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Abstract: Finger vein recognition has been considered one of the most promising biometrics 

for personal authentication. However, the capacities and percentages of finger tissues (e.g., 

bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor 

quality of finger vein images, therefore degrading the performance of finger vein recognition 

systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of 

finger vein images are analyzed, and an intensity variation (IV) normalization method using 

guided filter based single scale retinex (GFSSR) is proposed for finger vein image 

enhancement. The experimental results on two public datasets demonstrate the effectiveness 

of the proposed method in enhancing the image quality and finger vein recognition accuracy. 

Keywords: intensity variation; finger vein recognition; image enhancement; guided filter; 

single scale retinex 
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1. Introduction 

As a newly emerging biometric, finger vein recognition has attracted significant attention and 

achieved remarkable development during the last decade. Compared with other traditional biometrics, 

the FVRS has the advantages of low cost, easy collection of images with contactless operation, liveness, 

and, respectively, smaller size of the imaging device [1–8]. 

Finger veins are subcutaneous structures that randomly develop inside a finger. They are viewable 

with reflected light due to the peak absorption of near infrared illumination by oxygenated and  

de-oxygenated hemoglobin in the blood [9]. This makes finger vein media resistant to theft and forgery. 

In practice, however, FVRSs suffer from external factors such as imaging models [10] and uneven 

illumination [11,12], and internal factors including scattering [13] and finger tissue [14]. These factors 

cause the finger vein images to become unstable and have low contrast. Thus, it is difficult for FVRSs 

to achieve reliable and accurate recognition performance in real scenarios. 

To address this problem, finger vein image enhancement has widely been researched over the past 

few years to enhance the quality of finger vein images. Pi et al. [14] combined an edge-preserving filter, 

an elliptic high-pass filter, and histogram equalization to enhance the contrast of finger vein images. An 

illumination component was generated by the convolution of the original image with its filtered images 

using the average filter in [12] to alleviate the effect of uneven illumination for finger vein authentication. 

Considering the variations of vein-coursing directions, Yang et al. proposed the utilization of different 

oriented filters to allow enhancement of the finger vein image [15,16]. Park et al. [17] proposed 

enhancing the image quality using direction and thickness of the vein lines for finger vein recognition. 

Yang et al. [13] proposed a biological optical model for estimation and removal of the light scattering 

component. Lee et al. [18] introduced a finger vein image restoration method to deal with skin scattering 

and optical blurring. These methods can, respectively, enhance finger vein images to some extent; 

however, little attention has been given to the factor from finger tissue, which also results in poor quality 

of the finger vein image. 

The tissue components of a finger, including fat, bone, skin, muscle, water, etc., are the same for each 

individual. However, the capacities and percentages of these tissue components vary among a person, 

which is easily proven by the variation in thickness of fingers. For some finger vein images, the shape 

of blood vessels is projected poorly due to the effect of interruption caused by the components inside the 

finger. Thus, the contrast between the venous and non-venous regions of the images is poor. It was 

mentioned by Pi et al. [14] that tissue structure in different parts of the finger could result in low quality 

finger vein images. However, they did not propose a special method to cope with the finger tissue to 

allow better finger vein recognition. Yang et al. [19] proposed a finger-image restoration method 

considering skin layer structure, where a Gaussian-point spread function (PSF) model and two  

depth-PSF models were adopted. However, there are no reports about enhancement accuracy through 

use of the methods. 

In the present paper, the factor that results in poor finger vein images due to the finger tissues is 

named intensity variation. Even though imaging devices are relatively less sensitive to the external 

factor, this factor is still not avoidable, since each finger can make a different intensity variation 

according to its tissue structure. Therefore, an additional operation is required to eliminate the intensity 

variation in finger vein images. To this end, we propose an intensity variation normalization method 
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using guided filter based single scale retinex (GFSSR). Inspired by the assumptions in the single scale 

retinex (SSR) algorithm, a finger vein image is assumed to be regarded as the multiplication of its 

intensity variation and the reflectance images. The original multiplication relation between the intensity 

variation and reflectance images can be translated to a subtraction operation with the use of a logarithm 

operation. To obtain an accurate intensity variation image, the guided filter [20] is adopted in SSR to 

smooth an input image due to its adjustable edge-preserving smoothing ability. The experimental results 

obtained for the public datasets MMCBNU_6000 [21] and UTFVP [22] demonstrate that the proposed 

method can effectively alleviate the intensity variation in finger vein images and enhance the image 

quality, thereby improving the matching performance. 

The reminder of this paper is organized as follows: Section 2 introduces the intensity variation in 

detail. The proposed method using guided filter for intensity variation normalization is reported in 

Section 3. Section 4 reports the experimental results. Finally, the conclusion and suggestions for future 

work are given in Section 5. 

2. Intensity Variation 

As shown in Figure 1, a finger usually contains fat, bone, skin, and nail components. Veins are located 

in the subcutaneous layer deep in the skin with fat, connective tissue and other tissues. All the tissues 

and organs inside a finger can absorb near infrared (NIR) illumination with different absorptivity. As 

oxyhemoglobin and deoxyhemoglobin in blood vessels absorb more NIR radiation than the other 

substances, vein vessels are shown in darker color while the other tissues are presented with a brighter 

background in the captured vein image. 

  

Figure 1. Human finger structure: (a) cross-section [23] and (b) skin diagram [24]. 

As mentioned above, while each individual has the same types of finger tissues, the capacities and 

percentages of each tissue vary from person to person. Thick fingers contain more fat, while thin fingers 

contain less fat. The captured images from a thin finger usually have higher image brightness than those 

from a thick finger. The acquired finger vein images from different individuals show different global 

and local contrast, especially between the venous and non-venous regions. 
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Figure 2 shows four groups of finger vein images coming from MMCBNU_6000. Each row depicts  

six images taken from six fingers of a volunteer. The figure clearly illustrates that the images from 

different individuals displayed different finger structures and thicknesses. In addition, there were various 

image contrasts for each individual due to intensity variation. The first individual (P1) had  

the thickest fingers. Images (Figure 2a) collected from P1 showed good image contrast between the 

venous and non-venous areas. The individuals of P2 and P3 have thinner fingers than P1; therefore,  

the volume of each tissue was larger in P1 than those in P2 and P3. Thus, Figure 2b,c displayed higher 

brightness on the whole, as compared with the image brightness shown in Figure 2a. Furthermore, the 

images captured from P2 and P3 displayed different global and local image contrast due to the effect of 

intensity variation. Since the bone in the finger joint is articular cartilage and can easily be penetrated 

by infrared light [15], the joint part in the image is always shown in brighter gray values. This resulted 

in brighter local areas in each of the captured images shown in Figure 2. However, due to intensity 

variation, the local image contrast in the finger joint parts was much more obvious in Figure 2b than 

those in other images. Images displayed in Figure 2c showed lower global image contrast than those in 

the other images. Figure 2d shows good global image contrast; the regions between the venous and  

non-venous areas were not clear. This may have resulted from the presence of thick fat or muscle near 

the finger veins. Although the thickness of fingers from individual P2 and P4 are almost same, the image 

contrasts are different due to the intensity variation. 

 

Figure 2. Image samples from our available database MMCBNU_6000 [21]: (a–d) are 

finger vein image samples collected from four volunteers P1–P4, respectively. Each row 

shows six images from six different fingers of one individual. 

Intensity variation in finger vein recognition is an internal factor that results in poor quality of the 

finger vein images and is inevitably generated in the process of imaging. No matter what kind of imaging 

model or device is used, intensity variation appears in the finger vein images, degrades the image contrast 

and thereby degrading the matching performance of an FVRS. Thus, a specialized method that focuses 

on alleviating the effect of intensity variation would be beneficial for enhancing the quality of finger 

vein images and the matching performance of the FVRS. 
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3. Proposed Intensity Variation Normalization Method 

In this section, the guided filter and single scale retinex algorithm are first reviewed, after which the 

proposed guided filter based single scale retinex method is described in detail for normalization of 

intensity variation in finger vein recognition. 

3.1. Guided Filter 

Guided filter [20] is an effective smoothing filter and its edge-preserving smoothing ability can be 

controlled by parameters. Taking into account this property and vague edges in some finger vein images 

due to intensity variation, guided filter is adopted in the present paper for smoothing the input images. 

The key assumption of the guided filter is a local linear model between the guidance S, and the filter 

output g. The guidance image is guided for smoothing an input image. It is supposed that g is a linear 

transform of S in a window wk, centered at pixel k [20]: 

i k i k kg a S b i w= + ∀ ∈  (1)

where ( , )k ka b  are some linear coefficients assumed to be constant in wk. This local linear model ensures 

that g has an edge only if S has an edge since g a S∇ = ∇ . 

To determine the linear coefficients, the cost function that minimizes the difference between the input 

image L and the output is as follows. 
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The solution of Equation (2) is given by the linear regression method: 
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where ε  is a regularization parameter preventing ka  from being too large, μ  and 2
kσ  are the mean and 

variance of S  in kw , and kL  is the mean of L in kw . w  is the number of pixels in kw . Hence, after 

computing ( , )k ka b  for all patches kw  in the image, the filter output can be computed by: 

:

1
( )

k

i ii k i k i
k i w

g a S b a S b
w ∈

= + = +  (5)

where ia  and ib  are the mean values in ka  and kb , respectively. 

Due to the linear model between the guidance and the filter output, the guided filter has a better  

edge-preserving smoothing property than other filters. The non-approximate manner in implementation 

results in good quality of the generated results. Furthermore, the linear running time of the algorithm 

depends only on the number of pixels in the image. 
  



Sensors 2015, 15 17094 

 

 

3.2. Single Scale Retinex Algorithm 

Single scale retinex (SSR) [25] is based on the assumption that an observed image L  can be regarded 

as the multiplication of the illumination I and the reflectance images R. R can be considered as the 

textures without any illumination variations. Moreover, it is assumed that the reflectance changes sharply 

and that illumination changes smoothly. There are a lot of methods for decomposition of the intensity 

into these two components and the SSR algorithm is used as a technique to enhance images in various 
applications [26]. The mathematic description for each pixel ( , )x y  in an image is defined as follow:  

( , ) ( , ) ( , )L x y I x y R x y= ×  (6)

To eliminate the illumination from the captured image, a subtraction operator is applied in the 

logarithm domain. 

log ( , ) log ( , ) log ( , )R x y L x y I x y= −  (7)

Since SSR is based on the idea that the illumination component tends to change smoothly, contrary 

to the reflectance, the illumination image I  can be estimated by the convolution operation of the 
Gaussian filter on the captured image L . The operation for each pixel ( , )x y  is as shown below: 

( , ) ( , ) ( , )I x y L x y F x y= ×  (8)
2 2

22
2

1
( , )

2

x y

F x y e
+−
σ=

πσ
 (9)

Substituting Equation (8) into Equation (7), we have  

log ( , ) log ( , ) log( ( , ) ( , ))R x y L x y L x y F x y= − ×  (10)

Consequently, log ( , )R x y  is the retinex output, called single scale retinex (SSR), while it is also the 

illumination-normalized output. The block diagram for SSR is shown in Figure 3. 

 

Figure 3. Block diagram of the SSR algorithm. 

3.3. Proposed GFSSR 

Each tissue in a finger can absorb NIR illumination to different extents, causing undesired intensity 

variations in a finger vein image. The intensity variation normalization proposed in this paper is designed 

to eliminate this effect. Inspired by the assumption of SSR, it was assumed that a captured finger vein 

image L  could be regarded as the multiplication of the intensity variation IV  and the reflectance R. The 
mathematic description for each pixel ( , )x y  can be represented as follow: 
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( , ) ( , ) ( , )L x y IV x y R x y= ×  (11)

As mentioned in Section 3.2, it is common that an intensity variation image IV can be estimated by 

the convolution operation of the smoothing filter on the captured image L. Here, we use a guided filter 

as a smoothing filter to obtain an intensity variation image of a finger vein image. 
A result of guided filter at a point ( , )x y , is obtained by a weighted sum of an intensity value at ( , )x y  

in a given guidance image, s, and an average of a patch centered at ( , )x y  in a given input image, ( , )x yμ
. a and b are used as its weights, which are determined by whether a patch centered at a point in the 

guidance image has relatively high variance, as defined in Equations (3) and (4). If a patch has relatively 
high variance, a becomes relatively large and contributes to ( , )g x y  more than ( , )x yμ . Otherwise, 

( , )x yμ  contributes to ( , )g x y  more than ( , )s x y . As shown in Figure 4, r  is a radius of a patch and 

becomes larger. A region with relatively high variance also becomes larger and their variance values 
become smaller, so the contribution of ( , )s x y  to ( , )g x y  at a position ( , )x y  becomes smaller than in a 

case of using a smaller r . While its smoothing effect becomes stronger, its edge-preserving effect 

becomes weaker, but its tendency still remains. Therefore, the guided filter can work pursuing for a 

given purpose, when its parameter values and a guidance image are chosen properly. 

 

Figure 4. Examples of parameters ( , )a b  of the guided filter according to different 

parameters ( , )rε . 

Finger vein images include mostly background but sparsely curves, which may be blurred by any 

external factor. Through a guided filter, most background regions can be smoothed in their local means, 

since their variances are relatively small. Meanwhile, since vein curves are covered in region with 

relatively high variances, their curves also remain as a filtering result, but their intensity become lower 

due to larger r . Therefore, as shown in Figure 5, when we look at a result of a finger vein image filtered 
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by a guided filter, we can see that it includes most of background smoothed by local means and weak 

vein curves. When this result is subtracted from its original image by GFSSR process,  

it contributes on not only removing some intensity variation with smoothing effects but also on reducing 

blurring effects of curves, as shown in Figure 6. 

 

Figure 5. Outputs of guided filter with different parameters ( , )rε . The guidance image is 

identical to the input image. 

 

Figure 6. Outputs of IV normalization using GFSSR with the same parameters ( , )rε  as 

those in Figure 5. 

The proposed Guided filter based SSR (GFSSR) algorithm can be described as: 

log ( , ) log ( , ) log( ( , ) ( , ))R x y L x y L x y G x y= − ×  (12)

where ( , )IV x y  is estimated by the convolution operation of the guided filter, ( , )G x y , on the captured 

image L , ( , ) ( , ) ( , )IV x y L x y G x y= × . The block diagram of GFSSR is depicted in Figure 7. 

 

Figure 7. Block diagram of the proposed GFSSR algorithm. 
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In this paper, the proposed GFSSR is performed directly on regions of interest (ROI) in the images. To 

accurately localize ROI from the captured images, the robust finger vein ROI localization method proposed 

in our previous research [27] is adopted. The guidance image is selected as the input image. Compared with 

the input images, the enhanced images after intensity variation normalization using the proposed method 

have higher image contrast and quality, as shown in Figure 6. The use of guided filter in the proposed 

method could not only smooth the captured image well but also cause loss of some vein information after 

the subtraction operation. To address this problem, histogram truncation is adopted to compensate for the 

loss of the vein information in this process, for further enhancement of the image quality. 

4. Experimental Results 

In order to ascertain the performance improvement using the proposed method, different methods for 

illumination normalization and image enhancement were implemented for comparison. All the 

experiments were performed on two public available finger vein database, MMCBNU_6000 [21] and 

UTFVP [22], using MATLAB (R2013a) on a computer with an Intel Core i3-2120 and 4 GB of RAM. 

4.1. Dataset 

MMCBNU_6000 consists of finger vein images captured from 100 volunteers, coming from  

20 different countries. Each subject was asked in the capturing process to provide images of his or her 

index finger, middle finger, and ring finger of both hands during the capturing process. The collection 

of each of the 6 fingers was repeated 10 times to obtain 10 finger vein images. Our finger vein database 

is therefore composed of a total of 6000 images. Each image was stored in “bmp” format at the size of 

480 × 640 pixels. The localized ROI image had the pixels size of 64 × 128. Some of the captured image 

samples and ROI image samples are shown in Figures 2 and 6, respectively. 

UTFVP [22] contains 1440 finger vascular pattern images in total which have been collected from  

60 volunteer at the University of Twente. Images were captured in two identical sessions with an average 

time lapse of 15 days. The vascular pattern of the index, ring and middle finger of both hands has been 

collected twice at each session. Two images were collected for each finger in each session.  

The captured images have a resolution of 672 × 380. Each image is stored using the lossless 8-bit grey 

scale PNG format. ROIs of images in UTFVP, extracted using the algorithm proposed in [27], had the 

resolution of 60 × 120. Some of the finger vascular pattern images from UTFVP and their ROIs are 

displayed in Figure 8. 

 

Figure 8. Two groups of images, (a) and (b), and their ROIs from UTFVP [22]. 
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4.2. Investigation of Optimal Parameters 

The performance of FVRS using the proposed GFSSF is dependent on two parameters:  
the regularization parameter ε  and the radius r  of the window kw . In this section, an experiment was 

designed to explore the optimal parameters using images from MMCBNU_6000. Since the aim of the 

proposed GFSSF was to enhance the image quality and to improve the matching performance of the 

FVRS, the equal error rate (EER) was adopted to evaluate the matching accuracies with different 

parameters. EER is the value whereat the false accept rate (FAR) is equal to the false reject rate (FRR). 

Discrete wavelet transform (DWT) [27,28] was adopted for feature extraction of the enhanced finger 

vein images with different combinations of parameters. The nearest neighbor classifier based on cosine 

distance was employed for matching. In all experiments, each finger was considered as an individual. 

Five finger vein images from one individual were selected as the training set, while the remaining  

five images were used as the test set. The number of genuine and imposter matches are 3000(600 × 5) 

and 1,797,000(600 × 599 × 5), respectively. 

Figure 9 depicts the EER values with varying parameters. The EER values obtained using DWT for 

feature extraction directly from the ROI images is 3.93%. It is clearly illustrated in Figure 9 that the 

proposed GFSSR can enhance the matching performance regardless of the groups of parameters adopted. 
Furthermore, the performance achieved using the proposed GFSSR with 2( , ) (0.2 ,13)rε =  is better than 

those using other groups of parameters. Thus, the optimal values are 2( , ) (0.2 ,13)rε = , which are 

adopted in the rest of the experiments on two datasets. 

 

Figure 9. EER values with varying parameters. {7,9,11,13,15,17,19}r ∈  and 
2 2 2 2 2 2{0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,1 }eps = ε∈ . 

4.3. Comparison of Image Enhancement 

The experiments carried out in this section aimed to show the effectiveness of the proposed  

GFSSR for finger vein image enhancement. To this end, several approaches for finger vein image 

enhancement, including illumination normalization (IN) [12], scattering removal (SR) [13], and other 
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common methods widely used for image enhancement such as histogram equalization (HE), and single 

scale retinex (SSR) [25] were implemented for comparison. 2σ  is selected as 0.04 in SSR. 

Some ROIs of the samples from MMCBNU_6000 and their enhancements using different methods 

are displayed in Figure 10. It can be seen that HE can enhance the brightness level. However, as shown 

in Figure 10e, HE caused level saturation effects in some small regions. This leads to the presence of 

some dark regions, much darker than those in the input images. The same circumstance appears in the 

enhanced images using SSR, as shown in Figure 10d. Although the enhanced images using SSR have 

brighter distribution than the input images, the contrast between venous and non-venous does not show 

much of an increase. It can be seen in Figure 10b that the images enhanced using IN [12] has good image 

contrast and clear edges between the venous and non-venous regions. Unfortunately, some of the vein 

patterns are lost in the local regions. Moreover, the thickness of the veins in Figure 10b increases 

compared to those in the input images. For images enhanced using SR [13], low image contrast regions 

in ROI images is still poor in the corresponding regions in Figure 10c. The proposed GFSSR concentrates 

on investigating the effects of finger tissue on finger vein imaging. Borrowing the adjustable  

edge-preserving ability of guided filter, the images enhanced using the proposed GFSSR has better image 

contrast not only in the global image, but also in local regions. In addition, as shown in Figure 10f, the 

enhanced images have much clearer edges, especially in the vague local regions. Furthermore, the 

thickness of the veins in Figure 10f remains the same as with those in the input images. 

 

Figure 10. Comparison of finger vein image enhancement using different methods  

on MMCBNU_6000: (a) original ROI images, and enhanced images using (b) IN method;  

(c) SR method; (d) SSR method; (e) HE method; and (f) the proposed GFSSR method. 

4.4. Comparison of Matching Accuracy 

Since image enhancement methods for finger vein images aim to enhance the image quality, 

ultimately to provide improvement of the matching accuracy of the FVRSs, the focus of experiments in 

this section was on evaluating the improvement of matching performance conferred by each method in 

Figure 10. In this paper, DWT [12,16], LBP [29], and LPQ [30] are adopted for feature extraction. All 

the experiments are performed on MMCBNU_6000 and UTFVP. Like the experiment designed in 
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Section 4.2, the EER value was adopted to evaluate the matching accuracies and further to illustrate 

effectiveness of the image enhancement methods. Cosine distance is used for DWT while Euclidean 

distance is employed for LBP and LPQ to measure similarity between two images. The nearest neighbor 

classifier was employed for matching. For MMCBNU_6000 and UTFVP, each finger was considered as 

an individual. 

4.4.1. Experiments Results on MMCBNU_6000 

Five finger vein images from one individual in MMCBNU_6000 were selected as the training set, 

while the remaining five images were used as the test set. The number of genuine and imposter matches 

are 3000(600 × 5) and 1,797,000(600 × 599 × 5), respectively. 

The receiver operating characteristic (ROC) curves of the different image enhancement methods with 

different algorithms for feature extraction are depicted in Figure 10. The EER values and the improved 

ratios calculated based on the EER values obtained using original image are listed in Table 1. The positive 

ratios represent the corresponding image enhancement algorithm can enhance the matching accuracy 

while the negative ratios denote the image enhancement method can degrade the matching accuracy. It 

is clearly shown that SSR, which is effective for facial image illumination normalization, is not beneficial 

for enhancing the quality of finger vein when using DWT and LPQ for feature extraction. HE exacerbates 

the poor image contrast in some local regions, as shown in Figure 10e, and thus cannot enhance the 

matching accuracy. In contrast, SR can enhance the performance a little by using DWT and LPQ for 

feature extraction. Note that different feature extraction algorithms focus on extracting different kinds 

of features from an image and different image enhancement methods aims at enhancing images in 

various styles. Thus, as listed in Table 1, DWT, LBP, and LPQ gave various matching accuracies on 

different enhanced images. SSR is beneficial for image enhancement when using LBP for feature 

extraction, but it fails with usage of DWT and LPQ. A similar circumstance appears for images enhanced 

using IN. These cases demonstrate that IN, SR, SSR and HE are not stable for enhancing image quality. 

However, it is shown in Figure 11 and Table 1 that the proposed GFSSR has the best performance, no 

matter which feature extraction was adopted. It results in making lowest EER values, which reduces 

EER values by 34.6%, 31.8%, and 33.0% compared to the EER values obtained on the original images, 

using DWT, LBP, and LPQ, respectively. 

(a) (b) 

Figure 11. Cont. 



Sensors 2015, 15 17101 

 

 

(c) 

Figure 11. ROC curves of different image enhancement methods on MMCBNU_6000 using 

different feature extraction algorithms: (a) DWT method; (b) LBP method; and (c) LPQ method. 

Table 1. EER values and their improved ratio achieved using different feature extraction 

algorithms on MMCBNU_6000. 

Data 
EER Values/Improved Ratios 

DWT [28] LBP [29] LPQ [30] 

Original image 3.93% 2.20% 2.33% 
IN  3.36%/14.5% 6.67%/−203.2% 6.78%/−191.0% 
SR  3.71%/5.6% 2.26%/−2.7% 2.03%/12.9% 

SSR 5.17%/−31.6% 1.60%/27.3% 3.27%/−40.3% 
HE 4.77%/−21.4% 2.18%/1.0% 2.51%/−7.7% 

Proposed GFSSR 2.57%/34.6% 1.50%/31.8% 1.56%/33.0% 

Taking into account both comparisons of image quality and matching performance, it can clearly be 

seen that the proposed GFSSR can effectively improve both image quality and the matching 

performance. Furthermore, the proposed GFSSR takes only 6.3 ms for analysis of an ROI image,  

which illustrates that it is sufficiently fast in practice. 

4.4.2. Experiments Results on UTFVP 

For UTFVP, two finger vein images from one individual were selected as the training set, while the 

remaining two images were used as the test set. The number of genuine and imposter matches are  

720(360 × 2) and 258,480(360 × 359 × 2), respectively. Figure 12 shows the ROC curves using DWT, 

LBP, and LPQ for feature extraction and the corresponding EER values and improved ratios are listed 

in Table 2. 

Compared with the EER values achieved on MMCBNU_6000, the EER values obtained on UTFVP 

is large, no matter which kinds of feature extraction algorithms are adopted. This may results from the 

fewer number of images for training than those in MMBNU_6000.However, the proposed GFSSR is 

stable for image enhancement. It is clearly shown in Table 2 that proposed GFSSR has the best 

performance, resulting in achieving lowest EER values. It can reduce EER values by 26.6%, 33.9%, and 

46.5% using DWT, LBP, and LPQ, respectively. Other image enhancement methods can also reduce 
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EER values to some degrees; however, they are not stable for reducing EER values using all adopted 

feature extraction methods. IN can enhance matching accuracy when using DWT and LPQ for feature 

extraction, but it fails when extracting features using LBP. Similar cases appear in SR, SSR, and HE. 

(a) (b) 

(c) 

Figure 12. ROC curves of different image enhancement methods on UTFVP using different 

feature extraction algorithms: (a) DWT method; (b) LBP method; and (c) LPQ method. 

Table 2. EER values and their improved ratio achieved using different feature extraction 

algorithms on UTFVP. 

Data 
EER Values/Improved Ratios 

DWT [28] LBP [29] LPQ [30] 

Original image 12.09% 8.62% 8.06% 
IN  9.16%/24.2% 11.26%/−30.6% 5.83%/27.7% 
SR  12.52%/−3.6% 7.5%/13.0% 7.78%/3.5% 

SSR 14.71%/−21.7% 8.32%/3.5% 8.75%/−8.6% 
HE 14.32%/18.4 8.65%/−0.3% 10.01%/−24.2 

Proposed GFSSR 8.88%/26.6% 5.70%/33.9% 4.31%/46.5% 
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5. Conclusions 

In this paper, an intensity variation normalization method was proposed for finger vein recognition. 

The method was based on a model that reasonably describes the effect of finger tissues on finger vein 

images. In this model, a captured finger vein image was regarded as the multiplication of the intensity 

variation and the reflectance images. To accurately obtain the intensity variation image, the guided filter 

was adopted since it has adaptive edge-preserving smoothing ability especially in local regions. The 

intensity variation component could then be normalized in the logarithm domain. The comparative 

experiments on image enhancement and matching accuracy demonstrated that the proposed method had 

better performance compared to the common methods for finger vein image enhancement and 

recognition. Taking into account that the capacities and percentages of the tissue components vary 

among a person, the adaptive current for each individual to capture high quality finger vein images will 

be investigated in our future research. 
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