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Abstract: This paper proposes an approach to compute an EOH (edge-oriented
histogram) descriptor with main orientation. EOH has a better matching ability than
SIFT (scale-invariant feature transform) on multispectral images, but does not assign a
main orientation to keypoints. Alternatively, it tends to assign the same main orientation
to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between
images of translation misalignment only. Observing this limitation, we propose assigning
to keypoints the main orientation that is computed with PIIFD (partial intensity invariant
feature descriptor). In the proposed method, SIFT keypoints are detected from images as the
extrema of difference of Gaussians, and every keypoint is assigned to the main orientation
computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main
orientation. In addition, an implementation variant is proposed for fast computation of
the EOH descriptor. Experimental results show that the proposed approach performs more
robustly than the original EOH on image pairs that have a rotation misalignment.
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1. Introduction

Keypoint and descriptor techniques have been widely applied in computer vision or pattern
recognition. Applications include stereo vision, 3D scene reconstruction, human activity recognition,
etc. Keypoints are often matched by computing the distance of their associated descriptors. The
matching ability of descriptors is measured with the repeatability and distinctiveness, and in practice,
a trade-off is often made between them. On single spectral images, SIFT [1] and its variants
with post-processing techniques (e.g., RANSAC) have witnessed many successful applications. On
multi-sensor (multispectral) images, SIFT descriptors generate few correct mappings. Recently, the
edge-oriented histogram (EOH) [2] was proposed, which utilizes only edge points and five bins for
computing descriptors. EOH has a better matching performance on multispectral images than SIFT,
but does not assign a main orientation to keypoints, which limits its application to images containing
translation misalignment.

1.1. Related Work

Salient points have been widely used in a variety of fields, including object tracking, image fusion,
intelligent navigation, etc. [3—9]. Many keypoint and descriptor detection techniques have been proposed
for single spectral images. Lowe [1] proposed SIFT detecting keypoints invariant to scale and rotation.
The keypoints are defined to be the extrema of the difference of Gaussians (DOG). The local gradient
pattern around a keypoint with respect to an assigned main orientation is computed as its descriptor.
Bay et al. [10] proposed SURF (speeded-up robust features). SURF has the same repeatability and
distinctiveness as SIFT, but is computed faster than SIFT. Alahi ef al. [11] proposed fast retina keypoint
(FREAK). FREAK is a cascade of binary strings computed by comparing image intensities over a
retinal sampling pattern. Ambai and Yoshida [12] proposed compact and real-time descriptors (CARD).
Compared with SIFT and SURF, CARD can be computed rapidly utilizing lookup tables to extract
histograms of oriented gradients. Other descriptors include ORB [13] and PCA-SIFT [14].

The above descriptors are devised for single-sensor images and yield a good matching performance
on such images. Recently, multispectral systems became an attractive research topic, since they provide
a rich representation of scene with images taken by different sensors [15]. Barrera et al. proposed
an imaging system for computing depth maps from color and infrared images [16]. Stereo vision can
be accomplished by keypoint matches. However, the descriptors, such as SIFT, SURF and ORB, are
computed by utilizing the gradient pattern, which may revert on multispectral images [17,18], and hence,
their performance deteriorates [19]. Since the computing gradient is a linear operation of original image
intensities, the matching ability of descriptors relies on the linear relationship between image intensities.

Three factors contribute to the decrease of matching ability: the repeatability of keypoints, the
accuracy of main orientation and the repeatability/distinctiveness of descriptors. From the perspective
of descriptors, many techniques have been proposed to adapt descriptors of SIFT/SURF to multispectral
images. Chen et al. [18] proposed the partial intensity invariant feature descriptor (PIIFD), which
uses gradient orientation instead of direction. The gradient orientation is limited within [0, 7), and
PIIFD can register poor-quality multi-modal retinal image pairs. Saleem and Sablatnig [20] proposed
NG-SIFT, which computes descriptors using a normalized gradient. NG-SIFT outperforms SIFT on
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image pairs of a visible image and a near-infrared image. Dellinger et al. [21] proposed SAR-SIFT for
SAR images. SAR-SIFT uses a new gradient computation method, gradient by ratio (GR), which is
robust to speckle noise, so that it can perform better on SAR images than SIFT. Hossain ef al. [17]
proposed the symmetric-SIFT algorithm for multi-modal image registration. It overcomes the problem
that gradient direction could be inverted in different sensors.

Aguilera et al. [2] proposed the edge-oriented histogram (EOH). Unlike SIFT, EOH exploits only
edge points in local windows rather than all pixels, since in general, edges are more likely repeatable
and, hence, tending to be reliable between multi-sensor images. For an edge pixel, five responses are
computed with filters designed in [22]. Edge points are detected by the Canny detector [23]. Note that
the first four filters are directional derivatives, and the fifth filter is “no direction”. The problem with
EOH is that it does not assign a main orientation to keypoints, which amounts to assuming that the main
orientation for all keypoints takes on the same value, e.g., 0°. When the misalignment does not contain
a rotation component, EOH works pretty well [2], but this limits the application of EOH to translation
only. In real applications, image pairs taken from different views often contain a rotation component in

the misalignment, and rotation invariant descriptors are hence desired or necessitated.

1.2. Proposed Method

To adapt EOH to dealing with rotation, we propose assigning a main orientation to keypoints for
EOH computation. The main orientation makes EOH invariant to both translation and rotation and,
hence, invariant to similarity transformation and partially invariant to affine transformations [1]. Note
that the rotation contained in the misalignment is unknown and by no means can one obtain it before
building keypoints.

Gauglitz et al. [24] proposed two orientation assignment methods. One method is to utilize the
center-of-mass (COM), which is suitable for corners, and the other one is to utilize the histogram of
intensities (HOI). Both COM and HOI are more suitable for single-spectral images, since they implicitly
use the linear relationship of image intensities. This work utilizes the main orientation provided by
PIIFD [18]. When a main orientation is assigned to a keypoint, the computation of its associated
EOH descriptor needs interpolation at fractional pixels. Bilinear interpolation is applied to compute
the response of the five filters used by EOH.

The rest of the paper is arranged as follows. Section 2 discusses assigning main orientation to
keypoints and computing descriptors for keypoints relative to the main orientation, Section 3 gives
the matching scheme for keypoints, Section 4 presents experimental results comparing the matching
performance, and Section 5 concludes this paper.

2. Assigning Main Orientation to the Keypoint and Compute Descriptor

This section discusses assigning main orientation to keypoints, then the descriptor is computed for
every keypoint with respect to the assigned main orientation.
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2.1. Why a Main Orientation is Needed for Keypoints

Let I,(x,y) and I;(x,y) denote the reference and the test image to be registered. SIFT [1] calculates
the histogram of gradient orientation and finds its peak in a local window to serve as the main
orientation. Chen et al. [18] considered the problem of gradient and/or region reversal and square
gradient (G, G,) by:

Gs.z G? - G?
=l (1)
Gy 2G, G,
and then smoothed the squared gradient by convolving it with an average filter h,,,
GS T Gs x ® hfa
_7 | = ’ 2)
Gs,y Gs,y & ha
The main orientation is calculated as follows,
tanil(GS,y/Gs,ﬁ +, Gs,ac >0
b= 3 tan (G5, /Gs.) + 21, G5 <0NGsy >0 3)

tan~ (G, /Gsr), Gsr <0NGs, <0

A careful derivation shows that the main orientation ¢ and the traditional gradient (G, G,) roughly
have the following relationship. Let § = atan2 (G, G,) be the gradient direction falling in [—, 7].
atan?2 is the four-quadrant inverse tangent for a gradient (G, G), giving the actual gradient direction
for (G, G). In mathematics, it differs from tan~" in that the range of tan™" is (—%, 5), while the range
of atan2 is (—m, ). 0 is mapped to [0, 7] by setting 6 = mod(0, ), i.e.,

)0, 6 € [0, 7]
6‘{9+7r, 0 [0 ©

Then:

®)

o= 0+m/2, 0€l0,m/2]
| 0—7/2, 0¢€[n/2,n]

Equations (4) and (5) indicate that a gradient direction 6 and its reversal direction ¢ 47 will contribute
to the same main orientation bin.

EOH is applied to I,.(x,y) and I;(x,y) to detect keypoints and descriptors. Let K/.i = 1,..., N,
denote the i-th keypoint on the test image I;(z,y), and K7, 5 = 1,..., N,, denote the j-th keypoint on
the reference image I,.(z,y). Let f/,i = 1,..., N;, denote the descriptor of K}, and f/,7 = 1,..., N,
denote the descriptor of Kﬂ. Note that both EOH [2] and PIIFD [18] employ the extrema of DOG as
keypoints, which was proposed in SIFT. When detecting keypoints, o,, = 0.5 is the standard deviation
of the Gaussian function used for nominal smoothing of an input image. The threshold on the ratio of
principle curvatures is set to 10, the default value in SIFT [1].

This work assigns the main orientation computed with PIIFD to keypoints K}, = 1,..., N; and
KJ.j=1,...,N,, then computes EOH descriptors. Like SIFT, the process of building keypoint matches
includes four steps: (1) detect keypoints to be the extrema of DOG as proposed by SIFT; (2) assign

to every keypoint main orientation computed with PIIFD; (3) compute the EOH descriptor for each
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keypoint with respect to its main orientation. Edge points are detected by the Canny operator, and all
parameters of the Canny detectors are set to default values used by the MATLAB implementation, except
that the standard deviation of the Gaussian filter o is set to three, like in the original EOH [2]. The high
threshold is defined to be the gradient magnitude ranked as the top 30%, and the low threshold is defined
to be 40% of the high threshold. Interpolation is needed here to obtain pixel values at fractional pixels.
Finally, (4) match the keypoint with the computed descriptor.

2.2. Compute the Descriptor for Keypoint with the Main Orientation

The EOH computes the gradient orientation at each edge pixel with the following five filters. These
filters correspond to the 0°, 45°, 90°, 135° and non-direction, as shown in Figure 1. The filters shown
in Figure la—d, are called direction filters, while the one shown in Figure le is called the non-direction
filter. For a pixel, the filter giving the maximum response is defined to be the direction at the pixel.
Formally, let fi(x,y),k = 0, 1,2, 3,4, denote the mathematical representation of the five filters shown
in Figure 1, then an edge pixel at (x, y) will contribute one to the bin defined by:

binEOH(x, y) = arg ml?X | fe(z,y) ® I(x,y)] (6)

where ‘@’ is the correlation between image and filter.

-1 0 1/|-1 2 2| 1 2 1

-2 0 2/|-1 -1 2| 0 0 O

-1 0 1]|-1 =1 —1]|—-1 =2 —1
(a) (b) (c)

2 2 —1||-1 0 1
2 -1 -1|| 00 O

-1 -1 —1| 1 0 -1
(d) (e)

Figure 1. The five filters used in [2,22]. The filters compute directional derivatives in 0°,
45°, 90°, 135° and the non-direction showed in (a—d) and (e) respectively. (a—d) are the
direction filters and (e) is the non-direction filter.

The four direction filters shown in Figure 1 are in fact the orientation partition used in PIIFD. SIFT
employs eight orientations (bins) for computing descriptors, i.e., for a pixel, its gradient orientation is
quantized to eight bins with the center of each bin being 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°. PIIFD
considers the gradient reverse and utilize mod-180° orientation. Specifically, let o, , be the gradient
orientation at (x,y). For SIFT, «, , contributes to the bin:

bin®" () = round (%53) %8 (7)

For PIIFD, it contributes to the bin:

. Ay,
bin""P () = round (22.;’0) %8 (8)
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Similar to SIFT, PIIFD uses eight bins in Equation (8). However, Equation (8) maps an orientation o, ,
and «,, + 180° to the same bin, i.e., bin"""P(a, ) = bin®"P(qa, , + 180°). PIIFD partitions [0, 27]
into 16 bins at first, with each bin covering 22.5°, and then “merges” two bins if their center angles differ
by 180°.

Equation (7) also says that the centers of the first four orientation bins for SIFT are 0°, 45°, 90°, 135°,
exactly the same as EOH bins. Thus,

bin®™ T (a,,) %4 = bin®" (ay,) 9)

When main orientation is assigned to a keypoint, we need to compute the maximum response of the
five filters. The five filters are rotated by the amount of main orientation, and the rotated pixels for
computing the filter response lie in a fractional grid, as shown in Figure 2. To obtain pixel values at the

fractional grid, a bilinear interpolation is employed.

Figure 2. When the main orientation is assigned to a keypoint, the filters shown in Figure 1
ought to be rotated with respect to the main orientation. Black dots represent the integer
pixel grid, and red dots are the fractional pixel locations, whosewhole values are used by the
rotated filters.

After the interpolation step, pixel values for computing the filter response are obtained. The filter
giving the maximum response is defined to be the direction at this pixel and contributes to EOH
descriptors. As in the original EOH [2], a local window of radius 50 is used for computing an EOH
descriptor. Only edge pixels in the window contribute to the descriptor. Alternatively, we can skip the
interpolation step and just utilize the gradient orientation at edge pixels, which is discussed in Section 2.3
as a variant of implementing EOH.

2.3. Variant Implementation of EOH

Computing the responses of five filters shown in Figure 1 can be speeded up by fast Fourier transform
(FFT). We use I;(x, y) as an example and compute the filter responses with FFT. A similar process can be

applied to I,.(z,y). Let I (x,y) denote the response of the zeroth filter (0°) applied to I;(x, y). Formally,
I?(;U’y) = [t(x7y) i f0<x7y) = It<x7y) * fé('r?y) (10)

wherein ‘e’ denotes the correlation, which can be rewritten as the convolution of f{(z,y) and I,(z,y).
fi(z,y) is the version of fy(x,y) flipped left-right and up-down, i.e., f(z,y) = fo(—z,—y). The
convolution [;(z,y) * fi(x,y) can be quickly implemented with FFT.
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The equivalence of four directional filter responses in EOH to the first four orientation bins in SIFT
and the above discussed fast computation by FFT, motivate implementing EOH as follows. Define the
directional gradient along the horizontal and vertical axes to be:

Gy(z,y) = I(z,y) ® fa(z,y) (11)

Note, the gradient computation in Equation (11) is nothing but the Sobel operator [25]. Once the

directional gradient is obtained, its direction can be simply calculated by:
a(z,y) = atan2 (Gy(z, y), Gz(2,y)) (12)

Equation (11) together with Equation (9) gives the orientation bin to which every edge pixel
contributes. By this means, we implement a variant of EOH, which can be understood from the
adaptation of different descriptors.

* The variant ignores the non-direction bin, which in our experiments proved to have little effect
on matching performance. See the analysis in Tables 1 and 2 in Section 4. Furthermore, the
orientation bin computed with Equations (12), (11) and (9) may not be identical to that computed
with Equation (6). See Section 4 for their matching performance comparison.

« NG-SIFT [20] utilizes the normalized gradient magnitude Q(z,y) = \/ F2(z,y) + F2(x,y) to
compute the descriptor and does not distribute a pixel to neighboring spatial/orientational bins.
See Equations (5)—(7) in [20]. EOH is similar to NG-SIFT from this aspect.

* The proposed variant of EOH utilizes the Sobel operator in Equation (11), and SIFT, PIIFD
and NG-SIFT utilize the filters [—1,0, 1] and [—1,0, 1]7 to calculate the horizontal and vertical
directional derivatives.

3. Matching Keypoints with Descriptors

This section discusses matching keypoints with descriptors. The matching ability of descriptors
is evaluated with the number of correct keypoint matches. To make a fair comparison for different
descriptors, a simple matching approach suggested by SIFT is employed here. A reference keypoint K/
is defined to be matched to a test keypoint K[ if:

D(f{, fI°) < 0.8-D(f{°, fI*) (13)

where D(-,-) is the Euclidean distance and f/ is the second-closest neighbor to f;°. The ‘0.8’
in Equation (13) can be changed to 0.6, which means a tighter matching criterion giving fewer
matched keypoints.

Equation (13) is the matching method suggested in the original SIFT [1]. Through Equation (13), a set
of keypoint mappings can be established, which will be used to analyze the descriptor performance. See
Section 4 for details. Note that post-processing techniques can be applied to keypoints and descriptors
for removing outlier keypoint matches. Commonly-used techniques include RANSAC [26,27],

its variant fast sample consensus (FSC) [28], efc. However, post-processing is to some extent
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independent of descriptor matching ability, and the resulting improvement ought to be excluded for
comparing descriptors.

4. Experimental Results

This section presents the experimental results. Visual matching results are provided firstly, followed
by the quantitative analysis on matching results. The proposed method is compared with the original
EOH. Two datasets, EOIRand VS-long-wave infrared (LWIR), are used for investigating the matching
performance. EOIR includes 87 image pairs captured by ourselves, 12 Landsat image pairs from NASA.
The 87 image pairs include outdoor and indoor scenes with one image taken with visible light and the
other taken with middle-wave infrared (MWIR) light. The 12 Landsat image pairs were downloaded
from [29] with one taken with the visible band, e.g., Landsat 8 Band 3 Visible (0.53-0.59 um), and
the other taken with middle-wave light or the Thermal Infrared Sensor (TIRS), e.g., Landsat 8 Band 10
TIRS 1 (10.6-11.19 uym). Dataset VS-LWIR is from [2] containing 100 image pairs, one image taken
with the visible bandwidth (0.4-0.7 um) and the other taken with the long-wave infrared bandwidth
(LWIR, 8-14 pum).

4.1. Visual Results

This section gives visual matching results. Figure 3 gives the keypoint matchings built with the
original EOH without the main orientation and the proposed method. The visible image serves as the
reference image, and the infrared image is used as the test image. The test image is rotated by 10°,
20° and 30°. Figure 3a,c,e show the matching result of EOH between the reference and the rotated test
image by 10°, 20° and 30°, respectively. Due to the lack of main orientation, the keypoint matches built
with the EOH contain very few or no correct matches. As a comparison, the proposed method provides
sufficiently many correct matches in Figure 3b,d.f.

Figure 4 shows the keypoint matches on an image pair from dataset EOIR built with EOH, EOH
equipped with SIFT main orientation, with COM (center-of-mass) main orientation [24], with HOI
(histogram of intensity) main orientation [24] and the proposed method. The infrared image is rotated
by 20°. EOH provides five keypoint matches in Figure 4a, and three are visually correct. SIFT main
orientation gives seven keypoint matches in Figure 4b, and four matches are visually correct. The
COM and HOI main orientations do not give many correct matches, as shown in Figure 4c,d, while the
proposed method gives 11 keypoint matches in Figure 4e, and nine matches are visually correct. Visually,
the SIFT main orientation and the proposed method give almost the same correct rate of matches, except
that the proposed method gives more matches. The reason might be that although this pair of images was
taken with a visible camera and an infrared camera, they are very close to single-spectrum images, i.e.,
brighter (darker) areas in the visible image are also brighter (darker) in the infrared image. However, the
relationship between image intensities is not linear, which makes COM and HOI not perform very well.

Figure 5 illustrates the keypoint matches on an image pair from dataset VS-LWIR built with
EOH, EOH equipped with SIFT main orientation, COM main orientation, HOI main orientation and
the proposed method. The performance of EOH and EOH equipped with SIFT main orientation in
Figure 5a,b is inferior to that in Figure 4a,b. The performance of COM and HOI is not good either,
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as shown in Figure 5c¢,d. This image pair is taken with a visible camera and an LWIR camera. The
multimodality between them causes the inaccuracy of SIFT main orientation, COM and HOI and, hence,
the mismatches in Figure Sb—d. The proposed method, for the induction of main orientation to keypoints,
performs still well on this image pair.

Figure 3. The matching performance under rotation. The test image is rotated by 10°,
20°, and 30° from top to bottom line. The left column is the result of EOH without main
orientation. The right column is the result of EOH equipped with the partial intensity
invariant feature descriptor (PIIFD) main orientation.

Figure 4. The matched keypoints built with descriptors. (a) The original EOH without main

orientation; (b) the main orientation computed by SIFT, ranging from [0, 27]; (c) the main
orientation computed by center-of-mass (COM); (d) the main orientation computed by the
histogram of intensities (HOI); (e) the proposed method that utilizes the main orientation
computed by PIIFD. The test (IR) image is rotated by 20°.
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Figure 5. The matched keypoints built with descriptors. (a) The original EOH without main

orientation; (b) the main orientation computed by SIFT, ranging from [0, 27]; (¢) the main
orientation computed by COM; (d) the main orientation computed by HOI; (e) the proposed
method that utilizes the main orientation computed by PIIFD. The test (IR) image is rotated
by 20°.

4.2. Quantitative Results

This section presents quantitative results. The above visual results can only provide a simpler
comparison on a few image pairs, and the comparison result is affected by an individual criterion on
“correct” matches. To quantitatively assess the performance for different methods, we perform statistics
on the number of correct matches. We define a keypoint match to be correct if the distance d between the
two keypoints comprising the match is smaller than a threshold dy. In the literature, different values have
been used for dy, e.g., dy = 2, dy = 4, dy = 5, etc. [4]. To eliminate the effect of dy on the performance
comparison, dy = 1,2, 3,4, 5, 10, 20, 50, 100 are used in this work. The number of keypoint matches of
distance d < d; is counted and listed in Table 1 for dataset EOIR and Table 2 for dataset VS-LWIR.

In Tables 1 and 2, the test (infrared) image is rotated by 10°, 20°, 30° and 45°. The proposed method
outperforms the original EOH for all rotation degrees. For example, when the test image is rotated by 10°,
45.60% of the keypoint matches on dataset EOIR built with the proposed method has a distance less than
five, i.e., falling in the range [0, 5], while the EOH has 33.17% falling in [0, 5]. On dataset VS-LWIR,
the proposed method has 29.91% matches falling in [0, 5], while the EOH has 19.53%. Additionally,
this also indicates that the dataset VS-LWIR is more challenging than EOIR. Both the proposed method
and EOH provide superior results on dataset EOIR over VS-LWIR. COM and HOI perform only slightly
better than the original EOH without the main orientation on EOIR and VS-LWIR. This to some extent
indicates that the main orientations computed with COM and HOI on visible and infrared images are
not so accurate as the ones computed with PIIFD, failing to account for the rotation difference between
two images.

The performance decreases with the increase of rotation degree for all methods. For example, on
dataset VS-LWIR, when the test image is rotated by 10°, the proposed method has 48.13% of matches
falling in [0, 10], but this number decreases to 43.08%, 33.13% and 24.02% when the test image is
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rotated by 20°, 30° and 45°. For EOH, the percent of keypoint matches falling in [0, 10] decreases more
than the proposed method, from 41.83% to 5.93%, 1.20% and 0.44%. The performance decrease for
EOH is due to the lack of main orientation, while the decrease for the proposed method originates from
the inaccuracy of computing main orientation. Figure 6 shows the performance of different methods
under rotation. Keypoint matches of distance d < 10 are defined to be correct. From Figure 6, it can be
seen that the percent of correct matches for all methods decreases with the increase of rotation degree. On
both EOIR and VS-LWIR, the proposed method and the variant implementation of EOH decrease slower
than the original EOH without the main orientation, SIFT main orientation, COM main orientation and
HOI main orientation.

The variant implementation of EOH with the main orientation performs comparable to the proposed
method that utilizes the five filters in Figure 1. On dataset VS-LWIR, the variant gives 18.55% of matches
falling in [0, 5] when the rotation is 20°, and the proposed method gives 16.50%. When the rotation gets
to 45°, the variant gives 11.79%, and the proposed method gives 12.35%. It can also be observed from
Figure 6 that the variant EOH proposed in Section 2.3 performs as well as the proposed method. From
Tables 1 and 2, we can conclude that the proposed variant implementation of EOH can yield keypoint
matches as reliable as the EOH assigned to the main orientation. This explains and verifies that the

non-direction bin does not have a great effect on the matching ability and is not used in descriptors, such
as SIFT, SURF and PIIFD.

Dataset EOIR Dataset V5-LWIR

B0. 0%
T0. 0%

B0, 0% B — S0.0%
—

s0. 0% ' 40.0%
40.0% \ a0 oy -
30.0% T~
o0, 0% 20.0%

10. 0% x}% 10.0% K\ﬂ__:_j
0. 0%

10 20 30 45 o.o%

CPCM

10 20 30 15

EH =——s—FRIFOSED VAR-ECH CH —8eemHII =—s—SIFT

EOH —e—FPROPOSED WAR-EOH COM —e—HOI —e—3IFT

(a) (b)

Figure 6. Comparison of keypoint matches for different methods. The horizontal axis
represents the degree of rotation, and the vertical axis represents the percent of correct
matches. Correct matches are defined to be of a distance falling in (0 10]. (a) The result on
dataset EOIR; (b) the result on dataset VS-long-wave infrared (LWIR). On both EOIR and
VS-LWIR, the performance of every method decreases when the rotation degree increases.
The proposed method and the variant EOH with main orientation decrease significantly
slower than the original EOH, SIFT main orientation, COM and HOI on both datasets,
varying the effectiveness of the main orientation.
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Table 1. Comparison of keypoint matches for different methods on dataset EOIR. The

cumulative percent of correct matches (CPCM) is presented for different d.

Rotation Error [01] (@21 (@231 (34] @5 (510] (1020] (2050] (50100] >100
Proposed 142 134 98 50 48 153 99 56 59 196
CPCM (%) 13.72 26.67 36.14 40.97 45.60 6039 6995 7536 81.06  100.00
EOH 74 73 55 37 32 132 134 59 75 146
CPCM (%) 9.06 17.99 2472 29.25 33.17 4933 6573 7295 82.13  100.00
10° COM 17 15 11 10 6 63 65 103 142 437
CPCM (%) 196 368 495 6.10 679 14.04 2152 3337 49.71  100.00
HOI 32 22 14 14 16 104 110 89 123 236
CPCM (%) 421 7.11 895 10.79 12.89 26.58 41.05 52.76 68.95  100.00
VAR-EOH 143 131 99 60 51 155 69 69 55 216
CPCM (%) 13.65 26.15 3559 4132 46.18 6097 67.56 74.14 79.39  100.00
Proposed 97 131 83 70 54 112 83 49 72 203
CPCM (%) 10.17 2390 32.60 39.94 45.60 5734 66.04 71.17 78.72  100.00
EOH 10 8 11 2 4 40 52 84 69 176
CPCM (%) 2.19 395 636 680 7.68 1645 27.85 4627 61.40  100.00
90° COM 20 26 22 14 22 77 105 148 182 448
CPCM (%) 1.88 432 639 771 977 1701 26.88 40.79 57.89  100.00
HOI 6 12 8 12 16 84 120 179 307 535
CPCM (%) 047 141 203 297 422 1079 20.17 34.17 58.17  100.00
VAR-EOH 101 129 75 63 49 103 71 74 75 199
CPCM (%) 10.76 24.49 3248 39.19 4441 5538 6294 70.82 78.81  100.00
Proposed 85 121 71 51 32 115 81 55 84 234
CPCM (%) 9.15 22.17 29.82 3531 38.75 51.13 59.85 65.77 74.81  100.00
EOH 0 0 1 0 0 8 16 48 50 194
CPCM (%) 0.00 0.00 032 032 032 284 7.89 23.03 38.80  100.00
300 COM 1 4 5 4 4 43 64 135 214 564
CPCM (%) 0.10 048 09 135 1.73 588 1204 2505 45.66  100.00
HOI 0 1 1 1 0 11 9 47 52 224
CPCM (%) 0.00 0.29 058 087 087 4.05 6.65 20.23 3526  100.00
VAR-EOH 90 115 76 68 45 113 89 51 77 213
CPCM (%) 9.61 21.88 29.99 37.25 42.05 54.11 63.61  69.05 7727  100.00
Proposed 61 87 43 38 31 100 54 58 137 463
CPCM (%) 5.69 1381 17.82 21.36 2425 33.58 38.62 44.03 56.81  100.00
EOH 0 0 0 0 0 0 2 22 53 406
CPCM (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.41 4.97 1594  100.00
450 COM 0 2 1 3 3 33 52 105 183 1200
CPCM (%) 0.00 0.13 019 038 057 265 5.94 12.58 24.15  100.00
HOI 0 0 0 0 0 1 3 21 95 469
CPCM (%) 0.00 0.00 0.00 0.00 000 0.17 0.68 4.24 20.37  100.00
VAR-EOH 53 74 56 46 34 116 68 57 167 463
CPCM (%) 4.67 1120 16.14 20.19 23.19 3342 3942 4444 59.17  100.00
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Table 2. Comparison of keypoint matches for different methods on dataset VS-LWIR. The

cumulative percent of correct matches (CPCM) is presented.

Rotation Error [01] @12] (231 (34] (@45 (510] (1020] (2050] (50100] =>100

Proposed 16 65 81 50 44 156 109 82 50 203
CPCM (%) 1.87 9.46 1893 2477 2991 48.13 60.86 70.44 76.29  100.00
EOH 9 27 41 37 27 161 146 70 39 165
CPCM (%) 125 499 10.66 1579 19.53 41.83 6205 71.75 77.15  100.00
10° COM 8 19 13 15 11 86 118 123 112 450
CPCM (%) 0.84 283 419 576 691 1592 2827 41.15 52.88  100.00
HOI 8 11 5 9 17 79 124 94 73 280
CPCM (%) 1.14 271 343 471 17.14 1843 36.14 49.57 60.00  100.00
VAR-EOH 17 66 73 70 40 162 106 71 41 216
CPCM (%) 197 9.63 18.10 26.22 30.86 49.65 6195 70.19 74.94  100.00
PROPOSED 22 44 52 32 46 162 136 65 42 230
CPCM (%) 2.65 794 1420 18.05 23.59 43.08 5945 67.27 72.32  100.00
EOH 0 0 4 2 3 21 33 46 39 358
CPCM (%) 0.00 000 079 1.19 178 593 1245 21.54 29.25  100.00
200 COM 3 5 4 5 14 93 94 128 176 458
CPCM (%) 031 082 122 173 3.16 12.65 2224 3531 53.27  100.00
HOI 0 4 8 12 7 50 103 163 211 836
CPCM (%) 0.00 029 086 1.72 222 581 1320  24.89 40.03  100.00
VAR-EOH 21 47 40 37 47 159 126 69 41 227
CPCM (%) 2.58 835 1327 17.81 2359 43.12 58.60 67.08 72.11  100.00
Proposed 7 31 31 33 34 137 105 88 37 321
CPCM (%) 0.85 4.61 837 1238 1650 33.13 4587  56.55 61.04  100.00
EOH 0 0 0 0 0 9 4 32 62 642
CPCM (%) 0.00 0.00 0.00 0.00 000 120 1.74 6.01 14.29  100.00
300 COM 0 2 9 13 6 69 102 106 127 771
CPCM (%) 0.00 0.17 091 199 249 822 1668 2548 36.02  100.00
HOI 1 0 0 0 1 12 19 48 53 337
CPCM (%) 021 021 021 021 042 297 7.01 17.20 28.45  100.00
VAR-EOH 8 25 51 35 29 121 112 85 55 271
CPCM (%) 1.00 4.14 1053 1491 1855 33.71 47.74 58.40 65.29  100.00
Proposed 10 26 24 23 27 104 8 86 52 450
CPCM (%) 1.12 404 673 932 1235 24.02 3401 43.66 49.49  100.00
EOH 1 0 0 0 0 4 8 42 127 967
CPCM (%) 0.09 0.09 0.09 0.09 009 044 1.13 4.79 15.84  100.00
450 COM 1 0 3 7 3 33 59 109 161 1448
CPCM (%) 0.05 005 022 060 077 258 5.81 11.79 20.61  100.00
HOI 1 0 0 0 0 2 12 49 76 347
CPCM (%) 021 021 021 021 021 0.62 3.08 13.14 28.75  100.00
VAR-EOH 9 24 23 25 27 94 98 70 66 480

CPCM (%) 098 3.60 6.11 884 11.79 22.05 3275 40.39 47.60  100.00

5. Conclusions

This paper proposed an approach to assigning the main orientation to keypoints. The PIIFD main
orientation was calculated for a keypoint, and then, the EOH descriptor is computed with respect to the

main orientation. Experimental results show that the assigned main orientation can significantly improve
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the matching performance of EOH on images of misalignment containing rotation. Additionally, a
variant of EOH is proposed that employs the gradient orientation as the filter responses. The variant EOH
can be computed with respect to the main orientation more easily and achieve a comparable matching

performance to the original EOH, but needs less computational cost.
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