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Abstract: The purity of waxy corn seed is a very important index of seed quality. A novel 

procedure for the classification of corn seed varieties was developed based on the combined 

spectral, morphological, and texture features extracted from visible and near-infrared 

(VIS/NIR) hyperspectral images. For the purpose of exploration and comparison, images of 

both sides of corn kernels (150 kernels of each variety) were captured and analyzed. The raw 

spectra were preprocessed with Savitzky-Golay (SG) smoothing and derivation. To reduce 

the dimension of spectral data, the spectral feature vectors were constructed using the 

successive projections algorithm (SPA). Five morphological features (area, circularity, 

aspect ratio, roundness, and solidity) and eight texture features (energy, contrast, correlation, 

entropy, and their standard deviations) were extracted as appearance character from every 

corn kernel. Support vector machines (SVM) and a partial least squares–discriminant 

analysis (PLS-DA) model were employed to build the classification models for seed varieties 

classification based on different groups of features. The results demonstrate that combining 

spectral and appearance characteristic could obtain better classification results. The 

recognition accuracy achieved in the SVM model (98.2% and 96.3% for germ side and 

endosperm side, respectively) was more satisfactory than in the PLS-DA model. This 

procedure has the potential for use as a new method for seed purity testing. 
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1. Introduction 

Waxy corn is the main variety of fresh corn in China. Because of the high content of amylopectin, 

waxy corn is taken as an important raw material for amylopectin production. To keep the wax and other 

characteristics, waxy corn must be planted in isolation to prevent being pollinated by corn of other 

varieties. As a fresh food product, the optimal time of harvest depends on the cultivars. Accordingly, 

variety classification or identification before planting is very important for waxy corn seeds. Moreover, 

variety purity is an indispensable criterion for seed quality. Purity is defined as the percentage of 

expected seeds contained in the tested seed lot. In the process of cultivation, harvesting, storage, and 

transportation, each production procedure may lead to variety mixing and purity decrease. Purity testing 

methods vary from each other and can be divided into several types, such as morphology identification, 

physicochemical or physiochemistry analysis, and molecular identification, etc. Most of these methods 

require professional staff and specialized instruments, and they are often time-consuming. Generally, 

the variety purity test is completed by trained staff and is based on kernel morphological features like 

length, shape, and color, etc. [1]. Although this method is convenient and economic, its accuracy depends 

on the experience of the inspectors and is influenced by subjective errors.  

Machine vision technology is an alternative method for seed variety classification based on kernel 

appearance. It can provide objective observation using feature extraction and mathematical modeling. 

There are literatures reporting that a machine vision system could be applied in classification and variety 

identification of seeds [2–5]. Chen et al. extracted geometric, shape, and color features (totaling 58 

items) of maize seeds. The accuracy reached 88%–100% in classifying five maize varieties with a back 

propagation neural network (BPNN) classifier [2]. Yan et al. extracted color features from the maize 

crown and the maize side images (including red-green-blue and hue-saturation-value models). Fisher’s 

discriminant theory was used with the recognition rate of over 93.75% [6]. Manickavasagan et al. 

developed a machine vision system where monochrome images were obtained to differentiate eight 

wheat classes. Thirty-two textural features were extracted from the gray-scale images. The classification 

accuracies of linear and quadratic discriminant analysis were among 73%–100% [4]. They also identified 

wheat class using thermal imaging and the classification accuracy reached 64%–95% [5]. Grillo et al. 

analyzed the images of 10 families representative of the Mediterranean vascular flora seeds and found 

that image technology was reliable for a statistical classifier in seeds [7]. Machine vision has also been 

applied in seed quality assessment. Mavi carried out a study to determine the relationship between seed 

coat and seed quality in watermelon [8]. 

When morphological characteristics and color were similar among species, it was difficult to classify 

them by a visual method. Several attempts were made using near-infrared spectroscopy (NIRS) to 

identify seed variety based on the internal compositions of the seed kernel [9–11]. Delwiche et al. 

identified waxy wheat from non-waxy cultivars using NIRS. The results of separating waxy from  

non-waxy wheat were nearly perfect, but the classification results among three neighboring gene  

non-waxy classes only achieved an accuracy of 60% [11]. Seregely et al. distinguished melon genotypes 

and found that it was possible to distinguish the hybrid watermelon cultivars using NIRS [10]. Many 

researchers reported that NIRS could be used as non-destructive technology for measuring the chemical 

composition of single seed [12]. Moisture, protein, oil, starch of wheat, corn, and other seeds were 

studied by NIRS [13–17]. 
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However, as hybrid seed cultivars have increased, some seeds may have similar appearances and it is 

hard to differentiate them by image alone. The growing region, climate, and year also affect the spectral 

information. There are some limitations when building a discriminant model with image or spectral 

characters separately. Hyperspectral imaging (HSI) technology is a spectroscopic technique integrated 

with image information, providing both spatial and spectral data. HSI has been widely evaluated by 

research groups in the quality assessment of agricultural products and foodstuffs. Cogdill et al. analyzed 

the moisture and oil concentration of maize kernels by NIR HSI [18]. They found that this method was 

more useful in predicting moisture than oil content. In detection of cereal fungal infection, researchers 

used HSI technology to analyze cereal samples and achieved preferable results [19–21]. HSI was also 

used in analyzing the hardness of maize kernels and the milling quality of soft wheat [22,23].  

In the literature about seed variety classification with HSI, spectral features were mostly chosen for 

mathematical modeling [24–26]. Wang et al. investigated the use of spectral and image fusion data to 

discriminate the variety and quality of rice, giving a good classification accuracy of 94.45% [27].  

Zhang et al. captured images of maize seeds which were put in a glass dish. The discriminant model was 

built by the spectral and gray-level co-occurrence matrix (GLCM) of the region of interest (ROI) 

extracted from the seed images. A prediction accuracy of 98.89% was achieved [26]. However, in their 

experiments, each variety of corn seeds huddled together and they didn’t focus on the variety of the 

single kernel. If some seeds from different cultivars mixed in these seeds, they might not be discovered. 

Thus, the index of seed purity would be decreased. As for hybrid maize seed, the seed purity is very 

important for producer and planter. Although many methods for seed variety classification have been 

reported, there’s no previous report on the usage of combined spectral and spatial data to classify the 

variety of a single maize kernel.  

A new procedure implemented for maize seed variety classification was developed. A visible and  

near-infrared HSI technique was used in classifying different varieties of single corn seeds. Integrated 

spectral and image features were employed to build a discriminant model. The classification ability of 

single-type of feature and the difference of both sides of corn seeds were discussed.  

2. Materials and Methods 

2.1. Hyperspectral Imaging System 

The customized visible and near-infrared (VIS/NIR) HSI system was applied. The system consisted 

of an image spectrograph (Imspector V10E-QE, Spectral Imaging Ltd., Oulu, Finland), a digital  

charge-coupled device (CCD)camera (C8484-05G, Hamamatsu Photonics, Hamamatsu, Japan), a 

camera lens (V23-f/2.4 030603, Specim Ltd, Oulu, Finland), illumination and a controller, a sample 

stage and electric moving stage, a dark room, and a computer (Figure 1). The line scanning image 

spectrograph had a spectral range of 400–1000 nm and maximum image size of 6.15 × 14.2 mm  

(spectral × spatial). In this study, the compression mode was set as 2 × 2 binning. The CCD camera has 

a high-resolution of 1344 (H) × 1024 (V), a wide dynamic range of 12-bit digital output, and high 

sensitivity in the VIS/NIR region. The illumination consisted of a linear light (P/N 9130, Illumination 

Technologies, Inc., Elbridge, NY, USA) and a light-scattering cylinder to make the light uniform and 

even. In order to prevent images from being blurred or deformed, the intensity of illumination, the speed 
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of the electric moving stage, the exposure time of the camera, and the object distance were all set at 

appropriate values. The object distance was set at 420 mm, the speed of the electric moving stage was 

fixed at 2.8 mm/s, and the exposure time was set at 90 ms. 

 

Figure 1. The hyperspectral imaging system: (1) CCD camera; (2) imaging spectrograph; 

(3) lens; (4) scattering cylinder; (5) sample stage; (6) electrical moving stage; (7) dark room; 

(8) light source; (9) light source controller; (10) moving stage controller; (11) computer. 

2.2. Seed Sample Selection and Preparation 

The dry seeds of waxy corn cultivars, Hangyunuo No.1 (HANG), Suyunuo 14 (SU), Huyunuo No.1 

(HU), and Yanhejin 2000 (YAN) were used for all the experiments in this study. These four white corn 

cultivars were all hybrid corn and used as fresh corn. The growing periods of these four cultivars varied 
from 75 days to 85 days. Therefore，their optimal harvest time is various as fresh foods. These seeds 

were all produced in 2011 in China’s Zhejiang province，thus eliminating the effect of seed age and 

plant region. After being harvested and dried, the seeds were put in plastic bags and sealed in a plastic 

box to prevent moisture absorption during store. Before acquisition of the HSI data, the moisture content 

had been tested to make sure that all the samples had nearly the same moisture content. The final 

moisture content was 12% before signal acquisition. To explore the feasibility of maize seed cultivar 

classification using HSI, 150 samples of each variety were selected for imaging. The maize seeds were 

placed on a black painted platform where HSIs were captured. Considering the imparity of corn seeds, 

both sides of every seed were explored (Figure 2). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Hyperspectral images of four maize seed varieties: (a) HANG; (b) SU; (c) HU; 

(d) YAN. 

2.3. Image Acquisition and Calibration 

HSIs of maize seed samples were collected in the wavelength range of 400–1000 nm, including  

477 wavebands. The seed samples were put on a black painted sample stage for easier background 

segmentation during image processing. The images were acquired line-by-line as the samples were 

passing the view slot of the CCD camera. The reflectance intensities of each pixel of the sample images 

were recorded at each wavelength slice. The image width was 670 pixels and the height was variable as 

the set of frames, depending on the number of samples. 
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Spectral calibration was performed for correction of light source effects using the following  

formula [24]: ܫ = ଴ܫ − ܹܤ − ܤ  (1)

where I is the relative reflectance intensity of each wavelength slice of HSI, ܫ଴ is the original reflectance 

intensity of the hyperspectral image, B is the intensity of the dark current, acquired by covering the lens 

with its cap and turning off the light source, and W is the reflectance intensity of the standard white panel 

(Spectralon, Labsphere Inc., North Sutton, NH, USA). All the corrected images were used in the 

following spectral information extraction and image processing procedure. The image acquisition and 

calibration were carried out using Spectracube 2.75b (Spectral Imaging Ltd., Oulu, Finland). 

2.4. Spectral and Image Feature Extraction 

2.4.1. Background Segmentation and Spectra Extraction 

The image processing procedure, as illustrated in Figure 3, consisted of a series of steps to acquire 

data and develop the mathematical model. Initially, every image was calibrated with the dark current 

and white reference image with Equation (1). Successively, the background was removed according to the 

contrast of relative reflectance intensity between the black background and kernels. Here 20 × 20 pixels 

were selected from the kernel and background as a region of interest (ROI). Reflected spectra of the  

two ROIs were averaged and compared. The results show that the highest variance of wavelength 

between kernels and background is at about 850 nm. Maize kernels were segmented from the images by 

a threshold process of image at 850 nm to create a mask of the ROIs. Spectra of each pixel from every 

kernel were extracted and averaged. Background segmentation and spectra extraction were carried out 

using ENVI 4.8 (ITT Visual Information Solutions, Boulder, CO, USA). 

 

Figure 3. The method of hyperspectral image processing, including ROI selection, 

background segmentation, and feature extraction. 
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2.4.2. Spectra Preprocessing 

Data was preprocessed in order to highlight the differences among the study samples. The spectral 

sensibility of the CCD camera has lower signal-noise ratio near 400 nm and 1000 nm wavelength. 

Therefore, spectral information from 430 nm to 980 nm was chosen for further analysis. Before selecting 

optimal wavelength, the spectra were preprocessed by Savitzky-Golay (SG) smoothing filter and 

derivate. The role of the smoothing filter was to improve signal-noise ratio and eliminate the random 

noise. The derivate function was used to correct the baseline effects, which could amplify and resolve 

the overlapped signal. In SG smoothing, the frame size and the polynomial order must be specified. The 

frame size must be odd and set at 21, and the polynomial order must be less than the frame length and 

was set at 2 in this experiment. The first derivative was applied on the smoothed spectra by a SG filter. 

The smoothed and derivate spectra were employed in the following optimal wavelength selection (Figure 4).  

 
(a) 

 
(b) 

Figure 4. An example of spectra preprocessing. (a) Original spectrum; (b) spectrum after 

SG smoothing and derivation. 
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2.4.3. Optimal Wavelength Selection 

Each of the extracted spectra consisted of 477 bands and suffered from multicollinearity. It was 

expected that fewer bands could represent the useful information. A small number of variables can 

reduce the effect of non-related variables and promote the model performance. Successive projections 

algorithm (SPA) is a forward selection method and is proposed for optimal waveband selection. It can 

minimize the collinearity among variables with simple operation and has been used in previous  

research [28–30]. SPA was used for dimension reduction and optimal wavelength selection in the data 

process procedure. The steps of SPA are described below [28]: 

Step 0: Assume that the first wavelength k(0) and the number N are given. Let xj = jth column of 

spectral matrix Xcal; j = 1, 2, …, J. 

Step 1: Let S be the reset column set of Xcal. S doesn’t contain any selected wavelength. 

Step 2: Calculate the projection of xj on the subspace orthogonal to xk(n-1) as Px୨ = x୨ − (x୨୘x୩(୬ିଵ))x୩(୬ିଵ)(x୩(୬ିଵ)୘ x୩(୬ିଵ))ିଵ (2)

Where P is the projection operator. 
Step 3: Let k(n) = arg(maxฮPx୨ฮ), j∈S. 

Step 4: Let xj =	Px୨, j∈S. 

Step 5: Let n = n + 1. If n < N, go back to step 1. 

End: This time the final selected wavelengths are k(n), n = 0,…, N – 1. 

We built the discriminant model using the selected wavelength and calculate the root-mean-square 

error (RMSE). Then, we changed the number N and did step 1 to step 5 again until the minimal and 

steady RMSE was acquired. The final selected wavelengths were chosen for following analysis. 

Partial least squares (PLS) is another widely used method in wavelength selection for HSI analysis 

in agriculture and food industry. With the PLS method, variable importance in projection and regression 

coefficients estimated by PLS can be used to select variables [31]. In our research, the regression 

coefficients of partial least squares–discriminant analysis (PLS-DA) were used for optimal  

wavelength selection. 

2.4.4. Image Features Extraction 

Morphologic features were employed for variety classification in pioneer research [32,33]. According 

to these previous study results, five morphologic features of each kernel were selected and extracted in 

the study: area, circularity, aspect ratio, roundness, and solidity. Area is the number of pixels on a 

segmented single kernel. Circularity is calculated by the Equation (3).  ܿ݅ݕݐ݅ݎ݈ܽݑܿݎ = 4π ∗ ଶ (3)ݎ݁ݐ݁݉݅ݎ݁݌ܽ݁ݎܽ

Where perimeter is the length of the outside boundary of the selected kernel. The value of circularity 

indicates a perfect circle when it equals 1. As the value approaches 0, it indicates an increasingly 

elongated shape. Aspect ratio denotes the ratio of the major axis to the minor axis of fit ellipse for a 

kernel. Roundness is calculated by the Equation (4). 
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ݏݏ݁݊݀݊ݑ݋ݎ = 4 ∗ ߨܽ݁ݎܽ ∗ ଶ (4)ݏ݅ݔܽ_ݎ݋݆ܽ݉

Solidity denotes the ratio of area to convex area. The morphologic features were extracted from the 

image of 850 nm. 

Texture varied among different seed cultivars. In this experiment, we employed the gray-level  

co-occurrence matrix (GLCM) [34] to describe the texture of maize seed. The fundamental parameters 

for computing GLCM were defined so that the displacement was set as 1 and the orientation values were 

0°, 45°, 90°, and 135°. Energy, contrast, correlation, entropy, and their standard deviations (SD) for all 

bands of images were calculated. Because of the current equipment limitation, the 1–50 bands were 

affected by the noise. Instead, we chose 51–477 bands of images to analyze and averaged the extracted 

GLCM features. 

The image and spectral features extraction were applied using Matlab (Version R2012a, The 

Mathworks Inc., Natick, MA, USA). 

2.5. Development of Classification Models 

Selection of the classifier is the most important factor in the process of building a classification model. 

There are hundreds of classifiers, and it always confuses researchers to select which is the most 

appropriate one. For the purpose of finding a classifier that would function well with their dataset, they 

often tried several of them and then selected the one that had the highest accuracy. Fernández-Delgado 

evaluated 179 classifiers in order to achieve significant conclusions about the classifier behavior [35]. 

They used 121 datasets and built classification models. They found that the library for Support Vector 

Machines (lib-SVM) with the Gaussian kernel and the random forest were the best one. Accordingly, 

the lib-SVM [36] was employed in our research. C-Support Vector Classification (C-SVC) and radial 

basis function (RBF) kernel were chosen for multi-classification purpose. For the best performance, the 

grid-search and five-fold cross-validation were applied to optimize parameters. In order to compare the 

performance of SVM, the PLS-DA model was developed to classify the seed varieties in this study. The 

leave-one-out method was applied to the PLS-DA models and the accuracy of every class was calculated. 

3. Results and Discussion 

3.1. Spectra of Four Varieties of Maize Seeds 

The mean relative reflectance spectra of the four varieties of maize seeds are shown in Figure 5. 

Comparison results of the four spectra curves showed similar trends between different varieties. In more 

detail, the germ-up side spectra of HU and SU nearly overlapped at wavelength from 680 nm to  

940 nm. However, for germ-down side, the spectra have obvious differences between HU and SU in this 

region. SU and HANG can be separated at wavelength region from 500 nm to 940 nm in germ-up side 

images. Meanwhile, SU and HANG also have some differences below 500 nm in germ-down side 

images. For these four varieties, the wavelength regions that can separate them were inconsistent 

between the spectra of germ-up and germ-down sides. In Figure 5a, the spectra of HU and SU nearly 

overlapped in the range of 680–1000 nm. However, in Figure 5b, the spectra of HU and SU were 
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different. These differences may be related to different chromospheres and other components of both 

sides of maize kernels. For both sides of corn seed, it is necessary to analyze them separately. 

 
(a) 

 
(b) 

Figure 5. Comparison of spectral reflectance of four maize seed cultivars extracted from 

germ-up (a) and germ-down (b) images. 

3.2. Optimal Spectral Wavebands  

As described above, the raw spectral data were preprocessed by SG smoothing and derivation. After 

this, the optimal wavelength spectra were selected by SPA. SPA was proposed as a novel method to 

minimize variable collinearity and select the optimal variable [31]. This algorithm started with one 

wavelength, and then added a new one in each iteration process, and a specified number of wavelengths 

were selected at the end. The selections of optimal wavebands are shown in Figure 6 and Table 1. The 

results of wavelength selection are related to the image type from which the spectra information was 
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extracted. The most optimal wavebands of germ-up images concentrated in the regions of lower wavelength 

(<500 nm) and higher wavelength (800–940 nm), as the most optimal wavebands of germ-down images 

were located in the region of 500–650 nm. In terms of composition, the germ side contains starch, oil 

(in the embryo), and other chemical compounds. The leading composition is starch in the endosperm 

side. Accordingly, the oil- and starch-related bands were reflected in the optimal wavebands, respectively. 

 
(a) 

 
(b) 

Figure 6. Selected variables using SPA, spectra extracted from germ-up (a) and germ down 

(b) images. 

Table 1. The final selected wavelengths by SPA. 

 Selected Wavelengths (nm) 

Germ-up images 

445.44, 447.85, 451.46, 453.87, 456.29, 458.70, 462.33, 469.59, 
480.51, 491.46, 497.56, 506.11, 539.28, 581.40, 596.35, 626.38, 
637.68, 891.46, 927.48, 935.20, 940.35, 945.50, 951.93, 959.65, 

964.79, 968.65 

Germ-down images 
444.24, 462.33, 472.01, 481.73, 493.90, 506.11, 538.05, 561.53, 
576.42, 588.87, 600.10, 616.35, 641.46, 661.61, 708.45, 801.58, 

901.75, 960.94, 968.65 
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PLS-DA is another method employed for band selection. It is used to find the fundamental relations 

between the dependent variables (Y) and the independent variables (X). A latent variable approach is 

used to model the covariance structures in X and Y spaces. The number of latent variables were chosen 

based on the minimum root-mean-square error of cross validation (RMSECV) and it was found to be  

11 latent variables. The regression coefficients of PLS-DA models, which were obtained from the spectra 

after SG preprocessing, are show in Figure 7. The wavelengths were selected as the optimal bands 

according to the highest absolute values of the regression coefficients. 

 
(a) 

 
(b) 

Figure 7. Weighted regression coefficients of the PLS-DA model with selected wavelengths. 

Spectra extracted from germ-down (a) and germ-up (b) images. 

3.3. Classification by SVM and PLS-DA 

Seed purity is an important standard in seed lot quality. In previous studies, the variety of bulk 

samples was discussed using the spectra and texture features of bulk samples [26,37], which can’t solve 

the problem of seed purity testing. In this study, the selected wavelength data by SPA and PLS-DA, as 
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well as the full wavelength of spectral data, morphological, and textual features, were used for individual 

classification purposes. One hundred kernels of each variety were randomly selected as training sets, 

and the other samples were used as a test set (50 kernels for each variety sample). SVM and PLS-DA 

were applied in this research for pattern recognition. In order to improve prediction accuracy and 

generalization ability, the grid-search and five-fold cross-validation were applied to optimize 

parameters. The regularization parameter γ and the RBF kernel function parameter σ2 were set at the 

value range from 2−10 to 210, respectively. In the PLS-DA model, the number of latent variable was set 

as 11. The method of SVM is especially suitable to the small dataset and high dimension feature space 

learning case. Comparing the accuracies of prediction listed in Table 2, the performance of SVM is better 

than PLS-DA on most types of selected input datasets, except on the dataset selected by PLS-DA. 

Table 2. The SVM and PLS-DA average classification accuracies (%) of predict set, 

including both types of images. 

Image Type 
Classification 

Method 

Full 

Bands 

Image 

Features 

Selected Bands Features Fusion 

SPA PLS-DA 
SPA + Image 

Features 

PLS-DA + 

Image Features 

Germ-Up Images 
SVM 94.6 86.6 96.2 66.1 98.2 77.4 

PLS-DA 91 65.8 82 83.1 86.4 83.5 

Germ-Down Images 
SVM 89.2 86.8 95 78.6 96.3 86.1 

PLS-DA 88.4 67.4 86.5 86.8 91.6 86.8 

3.3.1. Classification Using Spectral Features 

When the raw spectral data was applied in building the SVM classification model, the average 

accuracy for prediction classification was 94.6% on the germ-up dataset and 89.2% on the germ-down 

dataset. In the case of optimal wavelength-selected wavebands by SPA, the average classification 

accuracy was 96.2% on the germ-up dataset and 95.0% on the germ-down dataset. The classification 

accuracies of full wavelengths spectral data can be rivaled by the optimal wavebands for analysis. In the 

full-band spectra case, the correlation between adjacent wavebands and high dimensionality might even 

lead to worse results. Pre-processing the high dimensional data into a lower-dimensional form is a good 

solution. The method of dimensionality reduction is very important. The results shown in Table 2 

illustrate that more satisfactory classification results may be obtained using fewer features extracted by 

SPA than PLS-DA. 

3.3.2. Classification Using Image Features 

When morphologic and texture features were used as input for SVM and PLS-DA, SVM produced a 

better performance and accuracy on the dataset of both sides of the kernel, as shown in Table 2. However, 

it is not as preferable as the accuracy of full-band spectra. This is due to the shape of maize kernels being 

not described sufficiently. In the previous studies of rice or wheat, samples have a more regular 

morphological form than maize kernels and a satisfactory accuracy could be obtained with these simple 

features [32,33]. However, in the maize case, the larger number of appearance features required more 

complicated extraction algorithms for satisfactory results. For example, in the research made by  
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Chen et al. [2], 17 geometric features, 13 shape features, and 28 color features were extracted and built 

into the classification model. When morphological characteristics and color were similar among species, 

it was difficult to classify them by visual methods. 

3.3.3. Classification Using both Spectral and Image Features 

As analyzed above, employing spectral and image features alone was only good for separating one 

or several types of maize seeds. Different varieties of maize seeds have varied characteristics revealed 

in color, composition, and appearance aspects. Spectral data is related to color, moisture, protein, and 

other components of seeds. According to the discrimination results displayed in Table 2, the 

classification accuracies using spectral and morphologic fusion data as input were higher than that of 

using spectral or image features alone. In addition, datasets from both sides of the kernels had the same 

trend. The identification accuracy of all maize seed varieties reached 98.2% on the germ-up dataset and 

96.3% on the germ-down set by SVM. The results were similar to the previous study made by  

Wang et al. [27]. They employed a back propagation neural network and data fusion (optimal 

wavelength and image data) to classify rice variety discrimination. The best results were based on the 

spectral and image data fusion. 

4. Conclusions 

A novel method for identifying waxy corn seed purity was proposed and tested in this paper. VIS/NIR 

HSIs were used in differentiating maize seed varieties. The classification accuracy was related to the 

features employed for classifier inputs. Although spectral data without any optimized selection to reduce 

dimension performed well on the dataset, the decreased number of input variables can decrease the 

training time cost. The satisfactory results were obtained after the raw spectral data were processed by 

SG smoothing and derivation, and the optimal wavelengths were selected by SPA. Since spectra of maize 

seeds were affected by variety, growing region, climate, and produce year, etc., employing spectral data 

alone for analysis is not reasonable for variety classification. The appearance of seeds is the steady 

genetic characteristic and it is one of the assessments for variety classification. Mathematically, it is 

difficult to acquire a complete description of the appearance differences between seed cultivars. To solve 

this problem, both the spectral and image data were chosen as inputs of SVM for classification. Using 

this method, the classification accuracies reached more than 98.2% and 96.3% for the germ side and the 

endosperm side, respectively. Finally, we can conclude that VIS/NIR HSI together with spectra and 

image analysis has the potential to differentiate maize seed varieties and test seed purity effectively. 

The kernels used for modeling in this research were produced in the same year. Further research is 

expected to take the seed sample plant in different regions and years into account to improve the 

robustness of the classification model. In addition, the spectral range of HSI should be expanded because 

NIR spectra can explain the difference of chemical constituents between seed cultivars. The 

morphological and textural descriptions of maize seeds still need to be strengthened. The combination 

of NIR spectra and more image features will be employed for analysis in our future work. 
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