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Abstract: A large number of studies have analyzed measurable changes that Alzheimer’s 

disease causes on electroencephalography (EEG). Despite being easily reproducible, those 

markers have limited sensitivity, which reduces the interest of EEG as a screening tool for 

this pathology. This is for a large part due to the poor signal-to-noise ratio of EEG signals: 

EEG recordings are indeed usually corrupted by spurious extra-cerebral artifacts. These 

artifacts are responsible for a consequent degradation of the signal quality. We investigate 

the possibility to automatically clean a database of EEG recordings taken from patients 

suffering from Alzheimer’s disease and healthy age-matched controls. We present here an 

investigation of commonly used markers of EEG artifacts: kurtosis, sample entropy,  

zero-crossing rate and fractal dimension. We investigate the reliability of the markers, by 

comparison with human labeling of sources. Our results show significant differences with 

the sample entropy marker. We present a strategy for semi-automatic cleaning based on 

blind source separation, which may improve the specificity of Alzheimer screening using 

EEG signals. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common type of dementia among the elderly; its 

socioeconomic cost to society is sizeable and expected to increase. It is characterized by progressive 

and irreversible cognitive deterioration with memory loss, impairments in judgment and language, and 

other cognitive deficits and behavioral symptoms that finally become severe enough to limit the ability 

of an individual to carry out the professional, social or family activities of daily life. As the disease 

progresses, patients develop increasingly severe disabilities, becoming in the end completely 

dependent on others. An early and accurate diagnosis of AD would be of much help to patients and 

their families, both in facilitating planning for the future and in beginning treatment of the symptoms 

of the disease early.  

A diagnosis of AD requires, on the one hand, the confirmation of the presence of a progressive 

dementia syndrome and, on the other hand, the exclusion of other potential causes of dementia as 

demonstrated by the patient’s clinical history. An unambiguous diagnosis of AD is considered to 

require that a post-mortem analysis demonstrate the typical AD pathological changes in brain 

tissue [1–3]. The clinical hallmark of the earliest manifestations of AD is episodic memory 

impairment. At the time of clinical presentation, other cognitive deficits are usually already present in 

the patient’s language, executive functions, orientation, perceptual abilities and constructional skills. 

Associated behavioral and psychological symptoms include apathy, irritability, depression, anxiety, 

delusions, hallucinations, inhibition decrease, aggression, aberrant motor behavior, as well as changes 

in eating or sleeping patterns [4,5]. While the presence of these symptoms is indicative of AD, 

reaching a reliable diagnosis in some cases requires expensive and invasive diagnostic tests such as 

computer tomography (CT), magnetic resonance imaging (MRI) and/or lumbar puncture.  

In order to develop a system for an early diagnosis of AD, the potential of a recording technique known 

as electroencephalography (EEG) has been investigated. EEG consists in recording brain-related electrical 

potentials using different electrodes attached to the scalp [6]. EEG activity is commonly divided into 

specific frequency bands: 0.1 Hz–4 Hz (δ), 4 Hz–8 Hz (θ), 8 Hz–13 Hz (α), 13 Hz–30 Hz (β) and  

30 Hz–100 Hz (γ)[6]. A large number of studies have analyzed measurable changes that AD causes on 

EEG. A review of these studies can be found in [7–9]. Three major perturbations have been reported in 

EEG: (i) power increase of δ and θ rhythms and power decrease of posterior α and/or β rhythms in AD 

patients (also known as EEG slowing); (ii) EEG activity of AD patients seems to be more regular than 

the EEG recording of healthy subjects (which correspond to reduced complexity of the EEG 

signals for AD patients); and (iii) frequency-dependent abnormalities in EEG synchrony [7,8,10]. 

Despite being easily reproducible, those markers have limited sensitivity, which is for a large part due 

to the poor signal-to-noise ratio of EEG signals. 

EEG recordings are indeed usually corrupted by spurious extra-cerebral artifacts, which should be 

rejected or cleaned up by the practitioner. These artifacts are responsible for a consequent degradation 

of the signal quality. In previous works we presented several methodologies to improve the quality of 

EEG data in patients with AD using blind source separation (BSS) [11,12]. BSS appears to be more 

suitable for artifact rejection than adaptive filtering and regression [7]. However, BSS is not fully 

automatic: one needs to visually inspect the components extracted by BSS and decide which 
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components to remove; this time consuming process is not suitable for routine clinical EEG [13]. 

Furthermore, visual inspection is subjective [14], and the reliability of BSS is therefore limited. 

Since manual screening of human EEGs is inherently error prone and might induce experimental 

bias, automatic artifact detection is an issue of importance. It is most certainly one of the keys to 

achieve reliable diagnostics, and obtain useful results for clinical purposes [7]. Automatic artifact 

detection would consequently be the best guarantee for objective and clean results. Unfortunately, 

automatic detection is fairly difficult to perform, due to the lack of reliable markers of EEG artifacts. 

The evaluation of a given set of markers could be performed using either simulated EEG recordings, or 

real EEG recordings. In the first case, the content of the signals is well defined; however, one cannot 

guarantee that the signals investigated are comparable with real signals. In the second case, one cannot 

guarantee that the artifacts are well identified, knowing that EEG studies usually reach fairly poor 

inter-expert agreements. In the present investigation, we chose the second option. We present here an 

investigation of commonly used markers of EEG artifacts. We investigate the possibility to 

automatically clean a database of EEG recordings taken from AD patients and healthy age-matched 

controls. The data is first decomposed using BSS, and afterwards artifacted sources are rejected.  

In order to reduce risks coming from the poor human inter-expert agreements, data is not screened by 

only one expert, but by three independent experts to locate artifacts within the sources. Due to the 

importance of not rejecting EEG data, the approach is conservative, in the sense that as a rule data is 

not eliminated if it’s not clearly identified as an artifact. We afterwards investigate the reliability of the 

markers, by comparing the markers with the resulting human labeling of sources (sources identified as 

artifacts versus sources identified as clean EEG).  

2. Results 

We first compared the number of rejected sources from the control and Alzheimer groups (Table 1) 

with a Wilcoxon ranksum test, taking into account a Bonferroni-corrected significant threshold of ݌௠௔௫ = 1.67 ൈ 10ିଶ  (equivalent to p = 0.05 without correction). None of the experts showed a 

significant difference of treatment between the groups (the smallest p-value was 0.06). 

Table 1. Statistical comparison of the number of sources rejected in the group of  

24 control subjects versus the group of 17 patients suffering from Alzheimer’s disease  

(two-sided Wilcoxon ranksum test) for each expert considered independently, and all 

experts aggregated. Rows indicate the number of rejected sources for AD patients (average 

and standard deviation), the number of rejected sources for control subjects, p-values  

(p < 0.05 indicates a significant difference) and the Wilcoxon z-score statistic.  

Expert #1 Expert #2 Expert #3 All 

NAD 5.0 േ 1.5 3.9 േ 1.2 5.4 േ 1.2 4.8 േ 1.4 
NCTR 5.9 േ 1.1 4.1 േ 1.5 5.1 േ 1.4 5.0 േ 1.5 

p 0.06 0.78 0.52 0.32 
z −1.90 −0.27 0.64 −0.99 

We afterwards compared the power of the four features (Table 2) with a Wilcoxon ranksum test, 

taking into account a Bonferroni-corrected significant threshold of ݌௠௔௫ = 1.25 ൈ 10ିଶ (equivalent to 
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p = 0.05 without correction). Whether on patients suffering from Alzheimer’s disease, control subjects 

or when aggregating all subjects, sample entropy always appears as the most powerful feature, with the 

strongest Z-score and the lowest p-value (overall, below 1.75 ൈ 10ିସ). All the features are significant, 

except for K, which is non-significant for the control group. Group effects comparing rejected sources 

between Alzheimer and Control groups and the clean sources between Alzheimer and Control groups 

were systematically improved by artifact rejection. In particular the cleaned sources had very 

significant differences with the zero-crossing and kurtosis measure (p = 4.04 ൈ 10ିଷ଴  and  

p = 8.80 ൈ 10ିଶଽ respectively). 

Table 2. Statistical comparison of the features for artifacts sources versus clean sources 

(two-sided Wilcoxon ranksum test) for the group of 17 patients suffering from Alzheimer’s 

disease, for the group of 24 control subjects, for all 41 subjects aggregated, and group 

effects comparing rejected sources between Alzheimer and Control groups and the clean 

sources between Alzheimer and Control groups. All measures from the three experts were 

aggregated for this test. Rows indicate p-values and the Wilcoxon z-score statistic.  

Gray background indicates the most powerful feature (sample entropy). 

Alzheimer 

SEnt FD K Z 

p 1.75 ൈ 10ିସ 1.80 ൈ 10ିଷ 2.10 ൈ 10ିଷ 2.00 ൈ 10ିଷ 
z 3.75 3.12 −3.07 3.08 

Control 
p 7.48 ൈ 10ି଺ 3.00 ൈ 10ିଷ 7.23 ൈ 10ିଶ 2.37 ൈ 10ିହ 
z 4.48 2.96 −1.80 4.23 

All 
p 1.39 ൈ 10ିଽ 1.60 ൈ 10ିହ 2.30 ൈ 10ିଷ 1.62 ൈ 10ି଻ 
z 6.06 4.31 −3.05 5.24 

Rejected sources 
p 1.50 ൈ 10ିଷ 3.60 ൈ 10ିଷ 5.24 ൈ 10ିସ 2.99 ൈ 10ିଽ 
z −3.18 −2.91 −3.47 −6.30 

Cleaned sources 
p 5.99 ൈ 10ିଽ 2.44 ൈ 10ି଺ 8.80 ൈ 10ିଶଽ 4.04 ൈ 10ିଷ଴
z −5.82 −4.71 −11.13 −11.40 

We evaluated the capabilities of these methods to automatically detect EEG artefacts using a 

classification approach (Table 3). A multilayer perceptron was trained on half of the database, and 

tested on the spared samples. The purpose was to classify rejected sources from non-artifacted sources. 

As we can see, the classifier can generalize this classification, despite the performances being moderate.  

Knowing that experts do not always agree on source selection, we controlled for the possible effects 

of the experts. To that extent, we compared again the power of the four features (Table 4) with a 

Wilcoxon ranksum test, and the group effect of differences between experts with a Kruskall-Wallis 

test, taking into account a Bonferroni-corrected significant threshold of ݌௠௔௫ = 1.25 ൈ 10ିଶ . 

Whatever the expert, sample entropy always appears as the most powerful feature, with the strongest 

Z-score and the lowest p-value (overall, p is always below 1.10 ൈ 10ିଷ ). All the features are 

significant, except for FD and K, which are non-significant for experts #1 and #3 and for all experts 

respectively. There was no group effect of difference between experts. 
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Table 3. Automatic detection of artifacts sources versus clean sources (multilayer 

perceptron with 2-fold cross-validation) for each expert considered independently and 

aggregated together. Classification was performed for sources from the group of  

17 patients suffering from Alzheimer’s disease, and for sources from the group of  

24 control subjects. Rows indicate the classification rate average and standard deviation on 

1000 classification attempts. 

 Control Subjects Alzheimer Patients

Expert #1 62.8% േ 5.0% 61.6% േ 6.4% 
Expert #2 65.5% േ 6.6% 63.9% േ 7.5% 
Expert #3 59.0% േ 5. 5% 65.1% േ 4.0% 

All 64.8% േ 3.1% 65.7% േ 3.6% 

Table 4. Statistical comparison of the features for artifacts sources versus clean sources 

(two-sided Wilcoxon ranksum test) for each expert considered independently, and group 

effects comparing rejected sources between experts and the clean sources between experts 

(Kruskal-Wallis test). All subjects were aggregated for this test. Rows indicate p-values 

and the Wilcoxon z-score or Kruskal-Wallis Chi² statistics. Gray background indicates the 

most powerful feature (sample entropy). 

Expert #1 

SEnt FD K Z 

p 1.10 ൈ 10ିଷ 2.83 ൈ 10ିଶ 1.73 ൈ 10ିଶ 7.40 ൈ 10ିଷ 
z 3.25 2.19 −2.38 2.68 

Expert #2 
p 7.51 ൈ 10ିହ 4.04 ൈ 10ିସ 9.11 ൈ 10ିଶ 1.10 ൈ 10ିଷ 
z 3.96 3.54 −1.69 3.26 

Expert #3 
p 6.44 ൈ 10ିସ 5.82 ൈ 10ିଶ 2.25 ൈ 10ିଵ 1.00 ൈ 10ିଷ 
z 3.41 1.89 −1.21 3.28 

Rejected sources
p 0.18 0.11 0.82 0338 ૏૛ 1.83 2.52 4.93 ൈ 10ିଶ 0.93 

Cleaned sources 
p 0.32 0.99 0.52 0.43 ૏૛ 0.97 5.82 ൈ 10ି଺ 0.41 0.62 

Most of the artifacts identified by the experts are typical of EEG signals: eye blinks, eye 

movements, EKG, and other unidentified (artifacts with unclear pattern). The differences between the 

four markers for rejected and non-rejected sources are illustrated on typical examples on Figure 1. For 

the rejected sources, Kurtosis K is higher, whereas Zero-crossing rate Z, Sample entropy, and fractal 

dimension are lower than those of non-rejected sources. 

When comparing the control and patient groups before and after the procedure, the Leave-One-Out 

root mean square error (RMSE) of validation dropped from 0.32 to 0.28 (training RMSE dropped from 

0.30 to 0.26). Classification of EEG relative powers after the artifact cleaning procedure was more 

efficient than before cleaning. 
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Figure 1. Illustration of the four markers for non-rejected (top) and rejected (bottom) sources. 

3. Discussion 

We investigated markers that could be used to automatized the three source removal criteria 

described in Section 4.3, in order to avoid any manual screening and reduce human errors. The artifact 

cleaning procedure led to an improved detection of AD, with a systematic improvement of the 

differences before and after cleaning (see Table 2) and a classification error dropping from 32% to 

28%. The first and second criteria are easy to automatize because are directly related to the EEG 

signals on the electrodes (first criterion) and estimating mixing matrix (second criterion). The first rule, 

“Source of abnormally high amplitude (≥100 µV)”, is easy to implement by thresholding the 

backpropagated sources and eliminating those with peaks over 100 µV. The second rule is related to 

the detection of isolated sources on the scalp: “Abnormal scalp distribution of the reconstructed 

channels (only a few electrodes contribute to the source, with an isolated topography)”. In order to 

simplify the detection of isolated IC on the scalp we can use the information given by the inverse of 

the de-mixing matrix obtained after the decomposition by EWASOBI algorithm. By calculating the 

inverse of this matrix we obtain an estimated mixing matrix that can allow us to find the back 

projection of the source ݊  onto the original data (electrodes domain). Then, we can calculate the 

energy that each electrode contributes to this ݊ source and label as an artifact if the percentage of the 

energy of one (or very few) electrode(s) is higher than a pre-fixed threshold (50% of the total energy, 

for example).  

The third rule, “Abnormal wave shape (drifts, eye blinks, sharp waves, etc.)”, is a real challenge, 

and was the main object of our investigation. Our working hypothesis was that this rule could be 

implemented based on the statistical properties of the time series. However, note that we do not show 

the statistic for the third rule only, but for the global combination of the three rules: indeed, almost all 

the rejected sources are selected by the experts with the combined application of the three rules.  

For instance, a source with sufficiently high amplitude and a sufficiently abnormal shape was rejected 

by most experts. However, a source with slightly high amplitude and normal shape may not be rejected 

by all three experts (it is on those sources that the experts will not always reach a consensus).  

We investigated in this manuscript four potential statistical markers in order to characterize the time 

series, which could provide some information about potentially abnormal shapes in the EEG sources. 

Our observations are congruent with the existing literature. Kurtosis K is higher for the artifacted 



Sensors 2015, 15 17969 

 

 

source: their distributions are farther from Gaussianity than non-rejected sources [15]. Despite this 

effect being well known, kurtosis was the poorest marker in our study, confirming previous results of  

Delorme et al. [15]. Sample entropy is lower for rejected sources, owing to the increased predictability 

of the repetitive artefact patterns. This result is congruent with the literature: the expected SEnt of 

artifacts is lower, because their patterns are more regular and predictable in comparison with neural 

activity [16]. Similarly, FD is lower for artifacted sources, in accordance with previous publications: 

clean EEG traces are typically characterized by a flatter and more spread spectrum, with higher  

FD [17,18], especially for ocular artifacts [19]. Zero-crossing rate Z is lower for the artifacted sources. 

Unfortunately, despite several studies reporting the use of zero-crossings for the evaluation of artifacts 

in EEG signals, to the best of our knowledge, none of them reported if this measure increases or 

decreases. We can nevertheless conjecture that our observation is valid, and can be explained by the 

presence of low-frequency perturbations forming blocks in the presence EEG artifacts (which is 

compatible with the effects observed with SEnt and FD). 

Automatic classification of the sources leads to an accuracy of ~65% on the validation set 

depending on the expert involved in source selection. Despite this result is not sufficient to guarantee 

an efficient automatic rejection, it clearly demonstrates the potential of these measures for semi-automatic 

rejection. Indeed, by tweaking the classification threshold, one can obtain a higher sensitivity to the 

detriment of a lower specificity (sensitivity of 80.0% for a specificity of 26.0% using a linear 

classifier). In other words, the classifier can automatically detect a subset of suspicious sources, and 

thereby alleviate the task of the expert who will only need to remove the non-artifacted sources from 

this selection. Taking into account the fact that the expert labeling is error prone, these results  

are encouraging. 

4. Material and Methods 

4.1. EEG Data—Patients with MildAD 

These data were obtained using a strict protocol from Derriford Hospital, Plymouth, UK and had 

been collected using normal hospital practices [20]. EEGs were recorded during a resting period with 

various states: awake, drowsy, alert and resting states with eyes closed and open. All recording 

sessions and experiments proceeded after obtaining the informed consent of the subjects or the 

caregivers and were approved by local institutional ethics committees. EEG dataset is composed of  

24 healthy control subjects (age: 69.4 + 11.5 years old; 10 males) and 17 patients with mild AD (age:  

77.6 + 10.0 years old; 9 males). The EEG time series were recorded using 19 electrodes disposed 

according to Maudsley system, similar to the 10–20 international system, at a sampling frequency of 

128 Hz. EEGs were band-pass filtered with digital 2nd order Butterworth filter (forward and reverse 

filtering) between 0.5 and 30 Hz (a sampling rate of 128 Hz means that frequencies above 25 Hz 

cannot be reliably studied [21]). 

4.2. BSS Algorithm 

Blind Source Separation (BSS) consists in recovering a set of unknown sources ܛ	  from their 

observed mixture x. The linear and instantaneous models of BSS can be formulated as: 
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ܠ = (1) ܛۯ

where ܛ represents a data matrix having as rows the unknown sources, and ۯ is the mixing matrix. 

According to the currently prevailing view of EEG signal processing, a signal can be modeled as a 

linear mixture of a finite number of brain sources, with additive noise (see e.g., [13,22,23]). Therefore, 

blind source separation techniques can be used advantageously for decomposing raw EEG data to 

brain signal subspace and noise subspace. If sources are supposed to be independent, then BSS can be 

called ICA. 

The Second-Order Blind Identification (SOBI) algorithm is a well-known blind source separation 

(BSS) method for source signals with temporal structures and distinct spectra (AR processes).  

It already proved to be useful in many biomedical applications. A weight-adjusted version of SOBI 

was suggested in [24]. SOBI jointly (approximately) diagonalizes time-delayed covariance matrices 

for many time delays. However, SOBI algorithm does not specify how many and which time delays to 

choose. An efficient weight adjusted variant of SOBI called IWASOBI [25,26] was developed to solve 

this problem. The original weight adjusted SOBI used a standard AJD (Approximate Joint 

Diagonalization) algorithm. IWASOBI uses instead an AJD based on family of WEDGE1 algorithms [25]. 

For IWASOBI the number of jointly diagonalized covariance matrices can be relatively low in 

comparison to the standard SOBI while performance can be considerably higher. This algorithm 

allows reliable separation of 100+ sources with temporal structure (autoregressive sources) in order of 

seconds. In our experiments we used the IWASOBI algorithm implemented in ICALAB ver.3 [27]. 

4.3. Artifact Removal Procedure 

The present work extends our preliminary results presented in [12]. Each recording under analysis is 

decomposed using IWASOBI. Sources are ordered using a kurtosis measure, and then some of them 

corresponding to artifacts (eye movements, EMG corruption, EKG, etc.) are removed after visual 

inspection by three independent experts, according to the following criteria (illustrated on Figure 2): 

- Source of abnormally high amplitude (≥100 µV in the back projected EEG signal). 

- Abnormal scalp distribution of the reconstructed channels (only a small subset of electrodes 

contribute to the source, with an isolated topography). 

- Abnormal wave shape (drifts, eye blinks, sharp waves, etc.). 

 

Figure 2. Examples of artifacts: (a) abnormal scalp distribution of the reconstructed 

channels; (b) abnormal wave shape; (c) source of abnormally high amplitude. 
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The maximum of source that are removed is limited to one third of the total number, in order to 

prevent denaturing EEG signals. On average, 4.8 ± 1.4 sources were rejected for AD patients, and  

5.0 ± 1.5 for control subjects (the difference is not significant, see also Table 1). 

4.4. Statistical Markers of the EEG Shape 

We investigated the set of statistical markers listed below (Table 5), which are good candidates for 

artifact detection. We computed the values of all independent components (artifact-labelled and  

clean-labelled components) for all these markers, using Matlab® R2013a.  

Table 5. Names and acronyms of the considered statistical markers. 

Name Acronym

Kurtosis K 
Zero-crossing Z 

Sample entropy SEnt 
Fractal dimension FD 

For a time series ܆ with ݊ samples ሾݔଵ, ,ଶݔ … ,  :௡ሿ, we can define the Kurtosis K as followsݔ

K = μସμଷ − 3 = 1n∑ ሺx୧ − xതሻସ୬୧ୀଵቄ1n∑ ሺx୧ − xതሻଶ୬୧ୀଵ ቅଶ − 3 (2)

where ̅ݔ is the mean of ܆, and μସ and μଷ are respectively the fourth and third central moments. The 

Kurtosis is the degree of peakedness of a distribution, and is a well-known indicator of the potential 

presence of artifacts EEG signals [15,28–30]. For normally distributed data, the kurtosis is zero. If the 

distribution function of the data has a flatter top than the normal distribution, then the kurtosis is 

negative. The kurtosis is positive if the distribution function has a high peak compared to the  

normal distribution. 

The zero-crossing rate ܼܥ measures the number of times the signal crosses the abscissa: 

ZC = 1n − 1෍ॴሺx୧x୧ାଵ < 0ሻ୬ିଵ
୧ୀଵ  (3)

where the indicator function ॴሺܣሻ is 1 if its argument ܣ is true and 0 otherwise. This rate may be used 

as a marker to indicate the presence of artifacts in EEG [28–30]. 

The sample entropy is defined for a time series of n points. We first define the ݊ −݉ + 1 vectors ܠ௠ሺ݅ሻ = ሼݑሺ݅ + ݇ሻ: ݋ ൑ ݇ ൑ ݉ − 1ሽ, as the vectors of m data points from ݑሺ݅ሻ to ݑሺ݅ + ݉ − 1ሻ. The 
distance between two such vectors is defined to be ݀ሾܠ௠ሺ݅ሻ, ௠ሺ݆ሻሿܠ = max௞ ሼ|ݑሺ݅ + ݇ሻ − ሺ݆ݑ +݇ሻ|: ݋ ൑ ݇ ൑ ݉ − 1ሽ, the maximum difference of their corresponding scalar components. The sample 

entropy statistic SEnt is defined as: SEntሺm, rሻ = lim୬→ஶ൛−ln൫A୫ሺrሻ/B୫ሺrሻ൯ൟ = −lnሺA/Bሻ (4)

with A = ሾሺn − m − 1ሻሺn − mሻ/2ሿA୫ሺrሻ (5)
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and B = ሾሺn − m − 1ሻሺn − mሻ/2ሿB୫ሺrሻ (6)ܤ௠ሺݎሻ is the probability that two sequences match for ݉ points: B୫ሺrሻ = ሺn − mሻିଵ ෍ B୧୫ሺrሻ୬ି୫
୧ୀଵ  (7)

where ܤ௜௠ሺݎሻ  is ሺ݊ − ݉ − 1ሻିଵ  times the number of vectors ܠ௠ሺ݆ሻ  within ݎ	  of ܠ௠ሺ݅ሻ . Similarly, ܣ௠ሺݎሻ is the probability that two sequences match for ݉ + 1 points: A୫ሺrሻ = ሺn − mሻିଵ ෍ A୧୫ሺrሻ୬ି୫
୧ୀଵ  (8)

where ܣ௜௠ሺݎሻ is ሺ݊ − ݉ − 1ሻିଵ times the number of vectors ܠ௠ାଵሺ݆ሻ within ݎ of ܠ௠ାଵሺ݅ሻ. The scalar ݎ  is the tolerance for accepting matches. In the present investigation, we used the parameters 

recommended in [31], with ݉ = 2 and ݎ = 0.2 (standard deviation of the sources is normalized to 1). 

SEnt is a robust quantifier of complexity in EEG signals [32], and can be used as a marker for the 

presence of artifacts in EEG recordings [16]. 

Sevcik showed that the fractal dimension ܦܨ of a curve can be approximated from its Hausdorff 

dimension ℎ [33]: Dh = limக→଴− log൫Nሺεሻ൯logሺεሻ  (9)

where ܰሺεሻ is the number of open balls of radius ߝ needed to cover the set. In a metric space, given 

any point ݌, an open ball of radius ε is a set of all points ݍ for which distሺ݌, ሻݍ < ε. A curve of length ܮ may be divided into ܰሺεሻ = ௅ଶக segments of length 2ε and may be covered by ܰሺεሻ balls of radius ε. 
Consequently the expression becomes: Dh = limக→଴ ቈ1 − logሺLሻ − logሺ2ሻlogሺεሻ ቉ (10)

Sevcik proposes a double linear transformation of the curve into another normalized metric space, 

making all axes equal since the topology of a metric space does not change under linear transformation. 

After this normalization, and taking ε = ଵଶ௡ᇱ and ݊ᇱ = ݊ − 1, the above equation becomes: FD = lim୬ᇱ→ାஶ ቈ1 + logሺLሻ − logሺ2ሻlogሺ2n′ሻ ቉ (11)

The measure of Sevcik is approximately equal to the fractal dimension and the approximation 

improves as ݊′ → +∞. The analysis of fractal dimension can be used for artifact detection in EEG 

signals [17–19]. 

4.5. Classifications 

In order to control for the predictive power of the statistical markers, we designed a multilayer 

perceptron [34]. The model classified the data samples using the statistical markers into rejected or 
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non-rejected sources. We used a cross-validation procedure: the database was divided into two halves, 

and the network was trained on the first half (training set) and tested on the other half (validation set). 

In order to avoid local minima, this procedure was repeated with 1000 re-initializations, and the 

average validation error was estimated. 

In order to control for the effect of the artifact rejection procedure, we aggregated the Fourier power 

of each patient and each control subject into five regions (frontal, temporal left and right, central and 

occipital). Linear discriminant analysis was applied before and after the artifact rejection procedure. 

We estimated a Leave-One-Out error [23]: iteratively one subject or patient was removed from the 

database. Afterwards, the classifier was trained on the remaining data. Finally, the classifier was tested 

on the removed sample (used as a validation sample). The Leave-One-Out score was the root mean 

square error for all the subjects and patients in the database. 

5. Conclusions 

Our results confirm that SEnt was the best of the four investigated markers. As stated in the 

introduction, the presence of artifacts in EEG is one of the main reasons of its limited specificity for 

the diagnostic of Alzheimer’s disease. SEnt was previously shown to decrease significantly for patients 

suffering from Alzheimer, and could be used as a marker of the pathology [35]. Obviously, the 

presence of artifacts (which, as we have shown, decreases significantly SEnt measurements) blurs out 

the differences between recordings of control and patient groups. Removing artifacts could therefore 

prevent this blurring effect, and improve the specificity of EEG-based diagnostics.  
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