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Abstract: We propose a generative framework for 3D human pose estimation that is
able to operate on both individual point sets and sequential depth data. We formulate
human pose estimation as a point set registration problem, where we propose three new
approaches to address several major technical challenges in this research. First, we integrate
two registration techniques that have a complementary nature to cope with non-rigid
and articulated deformations of the human body under a variety of poses. This unique
combination allows us to handle point sets of complex body motion and large pose variation
without any initial conditions, as required by most existing approaches. Second, we
introduce an efficient pose tracking strategy to deal with sequential depth data, where
the major challenge is the incomplete data due to self-occlusions and view changes. We
introduce a visible point extraction method to initialize a new template for the current frame
from the previous frame, which effectively reduces the ambiguity and uncertainty during
registration. Third, to support robust and stable pose tracking, we develop a segment volume
validation technique to detect tracking failures and to re-initialize pose registration if needed.
The experimental results on both benchmark 3D laser scan and depth datasets demonstrate
the effectiveness of the proposed framework when compared with state-of-the-art algorithms.

Keywords: point set registration; visible points extraction; segment volume validation;
human pose estimation
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1. Introduction

Human pose estimation is an important research topic in the field of computer vision and pattern
recognition, which has been actively studied for decades [1]. In recent years, with the rapid development
of various 3D sensing technologies, such as laser scanners and the affordable RGB-D depth sensors
(e.g., Kinect from Microsoft), human pose estimation is attracting more and more attention lately [2,3]
due to its wide applications (e.g., digital entertainment [4] and medical diagnostics [5–8]). Although
significant progress has been obtained by recent endeavors, human pose estimation from 3D point sets
or depth data remains a challenging problem due to several factors, such as the high degree-of-freedom
(DoF) of pose parameters, large pose variation, complex motion patterns, body shape variability and
imperfect sensor data (noise, outliers, incomplete date caused by self-occlusions and view changes).

Traditional pose estimation approaches are based on 2D images or image sequences captured from
one or multiple cameras [9], where 2D image data have inherent ambiguity and uncertainty [10]. Recent
research activities are more focused on the point sets or depth maps captured by 3D sensors, which
are becoming more affordable and prevalent. These approaches can be roughly divided into three
categories, discriminative, generative and hybrid. Discriminative approaches usually involve a learning
process, which requires a labeled training dataset to deal with complex shape, pose variability and
various motion patterns [11–14]. A large and diverse training dataset is imperative for this kind of
approach. Generative ones treat pose estimation as an alignment problem where the objective is to fit a
pre-defined template to a target point set. Furthermore, many approaches formulate pose estimation as
a point set registration problem where an articulated structure is involved, often with the local rigidity
assumption [15–18]. These approaches usually require good correspondence initialization or similar
poses between the template and target to avoid being trapped in local minima or use some data-driven
features to reduce the search space. Particularly, for sequential pose tracking, previous pose
estimation is often used to predict the new pose and/or to initialize the registration in the present
frame [18–21]. Hybrid approaches attempt to take advantages of two kinds of approaches by involving
a pre-labeled database to provide good pose or correspondence initialization for template-based pose
estimation [19,22].

In this paper, we propose a new generative framework for human pose estimation from the perspective
of probabilistic point set registration. Our approach is suitable for both 3D point sets (from laser
scanners) and sequential depth data (from depth sensors), where there are three main challenges.
Correspondingly, we have three main technical contributions in this work. First, it is difficult for
the template-based registration to deal with large pose variation in the 3D point sets, which exhibit
both articulated and non-rigid deformations globally and locally. We propose a hybrid registration
approach to cope with this problem by integrating our recently proposed topology-aware non-rigid
registration algorithm, called global-local topology preservation (GLTP) in [23], with a segment-aware
articulated iterative closest point (SAICP) adapted from articulated iterative closest point (AICP) [16]
to better interface with GLTP results. Specifically, GLTP provides reliable correspondence estimation
and segmental labeling that naturally fits with SAICP-based articulated pose estimation. Second, the
depth data are often noisy and incomplete due to the self-occlusion and view-changing problems, which
fundamentally challenge the registration process. We invoke an efficient visible point extraction scheme
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to refine and adapt the template sequentially, which improves both the efficiency and accuracy of pose
tracking. Third, sequential pose tracking could inevitably have failed frames, which must be detected
and corrected to avoid error propagation. We develop a simple, yet effective segment volume validation
technique to ensure the robustness and stableness of pose tracking over a long depth sequence. A couple
of metrics are defined to validate each segment from the GLTP’s output, and the necessary template
update or re-initialization is triggered before SAICP is applied. The proposed framework is evaluated
both on 3D laser scan data and standard depth data by comparing against several recent algorithms.
Our algorithm can achieve state-of-the-art performance in terms of the joint position error at moderate
computational complexity.

The rest of this paper is organized as follows. In Section 2, we provide a brief review of the related
work in the fields of point set registration and human pose estimation, as well as our research motivation.
In Section 3, we present the proposed framework for pose estimation and tracking, where five major
steps are discussed in detail along with a complete pseudocode. Experimental results are reported in
Section 4, where our algorithm is evaluated on two benchmark datasets and compared against several
state-of-the-art algorithms. We draw conclusion in Section 5.

2. Related Work

We provide a brief overview of the background of this research, which involves two separate, but
related topics: point set registration and human pose estimation, as shown in Figure 1. Particularly,
we focus on the recent research on human pose estimation from depth data, which has many practical
applications due to the recent development of RGB-D cameras and other affordable range sensors.

Human Pose EstimationPoint Set Registration

Images/videos3D point sets

Mesh surface models Geometric models Parametric models

Rigid registration Non-rigid registration

Articulated registrationTopological regularization

Depth data

Proposed research

Figure 1. Related work in terms of point set registration and human pose estimation.

Point set registration is a fundamental topic for many computer vision tasks. The registration
techniques usually fall into two categories: rigid and non-rigid depending on the underlying
transformation model. Iterative closest point (ICP) [24,25] is a classic rigid registration method, which
iteratively assigns correspondence and then finds the least squares transformation by using the estimated
correspondence. For non-rigid registration, shape features are commonly used for correspondence
initialization [26–28] or directly involved in the matching process [29,30]. Recently, topology-aware
approaches are becoming an important category where a Gaussian mixture model (GMM)-based
probabilistic registration strategy is commonly used [23,31–36]. For example, a Gaussian radial basis
functions (GRBF)-based displacement function with a global topological constraint, coherent point
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drift (CPD), was introduced in [33,34], which leads to a powerful and general GMM-based non-rigid
registration algorithm. Two kinds of graph-based regularizations, which aim to improve the robustness to
outliers and to preserve the intrinsic geometry, were incorporated in the CPD framework [37,38]. In [23],
by jointly considering the global and local topological constraints, global-local topology preservation
(GLTP) was proposed to deal with non-rigid and highly articulated deformations. As a special case of
non-rigid registration, articulated structure registration is an active and interesting research topic due
to its wide applications. Most existing approaches assume that the articulated structure is locally rigid
(e.g., [16,17]) and often require good correspondence initialization or similar poses between the template
and the target to avoid being trapped into local minima [16,22].

On the other hand, traditional human pose estimation research is mainly based on 2D images or
videos [9], and there is a dramatic increase of research efforts on pose estimation from 3D data, including
point sets and depth maps, due to the availability of various affordable 3D sensors. A key element
in the problem of pose estimation is human body representation, and the often used models include
mesh surface, geometric and parametric models. In this paper, we focus on the mesh model based
representation, and human pose estimation is cast as a point set registration problem. The main challenge
here is the large pose and shape variations between the template and observed target models, especially
when there is no temporal information available, such as individual 3D laser scan data. An often used
remedy to this problem is to involve some training data, an efficient classifier or data-driven features
to initialize the registration process. For example, a 3D database, which contains a large number of
mesh models along with embedded skeletons, was used in [22] to search for the most similar pose
for a given input depth image based on which, CPD is performed for pose estimation by refining
correspondences. In [13], the input depth image is matched to the template model by employing a
pre-trained regression forest; then, joint positions are estimated by minimizing an energy function from
predicted correspondences over the full body. In [39], an upper-body segmentation is first obtained from
depth images, which is used to initialize AICP-based pose estimation. Additionally, human pose tracking
was also recently studied intensively, which takes advantage of the smooth motion assumption and uses
pose estimation in the previous frame to initialize the present one [18–20]. However, sequential depth
data usually are noisy and incomplete due to significant self-occlusions and dramatic view changes,
which lead to inaccurate or unstable pose estimation. Therefore, some constraints are introduced to
improve the reliability of pose estimation. For example, some pose hypotheses are predicted to guide
pose estimation in a new frame [19,40], which are created from detected feature points corresponding to
anatomical landmarks. In [18,41], the pose hypothesis in the current frame is predicted by a linear third
order autoregression model, which involves three previous estimated poses. It is worth mentioning that
failure detection is a very important step for pose tracking. Some kinematics and physical constraints
are used in [22,42] to detect failures after pose estimation and to make necessary corrections if needed.

Our research is deeply motivated and inspired by the aforementioned endeavors. We are specifically
focused on three issues related to some previous limitations. The first is to deal with complex articulated
non-rigid deformations caused by large pose and shape variations by a unique hybrid registration
approach that does not require correspondence initialization and can deal with large pose variation.
The second is to cope with self-occlusions and view changes in pose tracking by invoking a sequential
template update strategy that does not require any feature detection or data segmentation. The third
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is to detect pose tracking failures during (not after) pose estimation by using a new segment volume
validation technique after correspondence estimation, which is amenable to represent kinematic and
psychical constraints.

3. Proposed Framework

An overview of the proposed framework is shown in Figure 2, which involves five steps. First, we
learn a subject-specific articulated model to initialize the body shape and size for a new subject. Second,
visible point extraction is performed from the subject-specific model to create a partial template model,
which either involves previous pose estimation or a “T-pose” template. Third, our recently proposed
non-rigid registration algorithm (GLTP) is used for correspondence estimation from the observed target
model. Fourth, segment volume validation is invoked to detect tracking failures and to trigger pose
re-initialization if needed. Last, segment-aware AICP (SAICP) is used for articulated pose estimation by
refining correspondence estimation at each segment iteratively. For 3D point sets, only Steps 1, 3 and 5
are needed; while for depth sequences, sequential pose tracking will involve all steps, and Steps 1, 2, 3
and 5 will support frame-by-frame pose estimation.

Figure 2. Overview of the proposed human pose tracking framework.

3.1. Subject-Specific Shape Initialization

A personalized articulated shape model is important for accurate and robust pose estimation due to the
large body shape and size variabilities between the template and a target model. In [20], the personalized
body shape represented by vertices of a given mesh is jointly controlled by a low-dimensional shape
parameter vector learned from a laser scan database and a pose parameter vector through linear
blend skinning. These shape parameters are obtained by optimizing a local cost function, which
considers both Euclidean and the norm-based distances between matched points. In [18], after a global
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scaling initialization, the template shape is adapted sequentially after frame-wise pose estimation by
segment-level size estimation and shape refinement along the norm direction.

In this work, we learn a subject-specific articulated model in two steps by involving a standard
“T-pose” template Y (M × D) that represents M D-dimensional points {ym|m = 1, ...,M} and an
initial target Z (N ×D), which denotes N D-dimensional points {zn|n = 1, ..., N} from a subject (with
four limbs fully stretched under a normal standing pose). Both Y and Z are preferred to have similar
poses. Specifically, Y is extracted from a human mesh model with pre-labeled body segments and an
articulated skeleton. Z is captured by a 3D sensor that should reflect a naturally stretched pose where
most joints are revealed for accurate shape initialization.

In the first step, we apply the coherent point drift (CPD) algorithm [34] for non-rigid registration
between Y and Z. CPD is a powerful Gaussian mixture model (GMM)-based registration approach,
which enforces the GMM centroids to move coherently as a group to preserve the topological structure
of the point set. The core of the CPD algorithm is that it defines the non-rigid transformation as
a displacement function in a reproducing kernel Hilbert space (RKHS) with the spatial smoothness
regularization defined as the Fourier domain norm. Additionally, it also proved that the optimal
displacement function is represented by a linear combination of Gaussian kernel functions as:

T (Y,W) = Y + GW (1)

where GM×M is the Gaussian kernel matrix with element gij = exp(−1
2
‖ yi−yj

β
‖2), β is the kernel

width and WM×D is the weight matrix. The regularization term of W, which encourages global coherent
motion, is defined as:

ECPD(W) = Tr(WTGW) (2)

where Tr(B) denotes the trace of the matrix B. The solution of W can be achieved by an iterative
expectation maximization (EM) algorithm. Since Y and Z do not have large pose variation, CPD could
provide reliable registration results along correspondence estimation between the two point sets.

In the second step, we bake a skeleton in Z by transforming the skeleton of Y via segment-level
rigid registration according to the estimated correspondences. As a result, a subject-specific articulated
shape model Ẑ is learned that plays an important role for future pose estimation. In the case of depth
data with incomplete front-view point sets, we introduce visible point extraction (to be discussed in the
following) to obtain a front-view template prior to CPD registration. Then, after segment-level rigid
registration, invisible parts will be transformed along with their visible counter parts to build a complete
subject-specific model Ẑ. An example of subject-specific shape initialization is shown in Figure 3.

CPD non-rigid 

registration
Body segmental 

label transfer

Segment-level

rigid registration

(a) A �T-pose� human

body template

(b) An initial target model 

(front-view depth map)

(c) A target model with

segmental labeling

(d) Subject-specific model 

with an articulated skeleton

Figure 3. Subject-specific articulated body shape initialization.
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3.2. Visible Point Extraction

Visible point extraction is important to support depth map-based pose estimation, especially in the
case of sequential depth data. This step requires the relative position between the full-body template
model and the camera. In this work, we use the hidden point removal (HPR) operator [43] to detect
visible points of a given template model. Given a point set A = {ai} and the viewpoint C (camera
position), the HPR operator mainly has two steps to determine ∀ai ∈ A whether ai is visible from C. In
the first step, we associate with A a coordinate system and set C as the origin. Then, we find the inverted
point of each ai using spherical flipping [44] with the following equation:

âi = ai + 2(R− ‖ ai ‖)
ai
‖ ai ‖

(3)

where R is the radius of a sphere, which is constrained to include all ai. We denote the set of inverted
points by Â = {âi}. In the second step, we construct the convex hull of S = Â

⋃
{C}. Then, we can

mark a point ai, which is visible from C if its inverted point âi lies in S. An example of visible point
extraction is shown in Figure 4. After this process, we can obtain the visible point set Ẑ = {ẑm}Mvis

m=1 of
the full-body template model that is ready to perform the registration.

Camera

                       (a)                                                     (b)                                        (c)                                  (d)

Figure 4. (a) Relative position between the camera and the 3D template; (b) The inverted
points lie in the convex hull; (c) The extracted visible points; (d) The invisible points.

3.3. Topology-Aware Non-Rigid Registration

The objective of this step is to estimate correspondences between a labeled template point set and any
target point set with an arbitrary pose. This is critical for latter SAICP-based articulated pose estimation.
Because the subject-specific model Ẑ may not be in a strict fully-stretched “T-pose”, it may not serve as a
good template here. Therefore, in the case of individual point set registration, we always use the standard
“T-pose” template, where all body segments are fully stretched, as shown in Figure 3a. In the case of
sequential depth data, we can either use the standard “T-pose” template for every frame by treating each
frame independently or invoke a tracking strategy by creating a new template from the pose estimation
result of the previous frame. The latter one is more computationally efficient, but must be accompanied
with tracking failure detection and may require re-initialization if needed. As those used in Section 3.1,
we still use Y and X to denote the template and a new target point set, respectively, in the following.

Due to the possible highly articulated non-rigid deformation in X, traditional registration algorithms
(e.g., CPD) may not be able to provide reliable correspondence estimation. Therefore, in this work,
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we use our previously proposed GLTP algorithm [23], which unifies two topologically complementary
constraints, i.e., CPD-based global motion coherence and local linear embedding (LLE)-based local
topology [45], into a GMM-based probabilistic registration framework. Specifically, the CPD-based
motion coherence defined in Equation (2) is helpful to keep the overall spatial connectivity of a multi-part
point set during the registration process, and the LLE-based local topological constraint is useful to
preserve the neighborhood structure during non-rigid deformation. In this work, we present GLTP in the
context of human pose estimation. For each point in Y, the local neighborhood is represented by the
weighted linear combination of its pre-selected K nearest neighbors where the weights are obtained by
minimizing the reconstruction error. Then, the LLE-based regularization term has the form:

ELLE(W) =
M∑
m=1

‖(ym + G(m, ·)W)−
K∑
i=1

Lmi(yi + G(i, ·)W)‖2 (4)

where G is the Gaussian Kernel with coefficients matrix W shown in Equation (2), which controls
the transformation, G(m, ·) denotes the m-th row of G and L is the weight matrix containing the
neighborhood information for each point in Y. The optimal W to preserve the local neighborhood
structure is obtained by minimizing Equation (4). Following the general GMM formulation [46] and
incorporating two regularization terms, the objective function of GLTP can be written as:

Q(W, σ2) =

M,N∑
m,n=1

pold(m|xn)
‖ xn − [ym + G(m, ·)W] ‖2

2σ2
+
NpD

2
ln(σ2)

+
α

2
ECPD(W) +

λ

2
ELLE(W) (5)

where σ2 is the isotropic variance of all Gaussian components, α and λ are two trade-off parameters
controlling the GMM matching term and topological constraint terms, D = 3 in this work and
Np =

∑N
n=1

∑M
m=1 p

old(m|xn) and pold(m|xn) are the posterior probabilities from previous
GMM parameters:

pold(m|xn) =
exp(−1

2
‖ xn−(ym+G(m,·)W)

σold ‖2)∑M
i=1 exp(−1

2
‖ xn−(yi+G(i,·)W)

σold ‖2) + c
(6)

where ω (0 ≤ ω ≤ 1) is the weight of a uniform distribution to account for outliers and c = (2πσ2)
D
2 ωM

(1−ω)N
.

We rewrite the objective Equation (5) in matrix form, take the derivative of it with respect to W and set
it equal to zero; then, W can be obtained by solving a linear system:

[d(P1)G + σ2αI + σ2λMG]W = PX− (d(P1) + σ2λM)Y (7)

where I denotes the (M×M ) identity matrix, P (M × N ) records the probability of correspondences
between template Y and target X and M = (I − L̂)(I − L̂)T where L̂ is an expansion matrix of L by
filling zeros to reshape into a square matrix (M×M ). As detailed in [23], the solution of W and σ2 of
GLTP can be obtained by an iterative EM algorithm extended from the one used for CPD optimization.
Matrix P will used to initialize SAICP-based (segment-aware AICP) articulated pose estimation, to be
discussed latter.
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3.4. Segment Volume Validation

Although sequential pose tracking is efficient in dealing with depth sequences, it is important to
validate the tracking result at every frame to prevent the error from propagating over frames. This step
is especially important when there are significant and frequent self-occlusions due to dramatic pose and
view changes. Traditionally, tracking validation is done based on the pose estimation results by applying
some kinematic or physical constraints [22,42]. We propose an effective approach to detect tracking
failures at an earlier stage (after GLTP and before SAICP). We first obtain the labeled point set X̂ from a
given input point set X by transferring segment labels according to estimated correspondences. We then
validate the segment volume for each body segment in X̂ represented by the minimum volume oriented
bounding box (OBB) [47,48], where two metrics are involved as follows.

Figure 5. Illustration of two metrics used for segment volume validation.

Segment overlapping metric (M1): This metric checks the overlapping ratios between every two body
segments represented by OBBs in a labeled point set X̂ of P segments, as defined below:

M1(Si) = max
j 6=i

V (B(Si) ∩B(Sj))

V (B(Si))
(8)

where Si and Sj (i, j = 1, ..., P ) denote two body segments in X̂, B(Si) represents the OBB of Si and
V (·) is the volume of an OBB (i.e., the total number of points). We compute M1(Si,Sj) by calculating
the percentage of the points, which belong to both Si and Sj , over the total number of points in Si. A
large value of M1(Si) implies a significant overlap between Si and other segments, indicating inaccurate
correspondence estimation (Figure 5a).

Segment volume deformation metric (M2): This metric measures the volume deformation of a
segment after GLTP-based non-rigid registration:

M2(Si) =
V (B(Si))

V (B(S∗i ))
(9)

where Si and S∗i are the same body segment in the target X̂ and in the template Ẑ, respectively. As
shown in Figure 5b, a small value of M2(Si) indicates that Si in X̂ has missing parts, while a large value
of M2(Si) implies that Si mistakenly includes some points from other segments. Specifically, because
the torso has a relatively stable 3D volume during pose tracking, we use the torso height to replace the
volume in Equation (9) in order to enhance the sensitivity of the torso’s M2.
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              (a)                            (b)                         (c)                         (d)

Figure 6. Some examples of segment volume validation: (a) a passing case; (b) Case I
failure (invalid M1); (c) Case II failure (invalid M1 and M2) in a couple of limbs and the
torso; (d) Case III failure (invalid M1 and M2 in most segments).

As shown in [23,49], GLTP works very well in most depth sequences we tested, but there are still
three possible challenging cases for which GLTP may fail with invalid correspondence estimation, as
shown in Figure 6: (1) Case I: some segments become invisible in the current frame due to the view
change (e.g., the subject is making a turn from the frontal view to the side view, Figure 6b); (2) Case II:
some segments suddenly reappear after being absent for some frames due to the view change (e.g., the
subject is turning to the frontal view from the side-view, Figure 6c); (3) Case III: there are significant
self-occlusions between two adjacent frames due to large pose variation and fast motion, which causes
a large number of missing points in the target point set (e.g., the subject is making a quick high kick,
Figure 6d). We will discuss how to detect these three cases by the two proposed metrics and how to
remedy accordingly. The thresholds of M1 and M2 are given in the experiment.

• The first case can be detected if M1 is too large for a particular segment or the number of points in
a segment becomes too small (e.g., less than 25%). Correspondingly, we update the template
obtained from the previous frame by declaring this segment “invisible” and then re-perform
GLTP-based non-rigid registration. As shown in Figure 6b, there are significant overlaps between
the right arm (purple) and the torso (blue) and between the right (black) and left (green) legs.
To mitigate this problem, those segments will not be involved during GLTP registration for
re-initialization, and they will deform along with their parents according to their rotations in the
previous frame during the latter articulated registration.
• The second case can be checked by both using M1 and M2. When there are a couple of limbs that

were occluded in previous frames and re-appear in the current frame, those limbs will be likely
overlapped with other segments, leading to largeM1 for those reappearing segments. Furthermore,
part of the reappearing segments could be mistakenly included in wrong segments (the torso in
most cases) whose volumes become much larger, leading to large M2. As shown in Figure 6c,
the reappearing right arm (purple) is merged into the torso (blue), resulting in large M1, and
meanwhile, both the torso and head (cyan) have a large volume change to cover part of the
right arm. The remedy for this case is to use the “T-pose” template to re-perform GLTP-based
registration for re-initialization.
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• The third case is the “worst case scenario” when most segments have invalid M1 and M2. This
case is very rare in practice, and it is usually due to large self-occlusions, as shown in Figure 6d
where the right upper-leg (black), the right arm (purple) and part of the torso (blue) are occluded
when the subject is making a quick high kick. In this case, registration-based approaches usually
will not work well, and we invoke a simple, yet effective approach to recover the underlying pose
by imposing pose continuity across frames and by introducing physical constraints in the step of
articulated registration to be introduced in the next section.

3.5. Articulated Registration for Pose Estimation

This last step involves two labeled point sets. One is the labeled target X̂ of an arbitrary pose, and
the other is the subject-specific model Ẑ, which is expected to have the same body shape and size as
X̂. The goal is to perform pose estimation of X̂ by matching with Ẑ, which includes P rigid body
segments {S1, · · · ,SP} connected by the skeleton model. Because both X̂ and Ẑ are registered with the
“T-pose” template Y, we can initialize their correspondences by referring to the same template. Then
pose estimation is converted to find the rigid transformation for each body segment Sp (p = 1, ..., P ),
which can be represented collectively by:

TW
p = TW

root · · ·TL
∨(p)T

L
p (10)

where ∨(p) denotes the index of the parent of Sp, TW
root is the transformation of the root

in the world coordinate and TL
p is the local transformation of segment Sj with respect to

its joint connecting with the parent. TW
p could be obtained by minimizing the objective

function as:

Q(TW
1 , · · · ,TW

P ) =
P∑
p=1

Mp∑
m=1

‖ TW
p ẑpm − x̂pm ‖2 (11)

where Mp is the number of points in Sp and x̂pm ∈ X̂ is the correspondence of ẑpm ∈ Sp. A direct
optimization of Equation (11) is difficult due to its non-linearity and high-dimensional pose parameters.

The original AICP algorithm in [16] adopts a divide-and-conquer strategy to iteratively estimate an
articulated structure by assuming that it is partially rigid. In each iteration, the articulated structure is split
into two parts by a joint, which is selected randomly or cyclically; then, the classic rigid ICP is performed
locally on one of these two parts. AICP works effectively when the template and target have similar
segmental configurations (i.e., similar poses), which may not be true in human pose estimation. In our
case, given reliable correspondence estimation by GLTP, we follow a more flexible and efficient scheme
to construct a partial rigid body part by selecting single or several connected segments. We develop a new
segment-aware AICP (SAICP) algorithm to find the rigid transformations for all segments by optimizing
Equation (11) in a way that reflects segment-level articulated motion. The main idea is to take advantage
of GLTP’s output by starting from the root (the torso) and head, which are relatively stable, and then
following along the tree-structured skeleton according to the connectivity between segments, as shown
in Figure 7a. This allows us to treat the limbs in a particular order, upper, lower and whole, as shown
in Figure 7b, and it is efficient to update the rigid transformations of four limbs simultaneously. It is
worth mentioning that the correspondences at each segment will be updated during each iteration when
the segment label information of X̂ and Ẑ is also used for the minimum distance search.
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                (a)                                                   (b)
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Figure 7. The illustration of the proposed segment-aware AICP (SAICP)-based registration
algorithm. (a) Two examples to construct the rigid body part: selecting a single segment (red
area) or several connected segments (blue area), which cannot be supported by the original
AICP algorithm; (b) One example of transformation estimation of the left arm. (1) The
template (green) and target (red) models; (2) The result of upper-arm deformation; (3) The
result of lower-arm deformation; (4) The result of whole-arm deformation.

The SAICP algorithm is discussed in detail as follows. Let Ψ = {S1, · · · ,Sp}, which represents a
body part composed of p (p ≤ P ) connected segments (with MΨ points) along the articulated structure
from the labeled target Ẑ. We have the objective function defined for this body part as:

Q(TW
Ψ ) =

MΨ∑
m=1

‖ TW
Ψ ẑΨ

m − x̂Ψ
m ‖2 (12)

where ẑΨ
m is a point in part Ψ in Ẑ and x̂Ψ

m is its correspondence in X̂ that is initialized by GLTP. Classic
ICP iteratively updates the correspondence x̂Ψ

m, and the part-level rigid transformation TW
Ψ can be solved

in a closed form by minimizing Equation (12). For sequential depth data, visible points are extracted
from the template Ẑ, which are involved in SAICP to estimate segment-level rigid transformations. In
order to preserve the full-body template Ẑ during pose tracking, we transform the invisible points of each
segment along with their corresponding visible points, so that we always use a pose-specific full-body
template at each frame, which is used to initialize a partial template for the next frame estimation via
visible point extraction. To ensure a smooth and reasonable tracking result, we impose two constraints
for sequential pose estimation. The first is the temporal continuity to ensure that each body segment has
a smooth motion trajectory across frames. The second is the physical constraint to avoid the overlapping
problem between any two segments. These two constraints are especially useful in the case of large
self-occlusions caused by fast motion or significant view changes (e.g., Case III in segment volume
validation). The pseudo-code of the proposed pose estimation framework is shown in Algorithm 1.
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Algorithm 1 The Pseudo-Code of the Proposed Pose Estimation Framework.
Input: “T-pose” template Y, an initial target Z and T sequential depth frames X1:T

Output: A sequence of deformed full-body models Ẑt (t = 1, ..., T ) with estimated joint positions
GLTP Initialization: ω = 0.1, K = 10, α0 = 10, β = 2, λ0 = 5× 106

Gij = exp −1
2
‖ yi−yj

β
‖2 and L→ L̂→M

Shape Initialization:
• Step 1: CPD-based non-rigid registration between Y and Z

• Step 2: Learn the subject-specific model Ẑ by segment-level rigid registration (Y ↔ Z)
• Step 3: Initialize the template for GLTP (non-rigid registration) in the first frame Y0 = Y

• Step 4: Initialize the template for SAICP (articulated registration) in the first frame Ẑ0 = Z

For each depth frame Xt (t = 1, ..., T ) do
• Represent Xt by a point set {xtn|i = 1, ..., N}
• Visible point extraction to create Y∗t−1 from Yt−1 (with tracking) or Y (without tracking)
• σ2 = 1

DMN

∑M,N
m,n=1 ‖ xtn − ym ‖2

• GLTP re-initialization for pose tracking: update G and M according to Y∗t−1

• Correspondence estimation by GLTP between Xt and Y∗t−1

•While (dissatisfy stopping criteria)
E-step:

Compute matrix P according to Equation (6).
M-step:

Compute weight matrix W and σ2 by solving Equation (7)
(a detailed solution can be found in [23])

• End while
• According to P, X̂t that is the labeled Xt with correspondences can be obtained.
• Segment volume validation of X̂t and re-initialization if needed according to Equations (8)

and (9)
• Pose estimation by performing SAICP between X̂t and Ẑ∗t−1 = {Sp|p = 1, ..., P}:

For (p from the root to all child segments)
Local ICP for Ψ = {Sp} by minimizing Equation (13)

End for
While (stopping criteria not satisfied)

For (each of four limbs)
Local ICP for Ψ = {Si (the upper-limb only)}
Local ICP for Ψ = {Sj (the lower-limb only)}
Local ICP for Ψ = {Si,Sj}

End for
End while

• The deformed subject-specific model Ẑt is obtained along with estimated joint positions
• In the case of pose tracking, update the GLTP template Yt = Ẑt

End for
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4. Experiments

Our proposed framework does not involve any training data and is evaluated on two publicly available
datasets, 3D SCAPE (Shape Completion and Animation of People) data [11] (captured by a 3D laser
scanner) and SMMC-10 (Stanford Time-of-Flight Motion Capture) data [50] (captured by a Swissranger
SR4000 time-of-flight (ToF) camera at 25 fps and a resolution of 176 × 144). Below, we present the
results corresponding to two datasets, separately.

4.1. Experiments for the SCAPE Dataset

4.1.1. Point Set Data Preparation

The SCAPE dataset contains a series of 3D scan data captured from one male subject (the only one
publicly available under different poses), which are fully registered (the index of each point stays the
same across all poses). It has one initial pose with ground-truth joint positions. To perform quantitative
comparative analysis, we develop a simple, yet effective four-step approach to generate the ground-truth
joint positions for all other poses, as shown in Figure 8. First, we perform body segmentation for the
initial pose according to joint positions. Second, for each joint, we find a set of neighboring points
around the joint area between two connected body segments and compute LLE weight coefficients to
represent each joint locally. Third, we transfer the segmental labels from the standard pose for any new
target pose. Fourth, we use LLE weight coefficients and the associated neighboring points, which share
the same indexes as those in the initial pose, to reconstruct each joint position in the target pose. In this
way, all poses will have the ground-truth joint positions created for performance evaluation.

 Initial pose with 

given joint points

Body segmentation 

by joints position

Segment label 

transferring

Find neighbors and LLE 

weights W at each joint
Joint reconstruction from 

local neighbors and W

 Initial pose with 

segmental labels

Arbitrary target pose 

without joints

Target pose with 

segmental labels

Target pose with 

joint positions

Figure 8. Ground-truth generation of joint positions for SCAPE data.

4.1.2. Experimental Results: Shape Initialization

The “T-pose” template used for the SCAPE data is modified from the MotionBuilder humanoid
model, which has a skeleton and labeled body segments, as shown in Figure 9a, b, respectively. Given an
initial pose from the SCAPE data that is close to the “T-pose”, we use the two-step approach discussed
in Section 3.1 for shape initialization. Then, we obtain labeled body segments in Figure 9c and the
estimated skeleton (joint positions) in Figure 9d. Compared with the ground-truth skeleton, the average
error of joint positions is 2.88 cm. The subject-specific shape model shown in Figure 9d will be used in
the following two experiments regarding correspondence estimation and pose estimation.
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                     (a)                                                (b)                                         (c)                              (d)                  

Figure 9. (a) The “T-pose” template model used for the SCAPE dataset; (b) The labeled
template; (c) The labeled initial pose; (d) The learned subject-specific articulated model for
SCAPE data (the estimated skeleton in black and the ground-truth one in blue).

4.1.3. Experimental Results: Correspondence Estimation

We validate the proposed framework on 38 target poses from the SCAPE dataset, most of which have
strong non-rigid articulation compared with the template, which makes it a challenging test set. In this
case, visible point extraction and segment volume validation are not involved. Since the template and
target models are captured from different subjects and also have different numbers of points, it is difficult
to obtain the ground-truth correspondences. Thus, a quantitative result in terms of registration error is
not available in this experiment. Instead, we use the accuracy of body segment labeling to evaluate
the registration performance. During data preparation, we have obtained the ground-truth segment
labels for all target poses. For each point in the template model, we propagate its segment label to
the corresponding point in the target model by the estimated correspondence. If this assigned segment
label is the same as the ground-truth label, we treat it as the correct segment label, as shown in Figure 10.
Then, the labeling accuracy for each target pose is calculated as the percentage of the points with correct
segment labels over all labeled points.

Incorrect labels

Correct labels

The labeled target model 

after GLTP registration 

The target model 

with ground-truth labels 

Figure 10. Illustration of the computation of segment labeling accuracy.

We first show some qualitative results of GLTP (α = 10, β = 2, λ = 5 × 106 and K = 10) by
comparing with CPD in Figure 11 in terms of segment labeling accuracy. When articulated deformation
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is not significant between the template and target, such as the first pose, both CPD and GLTP perform
well. However, in the cases of highly articulated deformations, e.g., Poses 2 to 5, significant labeling
errors are observed around the head, limbs and body joints in the CPD results. On the other hand,
GLTP provides stable segment label estimation across all poses. However, the results around limb joints
are still not very reliable. We further perform the comparative analysis (averaged over 38 poses) with
CPD, GLTP and AICP [16] in Figure 12, which shows that GLTP is the best one among all three, and
AICP is better than CPD due to the fact that its locally rigid assumption is suitable for 3D human data.
Figure 12 shows the labeling accuracy of body segments of our approach (GLTP + SAICP). It is shown
that a significant improvement is achieved by using GLTP and SAICP jointly (GLTP + SAICP), which
is also better than the one using CPD and SAICP together (CPD + SAICP). We visualize some labeling
refinement results in Figure 13, where obvious improvements are seen around limb joints.

Figure 11. Correspondence estimation: coherent point drift (CPD) results (first row) and
global-local topology preservation (GLTP) results (second row).
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Figure 12. Result comparison on SCAPE data with the labeling accuracy of body segments.



Sensors 2015, 15 15234

Figure 13. Results of correspondence refinement before (above) and after (below) SAICP,
especially around limb joints (circled area).
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Figure 14. Result comparison on SCAPE data with average joint position errors (cm).

4.1.4. Experimental Results: Pose Estimation

We compare pose estimation results in terms of joint position error (cm) in Figure 14. We can
see that directly using the estimated corresponding points to compute joint positions cannot achieve a
reasonable pose estimation result. Although compared with CPD, GLTP provides much better results, the
correspondence estimation around the connection area between two adjacent segments is not reliable due
to the lack of segmental information during the registration, which leads to inaccurate pose estimation.
As we mentioned before, without a good initialization, AICP is usually trapped into local minima, which
results in large estimation errors. Our framework significantly outperforms other options, including CPD,
GLTP, AICP and CPD + SAICP, showing the effectiveness of GLTP for correspondence estimation and
the necessity of SAICP for pose estimation, which involves the segmental information to refine the GLTP
results. We also present some pose estimation results in Figure 15.
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Figure 15. Pose estimation results for some SCAPE data.

4.1.5. Experimental Results: Further Discussion

The GLTP registration algorithm, which initializes the correspondences for SAICP-based articulated
pose estimation, plays a critical role in the whole flow. Since GLTP uses the Euclidean distance to assign
correspondences, it may not be reliable or valid in two challenging cases. First, when there is a strong
pose articulation in the point set compared with the standard “T-pose” template, the EM-based GLTP
optimization could be trapped into local minima, resulting in some body segments being wrongly labeled,
which might be corrected by SAICP during pose estimation. Second, when some body segments are too
close (the head and hands) or even merged (lower/upper legs), the shortest distance is no longer valid
in those segments, leading to wrong correspondence estimation, which can only be partially corrected
by SAICP due to large labeling errors. We further show six challenging cases in Figure 16, where
the first row shows three examples of the first case and the second row presents three examples of the
second case.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Some challenging cases in the SCAPE data (left: body segment labeling by
GLTP; right: pose estimation by SAICP). The left arm/hand (a,b) and the right foot/leg (c)
are mislabeled, which can be corrected during pose estimation. The two legs and feet (d,f)
and the two hands and head (e) are labeled wrongly, which can be partially corrected by
pose estimation.

4.2. Experiments for the SMMC-10 Dataset

4.2.1. Data Preparation

The SMMC-10 dataset contains 28 depth image sequences (numbered 0 to 27) from the same subject
with different motion activities, and it provides the ground-truth marker locations. The input depth
image cannot be used directly, due to noise/outliers and undesirable background objects. Therefore, we
performed three pre-processing steps to make the depth data ready for pose estimation, which include
body subtraction by depth thresholding, a modified locally optimal projection (LOP) algorithm for
denoising [22] and outlier removal by limiting the maximum allowable distance between two nearest
points. Figure 17 shows an example of depth pre-processing for the SMMC-10 dataset. The “T-pose”
template (around 2000 points) in this experiment is from [22], which has a built-in skeleton (Figure 18a)
along with labeled body segments (Figure 18b). We selected one depth image with “T-pose” from
Sequence 6 for shape initialization, which is given in Figure 18c, and the learned subject-specific shape
model with a baked-in skeleton and labeled segments is shown in Figure 18d.
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Figure 17. The illustration for depth data pre-processing. (a) The point set transferred
from a depth image; (b) The point set after background subtraction; (c) The point set
after denoising.

                       (a)                                            (b)                                            (c)                                        (d)       

Figure 18. (a) The “T-pose” template model for the SMMC-10 dataset; (b) The labeled
template; (c) The initial pose from a depth image; (d) The subject-specific articulated model
obtained by transforming the template model.

4.2.2. Experimental Results: Segment Volume Validation

In practice, we found that both M1 and M2 have very distinct values in the passing and failing cases,
indicating their sensitivity for volume validation. In this work, we chose M1 and M2 to be 0.3 and 10,
respectively. The threshold of the torso’s M2 is 1.4 to reflect the maximum allowable height change.
In all 28 testing sequences, the total frame-wise pass rate is over 98%, and there are 1.89% of frames
that require re-initialization (Case I or II). Twenty one out of 28 sequences have a 100% passing rate,
and Case III is only detected for a few frames in Sequence 25. Some validation examples are given
in Figure 19, which shows a passed case (the first row) and three failed cases: (1) In the second row
(Case I), the right arm is visible in the previous frame (red points in column (b)), but invisible in the
current frame (column (a)). The right arm has invalid M1 (column (d)). The re-initialization result
(re-do GLTP with a template where the right arm is set as invisible) is shown in column (e). (2) In the
third row (Case II), the left arm is trapped in the torso, and the right arm has an enlarged volume to
cover the points from both arms (column (c)). The left arm has invalid M1, and the right arm has invalid
M2 (column (d)). Column (e) shows the re-initialization result with the recovered left arm after GLTP
registration using the “T-pose” template. (3) In the fourth row (Case III), both left and right arms and part
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of the torso are missing, caused by large self-occlusions. Correspondence estimation results are invalid
(column (c)), leading to invalid M1 and M2 for most segments (column (d)). Column (e) shows the pose
estimation result by using pose continuity and physical constraints.

Figure 19. Validation and re-initialization results for a passing case (first row) and three
failed cases (second to fourth row). Columns (a–e) are the point set in the current frame,
that in the previous frame, correspondence estimation results by GLTP (with body segment
labels), segment volume validation and pose estimation/re-initialization results, respectively.
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4.2.3. Experimental Results: Pose Estimation

We evaluate our proposed pose estimation framework in two settings. The first one treats each
frame independently with the same “T-pose” template (the same as [49]), and the other one involves
the tracking strategy by updating the template sequentially via visible point extraction from the previous
pose estimation result. Out of 28 depth sequences, the subject keeps a stable view point in all but two
(24 and 27) sequences. In Sequences 24 and 27, the subject undergoes significant view changes. In
the the first setting, the frontal view “T-pose” template is used at each frame when all body segments
are visible, and the large pose variation between the template and target models may lead to inaccurate
pose estimation results in some challenging frames. The pose tracking scheme introduced in the second
setting is expected to be more effective and accurate to deal with sequential depth data where segment
volume validation plays an important rule to ensure a smooth and valid tracking result. Some qualitative
results on four selected sequences are shown in Figure 21, where the first and second rows show the
results from two pose estimation settings (without and with tracking).

Our proposed framework is also compared against some recent state-of-the-art
algorithms [13,18–20,22,49,50] in terms of the error between each estimated joint and its corresponding
ground-truth marker. Given a sequence with Nf frames and Nj joints, the joint estimation error is
defined as:

e =
1

NfNj

Nf∑
k=1

Nj∑
i=1

‖ Jki −Mk
i −Oi ‖ (13)

where Jki and Mk
i are the estimated position and the ground-truth marker position of the i-th joint in

the k-th frame. Due to the inconsistency between the definition of joints between the template skeleton
and the configuration of markers, we need to remove a constant offset Oi at each joint that is computed
along the local segment based on 20 manually-selected frames. Figure 18c,d show the initial pose from
the depth image and the learned subject-specific shape model with labeled segments and the estimated
skeleton, respectively. The quantitative comparison against several recent algorithms in terms of the
position error (averaged over all frames from 28 sequences) is shown in Figure 20. The accuracy of pose
estimation is significantly improved compared with that in [49] (4.3 cm) due to the tracking capability,
including visible point extraction and segment volume validation. The average joint position error is
3.2 cm, which outperforms all existing methods, including the most recent work [18] (3.4 cm).
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Figure 20. Comparative analysis of the joint estimation error (cm).
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Figure 21. Pose estimation results for four SMMC-10 sequences. For each sequence, the
first and second rows show the results without tracking and those with tracking, respectively.



Sensors 2015, 15 15241

4.3. Computational Complexity

The computational loads of the three registration algorithms (CPD, GLTP and SAICP) involved in
the proposed framework are shown in Table 1. CPD is only performed once for personalized body shape
initialization, and GLTP shares a similar EM algorithm as CPD. Their computational costs could be
reduced by using fast implementations [34], then the cost for computing P in CPD and GLTP, which
involves the calculation of the sum of exponentials, could be reduced from O(MN) to O(M + N).
Pose tracking reduces the computational load of GLTP significantly. By using the low-rank matrix
approximation, the cost for solving the linear system defined in Equation (7) to find W in GLTP could
be lowered from O(M3) to O(R3), where R � M is the lower rank value. Using the K-D tree to
search for nearest neighbors [24] in GLTP and SAICP, the cost could be further decreased form O(M2)

to O(M log(M)).

Table 1. Computational complexity of three registration algorithms.

Algorithms Computational Complexity

CPD O(MN) + O(M3)

GLTP (without tracking) O(MN) + O(M3)

GLTP (with tracking) O(MN) + O(M3) + O(M2) + O(MK3)

SAICP O(M2
Ψ)

M and N are the number of points in the template and target, respectively; K is the number of local linear
embedding (LLE) neighbors in GLTP; MΨ is the number of points in a selected rigid part Ψ in SAICP.

In practice, the algorithm speed depends on the numbers of points in the template and targets (around
1000 points for each) as well as the iteration numbers in GLTP and SAICP. The tracking strategy greatly
reduces the number of iterations needed in GLTP by providing a good initialization for sequential
registration. Also, due to reliable correspondence estimation from GLTP, SAICP only needs a few
iterations to converge for each segment. Our algorithm was implemented in an un-optimized MATLAB
code. For depth sequences, the running time is around 10 s (without tracking) or 3 s (with tracking) per
frame on a PC with Intel i7 CPU 3.40 GHz and 32GB RAM. The proposed algorithm can be speeded up
significantly by GPU acceleration with C/C++ implementation.

5. Conclusions

We propose a new generative framework for 3D human pose estimation from point sets captured by
laser scanners or depth cameras. Without any initialization or training data, the proposed approach can
handle complex articulated motions by combining two registration techniques in a complimentary way.
One is the global-local topology preservation (GLTP) algorithm, which aims at non-rigid and articulated
deformation, and the other one is the segment-aware AICP (SAICP) algorithm that takes advantage
of reliable correspondence estimation by GLTP for articulate pose estimation. Furthermore, to handle
sequential depth data, which may have missing data caused by self-occlusions and view changes, we
introduce an efficient tracking strategy where two new techniques, e.g., visible point extraction and
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segment volume validation, are developed to support sequential registration. The experimental results
on benchmark 3D laser scan and depth datasets demonstrate the effectiveness of the proposed framework.
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