interface circuits for
external sensors.

(c)

(b)

(a)

Figure 5. Sensing nodes and the deployment at NUIST. (a) The state of the nodes’
deployment; (b) a sensing node collecting AT through the on-board sensor; (c) a sensing
node connected to several meteorological sensors.
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This research also relies on the standard data supply of the AWS at NUIST. The AWS at NUIST
(depicted in Figure 6a) is a national base station, whose number is 59606. This weather station was
founded according to the AWS construction technical standard. Thus, meteorological data applied to it
can be treated as the standard data. It is equipped with all the infrastructure demanded by a standard
weather station. The meteorological AT sensor used in this AWS is HMP45D (Figure 6b), which is
placed in the thermometer screen to avoid solar radiation. The pyranometer TBQ-2-B (Figure 6c) is
applied in the AWS to sense global SR.

In the actual experiment, there are three kinds of raw data acting as the basic data: (1) NodeAT sensed
by SHT15 in node No. 105; (2) AwsAT sensed by the HMP45D in the AWS; and (3) AwsSR sensed by
the TBQ-2-B in the AWS. We first carried out the course of data preprocessing and analysis in May and
obtained ATE-SR tabulation, then accomplished the correction of NodeAT in other months and, lastly,
did a performance evaluation to evaluate the efficiency of the method. The analysis work was based
on the data of NodeAT, AwsAT and AwsSR collected directly by sensors in May. After this procedure,
ATE-SR tabulation was established and was used to correct NodeAT sensed by node No. 105 in June to
December, employing AwsSR as an input parameter.

(c)(b)

(a)

Figure 6. National weather station at NUIST, China, No. 59606. (a) Panorama of the AWS;
(b) the meteorological temperature sensor (HMP45D) in the thermometer screen in the AWS;
(c) the pyranometer (TBQ-2-B) in the AWS.
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3.2. Data Process and Correction

All of the meteorological data involved in this research in May had to be dealt with to fulfill the course
of data preprocessing and analysis. However, we only took one day (13 May 2014) to demonstrate the
course of data processing.

As is symbolically illustrated in Figure 7, the sample points of NodeAT, AwsAT and AwsSR are
different from each other. It is difficult for us to calculate the deviation between NodeAT and AwsAT.
Moreover, the accumulative time interval of AwsSR is 60 min. The sample points of AwsSR are too few
to accomplish the analysis. In order to carry out the statistical analysis between ATE and SR, we must
acquire more sample points of SR.

Figure 7. Raw data of NodeAT, AwsAT and AwsSR sensed directly by sensors on
13 May 2014.

Thus, cubic spline interpolation was used to unify the data resolution and to add sample points of
NodeAT, AwsAT and AwsSR. As is depicted in Figure 8, NodeATinterp, AwsATinterp and AwsSRinterp
were acquired with an identical time coordinate. Then, we obtained the original ATE between
NodeATinterp and AwsATinterp (NodeATEori) to find the correlation between ATE and SR.

Figure 8. AT and SR after interpolating on 13 May 2014. NodeATinterp, AwsATinterp
and AwsSRinterp are interpolated data corresponding to NodeAT, AwsAT and AwsSR.
NodeATEori is the deviation between NodeATinterp and AwsATinterp.
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However, as we can see in Figure 8, there is no obvious correlation between NodeATEori and
AwsSRinterp. What is more, the values of NodeATEori are not close to zero, while AwsSRinterp are
zero. However, theoretically speaking, the deviations between NodeAT and AwsAT should be zero
when the value of SR is zero, for there is no solar radiation in the evening. For this reason, we tried to
shift NodeATinterp and AwsSRinterp to the future by 60 min to approach AwsATinterp, as is plotted in
Figure 9. It is easy to find that the pattern of NodeATinterpshift gets more correlated to AwsATinterp,
and NodeATE is more relative to AwsSRinterpshift.

In order to make it more visual to observe the effect of shifting, we enlarged the ATE-SR patterns of
Figures 8 and 9 by narrowing the limit of the Y-axis, changed the Y-tick [46] of SR and put them into
one figure. As is displayed in Figure 10, NodeATE, which is obtained after time shifting, changes along
with the trend of SR visibly.

Figure 9. AT and SR after time shifting on 13 May 2014. NodeATinterpshift and
AwsSRinterpshift are shifted data corresponding to NodeATinterp and AwsSRinterp.
AwsATinterp is the interpolated data as before. NodeATE is the deviation between
NodeATinterpshift and AwsATinterp.

Figure 10. Contrast of AT error (ATE) and SR on 13 May 2014. (a) The enlarged ATE-SR
pattern of Figure 8; (b) the enlarged ATE-SR pattern of Figure 9.

Then, the relationship of ATE and SR was acquired by calculating the average value of NodeATE in
May corresponding to every value of SR (from 0.01 to 3.60, increasing by 0.01) using statistical analysis.
The corresponding relation of ATE and SR is presented in Table 2.
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Then, the ATE-SR function Err = A(r) was obtained according to the relationship. Therefore, it is
feasible to work out CalcATE by using the value of SR as a parameter in Err = A(r).

To correct NodeAT, we followed three steps: (1) correcting the time coordinate of NodeAT by
shifting them to the future by 60 min and getting NodeATshift; then (2) calculating CalcATE by
using AwsSRshift as an input parameter in the ATE-SR function; and (3) obtaining the corrected data
NodeATcorr by subtracting CalcATE from NodeATshift.

We used this method to correct NodeAT in June to December in different seasons. As is plotted
in Figures 11 to 17, NodeATcorr approximates AwsAT very well. Obviously, this method is useful to
reduce the data error of NodeAT.

Figure 11. Contrast of NodeAT and NodeATcorr on 4 June 2014 and 9 June 2014.
(a) Original data on 4 June 2014; (b) corrected data on 4 June 2014; (c) original data on
9 June 2014; (d) corrected data on 9 June 2014.

Figure 12. Contrast of NodeAT and NodeATcorr on 4 July 2014 and 7 July 2014.
(a) Original data on 4 July 2014; (b) corrected data on 4 July 2014; (c) original data on
7 July 2014; (d) corrected data on 7 July 2014.
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Table 2. ATE values corresponding to every possible value of SR in May.

SR (MJ·m−2) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
ATE (◦C) 0.01 0.01 0.12 0.18 0.31 0.23 0.39 0.34 0.40 0.37 0.37 0.62 0.42 0.54 0.53 0.72 0.35 0.59 0.79 0.67
SR (MJ·m−2) 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
ATE (◦C) 0.67 0.65 0.74 0.86 0.73 0.92 0.84 0.87 1.16 0.99 0.98 0.72 0.97 0.81 0.92 1.15 1.25 1.10 1.26 1.18
SR (MJ·m−2) 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60
ATE (◦C) 1.13 1.13 1.13 1.61 1.27 1.28 1.55 1.54 1.31 1.51 1.62 1.55 1.41 1.72 1.65 1.51 1.56 1.72 1.31 1.64
SR (MJ·m−2) 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80
ATE (◦C) 1.63 1.63 2.21 1.58 1.72 1.98 1.93 1.88 1.85 1.66 1.74 1.77 1.74 2.13 2.05 2.56 2.02 2.29 2.25 2.14
SR (MJ·m−2) 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
ATE (◦C) 1.86 2.17 2.08 2.48 2.13 2.40 2.30 2.16 2.31 2.53 2.26 2.28 2.33 2.10 2.79 2.02 2.29 2.46 2.36 2.54
SR (MJ·m−2) 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20
ATE (◦C) 2.73 2.15 2.44 2.31 2.82 2.56 2.26 2.26 2.33 2.90 2.83 2.88 2.67 2.92 2.92 2.62 2.74 2.81 2.83 3.05
SR (MJ·m−2) 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40
ATE (◦C) 3.45 2.72 3.03 2.91 2.82 3.38 2.87 2.95 2.81 2.94 2.75 2.89 2.88 3.38 2.98 3.49 3.68 3.36 3.40 3.33
SR (MJ·m−2) 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60
ATE (◦C) 3.20 3.26 3.02 2.98 3.32 3.38 3.27 3.64 3.26 3.58 3.64 3.64 2.99 3.32 3.33 3.71 3.11 3.72 3.34 3.34
SR (MJ·m−2) 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80
ATE (◦C) 3.42 4.02 3.45 4.15 3.77 4.17 3.18 4.11 3.46 3.72 3.28 2.96 2.96 3.78 4.04 4.04 3.78 3.90 3.55 3.81
SR (MJ·m−2) 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00
ATE (◦C) 3.60 3.60 3.60 4.37 4.02 3.66 4.27 3.98 3.55 4.00 4.12 4.12 3.58 3.06 4.02 3.62 4.16 3.47 3.85 4.55
SR (MJ·m−2) 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20
ATE (◦C) 4.16 4.12 3.45 4.29 4.19 4.22 4.11 4.24 4.49 3.43 4.80 4.44 3.97 3.87 4.20 4.83 4.26 4.64 4.73 4.47
SR (MJ·m−2) 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40
ATE (◦C) 4.56 4.23 4.65 3.97 3.61 4.84 4.10 4.21 4.77 5.05 5.00 3.60 4.72 4.99 3.87 5.08 4.83 4.04 5.08 4.82
SR (MJ·m−2) 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60
ATE (◦C) 4.40 5.14 3.97 4.69 4.62 3.82 4.42 4.91 4.65 5.30 4.98 5.34 5.53 4.62 5.47 5.13 5.07 5.18 5.26 4.34
SR (MJ·m−2) 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80
ATE (◦C) 5.48 4.75 4.88 5.61 5.79 5.16 4.81 4.81 4.78 5.14 5.70 5.15 5.13 5.59 5.72 5.31 5.08 5.07 4.84 5.36
SR (MJ·m−2) 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00
ATE (◦C) 5.40 5.17 5.56 4.90 6.48 5.75 4.98 4.32 5.17 5.07 5.06 5.16 6.06 5.70 6.00 4.61 6.05 5.72 6.04 5.59
SR (MJ·m−2) 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20
ATE (◦C) 6.06 5.17 5.26 6.22 5.52 5.61 5.41 6.11 5.01 5.67 5.47 6.61 5.89 5.39 6.49 6.21 6.60 6.05 5.09 7.38
SR (MJ·m−2) 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40
ATE (◦C) 5.64 5.90 5.82 6.70 5.60 5.54 5.54 5.91 5.49 6.29 4.84 5.37 6.26 4.72 5.93 5.43 5.43 5.60 6.56 5.99
SR (MJ·m−2) 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 3.60
ATE (◦C) 5.76 5.66 6.36 6.50 6.32 6.55 5.48 5.48 6.26 6.26 4.96 4.96 4.96 6.36 5.23 5.78 5.78 5.18 6.32 ////
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Figure 13. Contrast of NodeAT and NodeATcorr on 8 August 2014 and 10 August 2014.
(a) Original data on 8 August 2014; (b) corrected data on 8 August 2014; (c) original data
on 10 August 2014; (d) corrected data on 10 August 2014.

Figure 14. Contrast of NodeAT and NodeATcorr on 3 September 2014 and 28 September
2014. (a) Original data on 3 September 2014; (b) corrected data on 3 September 2014;
(c) original data on 28 September 2014; (d) corrected data on 28 September 2014.
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Figure 15. Contrast of NodeAT and NodeATcorr on 2 October 2014 and 19 October 2014.
(a) Original data on 2 October 2014; (b) corrected data on 2 October 2014; (c) original data
on 19 October 2014; (d) corrected data on 19 October 2014.

Figure 16. Contrast of NodeAT and NodeATcorr on 11 November 2014 and 22 November
2014. (a) Original data on 11 November 2014; (b) corrected data on 11 November 2014;
(c) original data on 22 November 2014; (d) corrected data on 22 November 2014.
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Figure 17. Contrast of NodeAT and NodeATcorr on 7 December 2014 and 21 December
2014. (a) Original data on 7 December 2014; (b) corrected data on 7 December 2014;
(c) original data on 21 December 2014; (d) corrected data on 21 December 2014.

3.3. Performance Evaluations

We calculated several kinds of statistical characterizations to evaluate the performance of this
correcting method. Maximal and mean error and the standard deviation of error were computed to
estimate the correcting efficiency of AT error, and the correlation coefficient was given to show the
degree of correlation between NodeAT and AwsAT in different correcting phases.

Error correcting efficiency can be obtained by following equation:

errorCorrectEfficiency =
errorOriginal − errorCorrected

errorOriginal
× 100%

To make the evaluation more objective, we used the absolute value of error to calculate the maximal
error and mean error, and the applied error contains a negative value to calculate the standard deviation.

As we can see in Tables 3 and 4, the values of maximal error and mean error are decreasing
progressively along with the correcting course. Comparing these two statistical characterizations before
shifting with these after shifting, we can find that the process of time shifting can reduce some error.
This means that time correction is effective to reduce some of the error. More values of the error are
cut down by the uppermost value correction. Finally, the error had been reduced largely by these two
correcting process.
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Table 3. Maximal absolute error in different correcting phases.

Maximal Absolute Error
Date Original Data Time Shifted Value Corrected Correcting Efficiency

4 June 2014 7.54 6.00 2.35 69%
9 June 2014 8.13 6.76 2.00 75%
4 July 2014 2.83 2.33 0.70 75%
7 July 2014 9.04 7.14 3.32 63%

8 August 2014 2.07 1.37 0.54 74%
10 August 2014 7.05 6.40 2.53 64%

3 September 2014 6.21 5.01 2.02 67%
28 September 2014 8.45 7.49 3.16 63%

2 October 2014 5.92 4.62 1.42 76%
19 October 2014 8.64 7.07 3.52 59%

11 November 2014 6.35 4.72 2.05 68%
22 November 2014 7.96 6.76 3.77 53%

7 December 2014 6.56 5.26 1.89 71%
21 December 2014 5.76 5.16 2.09 64%

Average 6.61 5.44 2.24 66%

Table 4. Mean absolute error in different correcting phases.

Mean Absolute Error
Date Original Data Time Shifted Value Corrected Correcting Efficiency

4 June 2014 2.78 2.12 0.51 82%
9 June 2014 2.81 2.35 0.42 85%
4 July 2014 0.71 0.62 0.19 73%
7 July 2014 2.86 2.42 0.82 72%

8 August 2014 0.67 0.62 0.25 62%
10 August 2014 2.08 1.83 0.54 74%

3 September 2014 1.62 1.50 0.31 81%
28 September 2014 2.41 1.99 0.64 73%

2 October 2014 1.85 1.37 0.37 80%
19 October 2014 2.16 1.72 0.59 73%

11 November 2014 1.83 1.28 0.49 73%
22 November 2014 1.97 1.55 0.67 66%

7 December 2014 1.95 1.33 0.53 73%
21 December 2014 1.80 1.37 0.60 67%

Average 1.96 1.58 0.50 74%

Table 5 presents the standard deviation of error on every whole day. The values of the standard
deviation are also decreasing progressively along with every step of correction.
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Table 5. Standard deviation of the error in different correcting phases.

Standard Deviation of Error
Date Original Data Time Shifted Value Corrected Correcting Efficiency

4 June 2014 3.05 2.30 0.66 78%
9 June 2014 3.23 2.52 0.55 83%
4 July 2014 0.89 0.66 0.23 74%
7 July 2014 3.07 2.54 0.99 68%

8 August 2014 0.50 0.32 0.18 63%
10 August 2014 2.45 1.99 0.52 79%

3 September 2014 1.93 1.52 0.42 78%
28 September 2014 3.21 2.46 0.74 77%

2 October 2014 2.08 1.50 0.42 80%
19 October 2014 2.77 2.08 0.75 73%

11 November 2014 2.38 1.66 0.64 73%
2 November 2014 2.79 2.21 1.01 64%
7 December 2014 2.66 1.91 0.76 71%
21 December 014 2.30 1.82 0.81 65%

Average 2.38 1.82 0.62 74%

Table 6. Correlation coefficient between NodeAT and AweAT in three different
correcting phases.

Correlation Coefficient
Date Original Data Time Shifted Value Corrected

4 June 2014 0.8221 0.9496 0.9870
9 June 2014 0.7518 0.9037 0.9870
4 July 2014 0.9187 0.9483 0.9910
7 July 2014 0.8227 0.9487 0.9785

8 August 2014 0.8729 0.9605 0.9784
10 August 2014 0.7828 0.9252 0.9794

3 September 2014 0.8209 0.9666 0.9531
28 September 2014 0.8033 0.9506 0.9859

2 October 2014 0.8575 0.9779 0.9879
19 October 2014 0.7837 0.9338 0.9777

11 November 2014 0.8390 0.9666 0.9871
2 November 2014 0.8303 0.9491 0.9791
7 December 2014 0.8393 0.9709 0.9860

21 December 2014 0.8663 0.9700 0.9696

Average 0.8294 0.9515 0.9806

In Table 6, we present the Pearson product-moment correlation coefficient between NodeAT and
AweAT in three different phases. In statistics, the Pearson product-moment correlation coefficient
(sometimes referred to as the PPMCC, or PCC, or Pearson’s r) is a measure of the linear correlation
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(dependence) between two variables X and Y , giving a value between +1 and −1 inclusive, where 1 is
the total positive correlation, 0 is no correlation and −1 is total negative correlation [48]. It is widely
used in the sciences as a measure of the degree of linear dependence between two variables and can be
used to measure the correlation between NodeAT and AwsAT. As we can see in the column “Original
Data” in Table 6, the correlation coefficients between uncorrected NodeAT and standard AwsAT are not
high. This means a low correlation degree between unprocessed data and standard data. However, the
coefficient was improved after time shifting, and further advanced after the process of value correcting.
Eventually, there is a higher correlation coefficient between corrected NodeAT and standard AwsAT.

4. Conclusions

In this paper, an effective error correcting method for NodeAT is presented. According to the results,
more than 60% of the error of NodeAT can be corrected by using this approach, and it can be applied to
the real-time AT monitoring system in a practical scenario.

This study has confirmed that SR plays an extremely vital role in the correcting scheme of NodeAT.
However, the ATE-SR function, which is based on discrete data, potentially can be perfected. What is
more, this method has to rely on the data of SR sensed by a pyranometer. The cost of SR sensing is still
high. In order to reduce the expense of our project further, the data of the voltage of the solar cell panel
equipped in the sensing node will be considered to replace the data of SR in the future.
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Appendix

A. Radiation and Solar Radiation

A.1. Radiation

Solar radiation arriving on a surface is variably termed irradiation, insolation, radiation, irradiance,
radiance, intensity, radiant flux, radiant flux density, etc. [44]. Irradiation and insolation are used
interchangeably in this paper, both referring to the quantity of solar energy arriving at a surface during a
given period of time. Literally, irradiation simply refers to radiation arriving at a surface, whether or not
the origin of radiation is the Sun. Irradiance will indicate the rate of solar energy arriving at a surface per
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unit time and per unit area. Irradiance is the same as radiant flux density or flux. Since irradiance will
mean the rate of incident energy, its units will be W·m−2, and the units of irradiation will be kJ·m−2·h−1

or MJ·m−2·day−1. Radiation will be employed in a generic sense, and its meaning should be treated as
irradiation in this paper. Intensity means irradiance from a particular direction and contained within a
unit solid angle. Intensity is expressed in W·m−2·sr−1 on an area normal to the direction of radiation. It
is pertinent to point out that the term “intensity” is often loosely employed. For example, in meteorology,
intensity is used for radiative flux, as well as for the quantity of radiation arriving from all over the sky
dome [44].

A.2. Solar Radiation

The Sun is the star closest to Earth, and its radiant energy is practically the only source of energy
that influences atmospheric motions and our climate [44]. Due to solar radiation emanating from the
Sun being attenuated before reaching the ground, the maximum radiation on the Earth is received under
cloudless and clear sky [44].

When solar radiation enters the Earth’s atmosphere, a part of the incident energy is removed by
scattering and a part by absorption. The scattered radiation is called diffuse radiation. A portion of
this diffuse radiation goes back to space, and a portion reaches the ground. The radiation arriving
on the ground directly in line of the solar disk is called direct or beam radiation [44]. The quantity
of total direct and diffuse radiation arriving at the Earth’s surface is important to the temperature
variation [49] on the ground. However, in order to quantify SR in a horizontal surface, global solar
irradiance has been presented. Global irradiance is the sum of the beam plus diffuse irradiance on
a horizontal surface and can be measured by radiometers with hemispherical fields of view, called
pyranometers [44]. Additionally, global solar irradiation is the integral of solar irradiance in the period
of the given time interval.

B. Interpolation and Spline Functions

B.1. Interpolation

Suppose that the function y = f(x) is known at the N + 1 points (x0, y0), . . . , (xN , yN), where the
values xk are spread out over the interval [a, b] and satisfy:

a ≤ x0 < x1 < · · · < xN ≤ b and yk = f(xk)

A polynomial P (x) of degree N will be constructed that passes through these N + 1 points. In the
construction, only the numerical values xk and yk are needed. Hence, the higher-order derivatives are
not necessary. The polynomial P (x) can be used to approximate f(x) over the entire interval [a, b] [50].

Situations in statistical and scientific analysis arise where the function y = f(x) is available only at
N + 1 tabulated points (xk, yk), and a method is needed to approximate f(x) at non-tabulated abscissas.
When x0 < x < xN , the approximation P (x) is called an interpolated value. If either x < x0 or xN < x,
then P (x) is called an extrapolated value [50].
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B.2. Spline Function

A spline function is a function that consists of polynomial pieces joined together with certain
smoothness conditions [51].

In most situations, polynomial interpolation for a set of N + 1 points {(xk, yk)}Nk=0 is frequently
unsatisfactory from a practical point of view, and other functions need to be considered [50,51].

Another method is to piece together the graphs of lower-degree polynomials Sk(x) and interpolate
between the successive nodes (xk, yk) and (xk+1, yk+1). The two adjacent portions of the curve
y = Sk(x) and y = Sk+1(x), which lie above [xk, xk+1] and [xk+1, xk+2], respectively, pass through
the common knot (xk+1, yk+1), and the set of functions {Sk(x)} forms a piecewise polynomial curve,
which is denoted by S(x) [50].

According to the degree of piecewise polynomial, spline function can be classified as first-degree
spline (whose pieces are linear polynomials joined together to achieve continuity) [51], quadratic spline
(which is a continuously differentiable piecewise quadratic function, where quadratic includes all linear
combinations of the basic monomials x 7→ 1, x, x2) [51,52], cubic spline [51,53] and higher-degree
spline [51]. Compared with splines of other degrees, the cubic spline function has two continuous
derivatives everywhere. At each knot, three continuity conditions are imposed. Since S, S ′ and S ′′ are
continuous, the graph of the function will appear smooth to the eye. Discontinuities, of course, may
occur in the third derivative, but cannot be easily detected visually, which is one reason for choosing
degree three. Experience has shown, moreover, that using splines of a degree greater than three seldom
yields any advantage. For technical reasons, odd-degree splines behave better than even-degree splines
(when interpolating at the knots) [51].
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