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Abstract: To solve the problem of tracking maneuvering airborne targets in the presence 

of clutter, an improved interacting multiple model probability data association algorithm 

(IMMPDA-MDCM) using radar/IR sensors fusion is proposed. Under the architecture  

of the proposed algorithm, the radar/IR centralized fusion tracking scheme of  

IMMPDA-MDCM is designed to guarantee the observability of the target state. The 

interacting multiple model (IMM) deals with the model switching. The modified debiased 

converted measurement (MDCM) filter accounts for non-linearity in the dynamic system 

models, and reduces the effect of measurement noise on the covariance effectively. The 

probability data association (PDA) handles data association and measurement uncertainties 

in clutter. The simulation results show that the proposed algorithm can improve the 

tracking precision for maneuvering target in clutters, and has higher tracking precision than 

the traditional IMMPDA based on EKF and IMMPDA based on DCM algorithm. 

Keywords: centralized fusion; debiased converted measurement; interacting multiple 

model; probability data association; target tracking 
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1. Introduction 

Target tracking is an essential requirement for the fire control system of the armed reconnaissance 

vehicle, which is equipped with a suite of advanced sensors to detect, locate, track, classify and 

automatically identify targets under all climatic conditions. The sensors fusion system has the 

superiority over the conventional one with a single sensor in target tracking [1]. Active and passive 

sensors are mutually independent or complementary to target detection and tracking. The radar is an 

active sensor, which has narrow beam width and high precision of range measurement. However, it is 

easy to be interfered with by electromagnetic field. The infrared (IR) sensor is a passive system, which 

is quite sensitive to atmospheric conditions and has no effect on electromagnetic interference. 

Furthermore, it has higher precision of angular measurements than radar [2]. The radar/IR fusion 

system could considerably improve the tracking precision by using their complementary 

characteristics. However, the measurements of the radar and IR sensors are nonlinear and the target is 

maneuverable. Therefore, the nonlinear filter for maneuvering target tracking should be researched for 

radar/IR fusion system. 

A promising approach to track a maneuvering target is the interacting multiple model (IMM) 

algorithm. The IMM is built from a finite number of dynamic models that represent different target 

behavioral traits [3], which makes it natural to track maneuvering target. A converted measurement 

IMM filter was proposed for tracking a maneuvering target using radar/IR sensors [4]. A new 

distributed fusion method of radar/IR tracking system based on separation and combination of the 

measurements was proposed in [5]. A distributed flow of information fusion for radar/IR compound 

seeker was established in [6], and the federated filter was used to track the target. An adaptive grid 

IMM based on modified iterated extended Kalman filter for tracking a maneuvering target using  

radar/ IR sensors was proposed in [7]. 

In the radar/IR sensor compound tracking system, the tracking of an airborne target in a cluttered 

environment might be a challenge due to the several observations for a single airborne target, some 

tracking measurements do not originate from the airborne target. Therefore, the present study utilizes 

the probabilistic data association (PDA) filter [8,9] to assign weights to the validated measurements. 

The PDA filter can extend the tracking capability to a highly cluttered environment. Combining IMM 

with appropriate data association algorithm can realize maneuvering target tracking in clutters [10,11], 

such as maximum likelihood probabilistic data association (ML-PDA), IMMPDA, interacting multiple 

model multiple hypothesis tracking (IMM-MHT) and so on. A ML-PDA algorithm has been shown to 

be robust in a cluttered environment for a constant velocity target, however, it cannot be applied to the 

situation where targets undergo maneuvers. An adaptive update rate tracking algorithm based on 

modified IMMPDA is proposed to avoid tracking loss of maneuvering target tracking in clutters [12]. 

An interacting multiple model probability data association (IMMPDA) algorithm was proposed to 

support the navigation and surveillance services of the air traffic management system [13].  

The dynamic of target is usually modeled and tracked in the Cartesian coordinates, whereas the 

measurements are provided in terms of range and angle with respect to the sensor location in the polar 

coordinates. Therefore, the radar/IR compound tracking becomes a kind of non-liner estimation 

problem. One solution to this problem is the extended Kalman filter (EKF), but would results in filter 

divergence [14,15]. The other solution is debiased converted measurement (DCM) Kalman filter [16], 
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which converts the polar measurements to Cartesian coordinates and then filtering in the Cartesian 

coordinates. In this paper, the IMMPDA algorithm is combined with the modified debiased converted 

measurement (MDCM) filter to create an IMMPDA-MDCM filter for an airborne maneuvering target 

tracking in radar/IR fusion system. The Monte Carlo simulation results show that the proposed  

IMMPDA-MDCM kalman filter (IMMPDA-MDCMKF) algorithm can improve the target tracking 

precision, credibility and outperform the conventional algorithms. 

The remainder of this paper is organized as follows. In Section 2, the sensor measurement model is 

derived. In Section 3, the time alignment and fusion of radar and IR sensors are derived. The 

IMMPDA-MDCM algorithm is proposed in Section 4. In Section 5, the simulation results demonstrate 

the feasibility and precision of the proposed algorithm. Conclusions are drawn in Section 6. 

2. The Sensor Measurement Model 

Considering an arbitrary maneuvering target in 3D Cartesian coordinates, the geometry measuring 

relationship between target and radar/IR platform is described in Figure 1. 
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Figure 1. Geometry measuring relationship between target and radar/IR platform. 

The range Rkr , azimuth Rkθ  and elevation Rkβ  can be measured by radar, and the radar measurement 

is [ , , ]T
Rk Rk Rk RkZ r θ β=  .Let the state vector of target is [ , , , , , , ], ,k k k k k k k k
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where ( , , )k k kx y z , ( , , )k k kx y z   , and ( , , )k k kx y z    represent target position, velocity, and acceleration 

components in x, y, and z direction, respectively. 
Rkrv , 

Rk
vθ  and 

Rk
vβ  are separately independent 

identically distributed (i.i.d) zero-mean Gaussian white noise, with variance 2

Rkrσ , 2

Rkθσ  and 2

Rkβσ  

respectively. The measurement noise of RkZ  is 2 2 2 2[ , , ]
Rk Rk RkRk rdiag θ βσ σ σ=σ . 
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The measurements of IR sensor is [ , , ]T
Ik Ik Ik IkZ r θ β= , the IR measurement equation is 

2 2 2

arctan

= ( )+
arcsin

Ik

Ik

k

k

Ik I k Ik
k

k k k

y
vx

Z h X v
z v

x y z

θ

β

 
    = +       + + 

 (2)

where 
Ik

vθ  and 
Ik

vβ  are separately i.i.d zero-mean Gaussian white noise with variance 2

Ikθσ  and 2

Ikβσ  

respectively. The measurement noise variance of IkZ  is 2 2 2[ ]
Ik Ik

T
Ik θ βσ σ σ= . 

3. Data Fusion with Radar and IR Sensors 

For the convenience of discussion, we assume that radar and IR sensors lie in the same platform. 

Compared with the detected target, the distance between them is negligible. Therefore, it can be 

assumed that the two sensors are located in the same position.  

Nowadays, most information fusion algorithms for the compound tracking system are  

using centralized fusion structure. In this paper, the centralized fusion architecture is used before 

IMMPDA-MDCM filtering. Because the measurements from radar and IR sensors are independent of 

each other, each sensor transmits data to the fusion center at different sampling period. Therefore, the 

measured data from different sensors should be synchronized, and time alignment is needed. The 

diagram of radar/IR fusion tracking architecture is shown in Figure 2. 

Radar Sensor Data Alignment

IMMPDA-MDCM

Data Alignment

Target StateFusion 
Center

IR Sensor
 

Figure 2. Centralized fusion tracking architecture with radar and IR sensors. 

3.1. Time Alignment of Radar and IR 

Suppose that the sampling period of radar and IR sensors are TR and TI, respectively, and TR:TI = m:n. 

The two sensors can be synchronized once at T  (the smallest common multiple of TR and TI). 

Therefore, it is reasonable to select T to be the sampling period of tracking system. In time T, radar and 

IR sensors have n and m samples, respectively. Common algorithms of time alignment include least 

square method, interpolation, extrapolation and curve fitting algorithm [17]. Because of the good  

real-time performance, the least square algorithm is chosen in this paper. 

1 2
1 1

ˆ
n n

i i
Rk Rk Rk

i i

Z c Z c iZ
= =

= +   (3)

1 2
1 1

ˆ
m m

i i
Ik Ik Ik

i i

Z d Z d iZ
= =

= +   (4)
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where 1 2 /c n= − , 2 6 / ( 1)c n n= + , 1 2 /d m= − , 2 6 / ( 1)d m m= + . After alignment, the measurement 

noise variances of radar and IR sensors are denoted as 

2
2 2 (2 1)

ˆ
( 1)

Rk
Rk

n

n n
σ +=

+
σ

 (5)

2
2 2 (2 1)

ˆ
( 1)

Ik
Ik

m

m m

σσ +=
+

 (6)

3.2. The Fusion of Synchronized Data 

In this paper, the weighted average algorithm is used for the fusion of azimuth and elevation 

measurements. In this fusion algorithm, the constrained extremum calculated through Lagrange 

multiplier algorithm is chosen as the weighted coefficient, and the fusion precision can approximate 

the optimal. The fusion measurements and variance of azimuth are denoted as 

2
2 2

ˆ ˆ

ˆ ˆ
Rk Ik

Rk Ik
k kθ

θ θ

θ θθ σ
σ σ
 

= + 
  

 (7)

2 2
2

2 2

ˆ ˆ

ˆ ˆ
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θ θ

θ
θ θ

σ σ
σ

σ σ
=

+
 (8)

The fusion measurements and variance of elevation are denoted as 

2
2 2

ˆ ˆ

ˆ ˆ
Rk Ik

Rk Ik
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β β

β ββ σ
σ σ
 

= + 
  

 (9)

2 2
2

2 2

ˆ ˆ

ˆ ˆ
Rk Ik

Rk Ik

k
β β

β
β β

σ σ
σ

σ σ
=

+
 (10)

The time aligned range ,R̂ kr  and the fusion angles are merged into an augmented measurement  

vector as 

ˆ

( , )
Rk

k k k k k

k

r

Z h X v vθ
β

 
 = = + 
  

 (11)

4. IMMPDA-MDCM Algorithm 

The IMM algorithm can estimate the state of a dynamic system with several different models that 

switch from one to another, and finally get a mixing output. Various nonlinear filtering algorithms can 

run in the IMM framework [18]. The tracking error of the single IMMPDA algorithm in clutter is 

large, and obvious error of peak value may appear in the period of target maneuvering. In this paper, 

the MDCMKF is embedded in IMMPDA architecture for maneuvering target tracking. Assuming there 

are r models, the target dynamics are modeled in Cartesian coordinates as 

1
i i i i i
k k k kX F X G W+ = + , 1, ,i r=   (12)
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Where i
kX  is the state of the target at time k for ith model, i

kF  is the transition matrix of ith model, the 

Gi is the process noise gain matrix. Wi is the mode-dependent process noise sequences with zero mean 

and covariance Qi. The transition probability from model i  to model j  is ijP . 

11 12 1

21 22 2

1 2

r

r

r r rr

P P P

P P P
P

P P P

 
 
 =
 
 
 




   


 (13)

4.1. MDCM Algorithm 

In the system of radar/IR compound tacking, the dynamic target is usually modeled and tracked in 

the Cartesian coordinates, whereas the measurements are provided in terms of range and angle with 

respect to the radar and IR sensors in the polar coordinates. The debiased converted measurement 

(DCM) Kalman filter is a popular technique for target tracking. In the spherical coordinate, the true 
measurements of radar are azimuth angle mθ , elevation angle mβ  and radial distance mr , with noise 

variance as 2
θσ , 2

βσ , 2
rσ , respectively. The average true deviation ku  and average true covariance kR  

of converted measurement are described as [19] 

[ , , ]x y z T
k k k ku u u u=  (14)

xx xy xz
k k k

yx yy yz
k k k k

zx zy zz
k k k

R R R

R R R R

R R R

 
 

=  
 
 

  
  
  

 (15)

When measurement in the spherical coordinate is converted to be in Cartesian coordinate, the 

measurement is modified as 

cos cos

cos sin

sin

m m m

c k k m m m k

m m

r

Z Z u r u

r

β θ
β θ
β

 
 = − = − 
  

 (16)

The debiased converted measurement equation in Cartesian coordinates can be described as 

c k kZ HX v= +  (17)

where 

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

H

 
 =  
  

. 

The covariance of the DCM is a noisy stochastic process with strong correlation to the 

measurement, the filter update equations are actually coupled and nonlinear, which causes the DCM to 

lose its unbiasedness. In this paper, a modified DCM (MDCM) filter is derived to suppress this 

dependence. The MDCM filter can be given as follows 
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Step 1: Initialization 

0 0[ ]X E X= , 0 0 0 0 0[( )( ) ]TP E X X X X= − −  (18)

Step 2: Predict the target state  

1|k k k kX F X+ =  (19)

1|
T T

k k k k k k k kP F P F G Q G+ = +  (20)

Step 3: First update of the target state 
1

1 1|
T

k k k k kK P H S −
+ +=  (21)

1|
T

k k k k k kS H P H R+= +  (22)

1 1| 1 1|( )k k k k k k k k kX X K Z u H X+ + + += + − −  (23)

1 1 1|( )k k k k kP I K H P+ + += −  (24)

Step 4: Second update of the target state 

Step 4.1: Calculate the error covariance using the first target estimation state ( , , )x y z  and 

covariance 2 2 2( , , )x y zσ σ σ . 

1 1 1

1 1 1

1 1 1

( 1)= [ | , , ]

xx xy xz
k k k

yx yy yz
k k k

zx zy zz
k k k

R R R

R k E R r R R R

R R R

θ β
+ + +

+ + +

+ + +

 
 

+ =  
 
 

  

  

  

 (25)

where 1
xx
kR + , 1

yy
kR + , 1

zz
kR + , 1

xy
kR + , 1

xz
kR +  and 1

yz
kR +  are derived by using the radar and IR measurement error. 

2 2 2 2 2 2 2
1 0.25( )(1 cos2 )(1 cos2 ) 0.25 ( )(1 cos2 )(1 cos2 )xx

k r r r
R r rθ β θ βθ β θ βδ δ λ λ θ λ λ β λ λ δ λ θ λ β+ ′ ′ ′ ′ ′ ′= + + + + − + + + , 

2 2 2 2 2 2 2
1 0.25( )(1 cos2 )(1 cos2 ) 0.25 ( )(1 cos2 )(1 cos2 )yy

k rr r
R r rθ β θ βθ β θ βδ δ λ λ θ λ λ β λ λ δ λ θ λ β+ ′ ′ ′ ′ ′ ′= + + − + − + − + ,

2 2 2 2 2 2
1 0.5( )(1 cos2 ) 0.5 ( )(1 cos2 )zz

k rr r
R r rβ ββ βδ δ λ λ β λ δ λ β+ ′ ′ ′= + + − − + − , 

2 2 2 2 2 2 2
1 0.25 ( )sin 2 (1 cos2 ) 0.25 ( )sin 2 (1 cos2 )xy

k rr r
R r rθ β θ βθ β θ βλ λ δ δ θ λ λ β λ λ λ δ θ λ β+ ′ ′ ′ ′ ′ ′= + + + − + + ,

2 2 2 2 2 2
1 0.5 ( )cos sin 2 0.5 ( )cos sin 2xz

k r r rR r rθ β θ β βθ β θλ λ λ λ δ δ θ β λ λ λ λ δ θ β+ ′ ′ ′= + + − + ,
2 2 2 2 2 2

1 0.5 ( )sin sin 2 0.5 ( )sin sin 2yz
k r r rR r rθ β θ βθ β θ βλ λ λ λ δ δ θ β λ λ λ λ δ θ β+ ′ ′ ′= + + − + , 

2 2 2r x y z= + + , arctan( / )y xθ = , 2 2arctan( / )z x yβ = + , 
2 /2e θδ

θλ −= , 
2 /2

e βδ
βλ −= , 

22 4e θδ
θ θλ λ−′ = = , 

22 4e βδ
β βλ λ−′ = = , 2

r
δ , 2

θσ , 2

βσ  are error covariance of r , θ  and β , respectively. 

Step 4.2: Update the target state  
1

1 1|
T

k k k k kK P H S −
+ +=  (26)

1|
T

k k k k k kS H P H R+= +  (27)

1 1| 1 1|( )k k k k k k k k kX X K Z u H X+ + + += + − −  (28)

1 1 1|( )k k k k kP I K H P+ + += −  (29)
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4.2. IMMPDA-MDCM Algorithm Principle 

One complete cycle of the proposed IMMPDA-MDCMKF comprises four major steps: mixing 

probabilities calculation, IMMPDA-MDCMKF filtering, model probability update and output mixing. 

Detailed steps of the proposed algorithm is given as follows 

Step 1: Mixing probabilities calculation 

/ijij i j
k k kp Cμ μ= , 1,....,i j r=  (30)

where i
kμ  is the conditional probability of ith model at k, j

kC  is the normalizing constant. 

1

= ij

r
j i

k k
i

C p μ
=
 1,....,j r=  (31)

Step 2: MDCM filter in clutter 

Step 2.1: Input interaction. Computing the input state and covariance matrices of ith model 

1

 
r

oi i ij
k k k

i

X X μ
=

=  (32)

1

( ( )( ) )   
r

oi i i oi i oi T ij
k k k k k k k

i

P P X X X X μ
=

= + − −  (33)

Step 2.2: State and covariance prediction 

1|
i i oi
k k k kX F X+ =  (34)

1| ( ) ( )i i oi i T i i i T
k k k k k k k kP F P F G Q G+ = +  (35)

Step 2.3: Validated measurement judgment. The validation region is 
( ) ( ) ( ) 1 ( )

1 1 1 1( ) ( )i i T i i
k k k kd v S v−

+ + + +=     , 1,2 n=   (36)

1(1) ( )
1 1| | i n

k kd dγ γ+ +≤ ≤  (37)

where ( )
1

i
kv +
  and ( )

1
i
kS +
  are innovation vector and innovation covariance at k + 1 of ith model. 

( )
1 1 1 1|

i i i
k dk k k kv Z H X+ + + += − , 1dkZ +  is a matrix with three rows and n columns, each column represents a 

set of measurements, n is the number of the measurements. Equation (37) is the validation 
equation, γ  is the threshold corresponding to the gate probability, which can be obtained from Chi-

Square tables for a chosen gate probability [20]. Once the ith measurement passes the Chi-Square 

test in Equation (37), it can be utilized in the rest of the probability data association filter.  
Step 2.4: Converted measurement error calculation. Calculating 1ku +  and 1kR + using  

Equations (14) and (15). 

Step 2.5: Probabilistic data association for each validated measurement. 

( )
( ) 1

1
( )

1 1
1

i l
i l k
k m

i i x
k k

l

e

b e
β +

+

+ +
=

=
+

, 1,2,...,l m=  
(38)
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(0) 1
1

( )
1 1

1

i
i k
k m

i i x
k k

l

b

b e
β +

+

+ +
=

=
+

 
(39)

where m is the number of validated measurements and associated with the track. ( )
1

i l
kβ +  is the 

association probability of the ith target-originated measurement. (0)
1

i
kβ +  is the association probability 

of all measurements are not valid. ( )( )
1

i mdcm l
kv +  is the innovation associated with the lth validated 

measurement, ( ) ( )( ) 1 ( )( )
1 1 1 1exp( 0.5( ) ( ) )i x i mdcm l T i i mdcm l

k k k ke v S v−
+ + + += − , ( )( )

1 1 1 1 1|
i mdcm l l i i
k k k k k kv Z u H X+ + + + += − −  

1/2/2
1 1(2 ) (1 ) /i m i

k k D G Db C S P P Pπ+ += − . PD and PG are the target detection probability and the gate 

probability, respectively. 

Step 2.6: First update of the target state and covariance 

Using the combined innovation to substitute the clutter-free innovation, and calculate the gain 

matrix, state and covariance updating matrix. 

1
1 1| 1 1

ˆˆ ( ) ( )i i i T i
k k k k kK P H S −

+ + + +=  (40)

1 1 1| 1 1
ˆ ( )i i i i T

k k k k k kS H P H R+ + + + += +  (41)

1 1| 1 1
ˆ ˆi i i i

k k k k kX X K v+ + + += +   (42)

( ) ( )( )
1 1 1

1

m
i i l i mdcm l
k k k

l

v vβ+ + +
=

=  (43)

(0)
1 1| 1 1 1 1 1

ˆˆˆ ˆ ˆ(1 ) ( )i i i i i i T i
k k k k k k k kP P K S K Pβ+ + + + + + += − − +   (44)

( ) ( )( ) ( )( )
1 1 1 1 1 1 1 1

1

ˆ ˆ ˆ( ( ) ( ) )( )
m

i i i l i mdcm l i mdcm l T i i T i T
k k k k k k k k

l

P K v v v v Kβ+ + + + + + + +
=

= −    (45)

Step 2.7: Second update of the target state and covariance. Calculating 1kR +  using Equation (25). 

1
1 1| 1 1( ) ( )i i i T i

k k k k kK P H S −
+ + + +=  (46)

1 1 1| 1 1( )i i i i T
k k k k k kS H P H R+ + + + += +  (47)

1 1| 1 1
i i i i
k k k k kX X K v+ + + += +   (48)

( ) ( )( )
1 1 1

1

m
i i l i mdcm l
k k k

l

v vβ+ + +
=

=  (49)

(0)
1 1| 1 1 1 1 1(1 ) ( )i i i i i i T i

k k k k k k k kP P K S K Pβ+ + + + + + += − − +   (50)

( ) ( )( ) ( )( )
1 1 1 1 1 1 1 1

1

( ( ) ( ) )( )
m

i i i l i mdcm l i mdcm l T i i T i T
k k k k k k k k

l

P K v v v v Kβ+ + + + + + + +
=

= −    (51)

Step 3: Model probability update 

1 1 1
1

1
,

r
i i i
k k i k i

i

c c c
c

μ + + +
=

= Λ = Λ  (52)

where 1
i
k +Λ  is the likelihood function of ith model in IMMPDA-MDCM. 
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( 1)
( )1

1 1 1
1

[ ]
i m m

i i i lD k
k k k

l

P V
b e

m

− +
+

+ + +
=

Λ = +  (53)

1/2/2
1 1

z

z

ni i
k n kV c Sγ+ +=  (54)

/2

( 1)/2

,                2,4,...
( / 2)!

1
2 !

2 , 1,3,...
( 1)!

z

z z

n

z
z

n nz

z
z

n
n

c n

n
n

π

π −


=

=  + 
    =

+

 (55)

Step 4: Output Mixing. 

The final target state estimation and covariance matrix are combined from all of the models 

1 1 1
1

r
i i

k k k
i

X X μ+ + +
=

=  (56)

1 1 1 1 1 1 1
1

( ( )( ) )
r

i i i T i
k k k k k k k

i

P P X X X X μ+ + + + + + +
=

= + − −  (57)

5. Simulation and Results 

The following example of tracking a highly maneuvering unmanned aerial vehicle is considered. 

The scenario of a highly maneuvering airborne target tracking is defined as follows: the sampling rate 

is 0.1T =  s, the target makes five accelerating maneuver with linear segments connecting it. The 

initial position of the target is (10,000, 6000, 4000) m, and the velocity is (−300, −300, −100) m/s. In 

the first period of 1–5 s, it flies linearly by constant velocity. From 6–10 s, it makes an accelerating 

maneuver with (20, 50, 0) m/s2. From 11–15 s, it flies with (5, 25, 0) m/s2. From 16–20 s, it flies with 

(5, −25, 0) m/s2. From 21–25 s, it flies with (−25, −50, 0) m/s2. From 26–30 s, it flies with (0, 25, 0) m/s2. 

At last, it flies linearly from 31–35 s by constant velocity. The trajectory of target is shown in Figure 3. 

0
2000

4000
6000

8000
10000

0

2000

4000

6000
0

1000

2000

3000

4000

x/my/m

z/
m

 

Figure 3. Trajectory of target. 
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In this paper, the target dynamics are modeled in Cartesian coordinates as Equation (12). The 

constant velocity (CV) model and Singer model are put into the IMM frame, The CV model is used to 

describe the basic motion of the target, the Singer model is used to describe target maneuver.  

The state transition matrix and noise gain matrix of CV model are defined as 
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The state transition matrix and noise gain matrix of Singer model are defined as reference [21]. 
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where, 2
17 ( 1 ) /xT

x xT e αφ α α−= − + , 2
28 ( 1 ) /yT

y yT e αφ α α−= − + , 2
39 ( 1 ) /zT

z zT e αφ α α−= − + , 

47 (1 ) /xT
xe αφ α−= − , 58 (1 ) /yT

ye αφ α−= − , 69 (1 ) /zT
ze αφ α−= − , 
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. x y zα α α α= = = , =0.1α  is the reciprocal of the manoeuver time 

constant. axσ , ayσ , azσ  are standard deviation of maneuver acceleration in x, y and z direction. 

2 2
( , , ) ( , , ) max max 0(1 4 ) 3ax ay az x y za p pσ = + −  (58)

( , , ) maxx y za ( max =25xa , max =50ya , max =0za ) is maximum acceleration of target, max 0.5p = is the 

maximum probability of acceleration or deceleration, 0 0.5p =  is the probability of without acceleration.  
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The measuring period of radar 0.01 sRT = , the measuring period of IR 0.005 sIT = . The range 

measurement variance of radar is 100
Rr

σ = , the azimuth and elevation angle measurement variance of 

radar are 0.02
R Rθ βσ σ= = . The azimuth and elevation angle measurement variance of IR sensor 

are 0.002
I Iθ βσ σ= = . The initial prior probability of the two models are 1 0.5μ =  and 2 0.5μ = . That is 

to say, CV model has the same chance to be selected in the initialization. 16γ = , 4 5eλ = − , 

0.997GP = , 1DP = . The variances of the process noise of two models are 2
30.05625 m/sCVQ I= ⋅ ⋅ , 

2
33 m/sSQ I= ⋅ ⋅ . 3I  is the identity matrix of three dimensions. Considering the different process noise 

level, the transition probability of the system model is chosen as 

0.99 0.01

0.01 0.99
p

 =  
 

 

The azimuth and elevation comparison after fusion are shown in Figures 4 and 5. The comparison 

standard deviation of azimuth and elevation after time alignment and fusion are shown in Table 1.  
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Figure 4. The comparison of azimuth. 
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Figure 5. The comparison of elevation. 
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Table 1. Standard deviation comparison. 

 
Before Time Alignment After Time Alignment 

Fusion 
Radar IR Radar IR 

Azimuth (rad) 0.02 0.002 0.02 0.0026 0.0026 
Elevation (rad) 0.02 0.002 0.02 0.0026 0.0026 

The tracking performances of proposed IMMPDA-MDCM algorithm, IMMPDA-DCM and 

IMMPDA-EKF are compared via 100 Monte Carlo simulations. All the algorithms are implemented 

using a personal computer (Windows 7 2009, Intel Core2 Duo CPU, 2.94 GHz, 4.0 GB of RAM, and 

MATLAB R2012a programming environment). The results of the root mean square error (RMSE) and 

runtime test of the target’s position for the three algorithms are shown in Table 2. Figures 6–8 show 

the obtained position estimation error of three algorithms in x, y, and z direction, respectively.  
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Figure 6. The comparison of position error in x direction. 
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Figure 7. The comparison of position error in y direction. 



Sensors 2015, 15 17363 

 

 

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

t/s

δ z/m

 

 
IMMPDA-EKF
IMMPDA-DCM
IMMPDA-MDCM

 

Figure 8. The comparison of position error in z direction. 

Table 2. The RMSE and runtime comparison of three different algorithms. 

 X (m) Y (m) Z (m) t (s) 

IMMPDA-EKF 13.368 24.379 25.476 4.735 
IMMPDA-DCM 12.911 21.803 16.965 0.767 

IMMPDA-MDCM 8.891 13.205 12.203 1.396 

The proposed algorithm can calculate the statistic characteristics of converted measurement errors 

and make the covariance to be much less noisy. As can be seen in Figures 6–8, the proposed 

IMMPDA-MDCM algorithm has the highest tracking precision than IMMPDA-DCM and IMMPDA-EKF 

algorithm, which is consistent with the results in Table 2. The total position tracking error of the 

proposed algorithm is reduced by 34.22% and 46.81% compared to IMMPDA-DCM and IMMPDA-EKF, 

respectively. In the simulation, the two update of IMMPDA-MDCM will increase thecalculation time; 

and the computational cost of IMMPDA-MDCM is longer than IMMPDA-DCM, but shorter than 

IMMPDA-EKF. 

6. Conclusions 

In this paper, an interacting multiple model probability data association algorithm based on 

modified debiased converted measurement filter (IMMPDA-MDCM) is proposed, which is capable of 

adaptively tracking the maneuvering airborne target. The polar measurements of radar and IR 

measurements are time aligned, fused and converted to Cartesian coordinates before they are applied to 

IMMPDA-MDCM algorithm. In the IMMPDA-MDCM algorithm, the covariance of the converted 

measurement is recalculated using the estimated target position information. Therefore, the proposed 

algorithm can reduce the effect of measurement noise on the covariance effectively. By abandoning the 

extended Kalman filter framework and using MDCM filter in the proposed algorithm, the linearization 

errors of the measurement model are avoided, and the good tracking precision is achieved with 

decreasing the computational complexity. Monte Carlo simulation results verify that the proposed 

algorithm outperforms IMMPDA-DCM and IMMPDA-EKF in terms of filtering unbiasedness and 
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precision. The proposed algorithm is an effective algorithm for maneuvering target tracking in clutter, 

which can increase warfare airplane’s concealment and survival capacity. 
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