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Abstract: This paper presents an image enhancement algorithm for low-light scenes in an 

environment with insufficient illumination. Simple amplification of intensity exhibits 

various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. 

In order to enhance low-light images without undesired artifacts, a novel digital binning 

algorithm is proposed that considers brightness, context, noise level, and anti-saturation of 

a local region in the image. The proposed algorithm does not require any modification of 

the image sensor or additional frame-memory; it needs only two line-memories in the 

image signal processor (ISP). Since the proposed algorithm does not use an iterative 

computation, it can be easily embedded in an existing digital camera ISP pipeline 

containing a high-resolution image sensor. 

Keywords: pixel binning; image enhancement; anti-saturation 

 

1. Introduction 

As the demand for mobile devices increases, the density of a CMOS image sensor is rapidly 

growing. However, if the size of each pixel in the high-density image sensor becomes smaller,  

low-sensitivity and noise amplification problems occur, especially in low-light images. To solve this 

problem, many image signal processors (ISPs) adopt digital image enhancement algorithms. Since a 
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simple intensity amplification algorithm results in various undesired artifacts, sensor-based pixel 

binning [1–4] algorithms with noise reduction function in the image signal processor (ISP) [5–7] have 

been proposed in the literature. More specifically, a basic sensor-based pixel binning method groups 

multiple neighboring pixels into one to increase the sensitivity of the resulting pixel at the cost of 

reduced spatial resolution. In order to reduce the side effect of brightness amplification, various noise 

reduction algorithms were also proposed to separate noise from the original image before brightness 

amplification. However, a basic sensor-based pixel binning method cannot avoid loss of spatial 

resolution, and noise reduction is still an open problem in the imaging sensor technology. The 

proposed work extends the digital pixel binning algorithm in a context-adaptive manner to prevent 

undesired artifacts including noise amplification, intensity saturation, and loss of resolution. 

This paper is organized as follows. A novel image degradation model for low-light image 

acquisition and the related background theory are presented in Section 2, and the proposed adaptive 

digital pixel binning algorithm is presented in Section 3. Experimental results are given in Section 4, 

and Section 5 concludes the paper. 

2. Theoretical Background 

Sensor-based pixel binning is designed to increase the sensitivity of an image sensor by combining 

multiple photodiodes into one bin at the cost of decreasing the spatial resolution as shown in Figure 1a. 

On the other hand, digital pixel binning can accumulate multiple pixel values without losing the spatial 

resolution as shown in Figure 1b. 

(a) (b) 

Figure 1. Two different pixel binning approaches to combine 2 × 2 pixels into one bin:  

(a) sensor-based pixel binning; and (b) digital pixel binning. 

Since the sensor-based pixel binning method does not reuse combined pixels as shown in Figure 1a, 

it decreases the spatial resolution inversely proportional to the bin size. On the other hand, the digital 

pixel binning method reuses pixels used for adjacent bins as shown in Figure 1b. The result of digital 

pixel binning can be considered a low-pass filtered version of the input image whose intensities are 

multiplied by the bin size. For this reason, spatial resolution is preserved in the pixel binning process 

while the details are smoothed by low-pass filtering. 
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2.1. Image Degradation Model for Low-Light Image Acquisition  

The proposed image degradation model under low-light conditions is shown in Figure 2, where 

( ),l x y  and ( ),f x y  represent the luminance of the low-light environment and the reflected luminance 

by the subject, respectively.  

 

Figure 2. Image degradation model with an image sensor under low-light conditions. 

The degraded image under low-light conditions can be expressed as: 

( ) ( ) ( ), , ,g x y f x y x y= + η  (1)

Since ( , )g x y  is a low-light version, a simple intensity amplification by factor α  yields:  

( ) ( ) ( ), , ,g x y f x y x yα⋅ = α ⋅ + α ⋅η  (2)

Although ( ), yg xα  has an amplified intensity, it results in intensity saturation because of the 

limited bit range, and also amplifies the sensor noise. 

2.2. Digital Pixel Binning 

The digital pixel binning process is expressed as: 

( ) ( ) ( ) ( ) ( ){ }ˆ , , ,( , ) , ,b bh x y g x y h x y fg x y x y x yα ⋅ ∗ = α ∗ + η= ⋅  (3)

where ( ),bh x y  represents the binning kernel, and * represents the convolution operation. For example, 

the kernel of 2 × 2 pixels binning plays a role of average filtering as: 

1 1
/

1 1bh
 

= α 
 

 (4)

where 4α = . Given a specific value of α , the result of pixel binning in Equation (3) is rewritten as: 

( ) ( ) ( ) ( )ˆˆ , , , ,bg x y h x y f x y x y= α ⋅ ∗ + α ⋅η  (5)

where ( ) ( ) ( )ˆ , ,bx h x y x yη = ∗η . In ( )ˆ ,g x y , the high frequency detail of the low-light degraded version, 

that is
 ( ),f x y , is suppressed by the average filtering, and then amplified by the ratio α . The distribution 

of random noise in ( )ˆ ,g x y  is concentrated toward zero by the average filtering, and will not be affected by 

the following amplification by the ratio α  since most samples has become close to zero. 
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The digital pixel binning function in the conventional ISP for surveillance is shown as Figure 3. 

 

Figure 3. Block diagram of the ISP pipeline including the digital pixel binning function. 

Digital pixel binning amplifies the intensity value before auto exposure (AE). The rest of the ISP 

functions, including noise reduction and image enhancement, can be used together with digital binning. 

The digital pixel binning algorithm can be easily implemented using additional line memories. 

However, simple digital pixel binning algorithm results in image degradation as given in Equation (5). 

The proposed binning algorithm has been devised to avoid image degradation and additional hardware.  

3. Adaptive Digital Pixel Binning 

Although digital pixel binning can produce a brighter image without noise amplification in  

low-light conditions, the resolution of the resulting image decreases because of the low-pass filtering 

nature of the binning kernel. Furthermore, the intensity of the bright region is saturated when the pixel 

binning uses a fixed ratio. To solve these problems, the proposed algorithm performs the binning 

process in an adaptive manner according to the brightness, context, noise, and anti-saturation. Figure 4 

shows the block diagram of the proposed adaptive digital pixel binning algorithm. 

 

Figure 4. The proposed adaptive digital pixel binning algorithm. 
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3.1. Brightness Adaptive Binning Ratio 

The ordinary digital pixel binning method amplifies the brightness of entire image using a fixed 

amplification ratio. For this reason, the dark region of image is enhanced to be brighter, while the 

bright region becomes saturated. To solve the saturation problem of conventional digital binning 

algorithms, the proposed algorithm changes the amplification ratio according to the brightness of the 

neighboring region in a spatially adaptive manner. The optimal amplification ratio at each pixel using 

the converted gray channel and the 3 × 3 average filter to suppress noise can be determined as follows: 

( ) ( )
( ){ }

3 3

3 3

,
,

max ,

h g x y
t x y

h g x y
×

×

∗
=

∗



 (6)

where 3 3h ×  represents the 3 × 3 average filter, ( ),g x y  the converted gray cannel image, and max{}⋅  

the operation that selects the maximum value in the argument. As a result, ( ),t x y  has the value in 

[0,  1], and the order of relative brightness is preserved. The optimal binning ratio is defined using 

( ),t x y  as: 

( ) ( )( )( ), 1 1 , 1br x y t x y R= + − −  (7)

where bR  represents the maximum binning ratio. ( ),r x y  takes the value 1 or higher. If ( ),t x y  

becomes close to 0, ( ),r x y  approaches to its maximum value bR . For example, if bR  is set to 4, the 

proposed algorithm uses the maximum of four pixels.  

3.2. Context-Adaptive Binning 

The pixel averaging process in the binning algorithm decreases the resolution of the resulting 

image. To minimize such degradation, the proposed algorithm uses weighted summation based on the 
relationship between the pixel and its neighbor. At the pixel position ( , )x y , a p p×  window generates 

the sorted difference vector 
2

,
p

x yd R∈  as: 

( ) ( ){ }, sort , , ,  for /, ,2 2, /x y i jd g x y g x i y j p p= − + +     …− =   (8)

where / 2p    represents the integer part of / 2p , and {}sort ·  represents the vector whose elements 

are rearranged in the ascending order of the absolute value such that 2
, , ,(1) (2 )) (x y x y x yd d d p≤ ≤ ≤  

Based on the definition in Equation (8), , (1)x yd  is always equal to zero. Each element can have either a 

positive or negative value, whereas the absolute values are used for only sorting. The sorted vector of 
the p p×  window based on the absolute difference from the center pixel is defined as: 

, ,( , )x y x ys g x y d= −  (9)

The result of the context-adaptive binning is obtained from the weighted sum of similar pixels in the 

sorted vector as: 

( ) ,, T
s x ycb x y r s=  (10)

where the weighting vector sr  is defined using the optimal binning ratio given in Equation (7) as: 
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( )
( ) ( )

( ) ( ) ( ) ( )
1, , 1 1

, 1 , 0 , 1 1

0, otherwise
s

r x y q

r q r x y q r x y q

 − − >
= − − < − − ≤



 (11)

The pixel order q  represents the labeling of each sorted pixel in the p p×  window.  

For example, a 3 3×  window is shown in Figure 5, where 3p =  and ( , ) 100g x y = . The 

corresponding ,x yd  and ,x ys  are respectively computed as: 

[ ], 0 10 20 40 50 60 70 80 100
T

x yd = − − − − −  (12)

and 

[ ], 100 110 120 60 50 40 170 180 200
T

x ys =  (13)

If ( ), 3.4r x y = , and 4q = , the sorted ratio values are determined as (1) (2) (3) 1.0s ssr r r= = = , and 

(4) 0.4sr = . The binning result is then finally given as: 

( ) 100) (1.0 110) (1.0, (1. 120) (0.4 60) 3540cb x y × + × + × + × ==  (14)

The kernel of the adaptive binning is expressed in matrix form as: 

0 0 1

0 1 0

1 0.4 0
cK

 
 =  
  

 (15)

Since three pixel values 110, 100, 120 in the diagonal edge are similar as shown in Figure 5, only 

summation of the three pixels can preserve the edge without being mixed with uncorrelated pixels, and 

the fourth similar pixel value, that is 60, is combined with smaller weight than the first three. 

 

Figure 5. An example of a 3 3×  window with ( , ) 100g x y =  at the center. 

The ordinary digital pixel binning sums up pixel values in the pre-defined binning kernel throughout the 

input image. For this reason, details of the image cannot be preserved. On the other hand, the proposed 

algorithm can flexibly change the binning kernel based on the correlation of neighboring pixels. As a result, 

it is possible to minimize the degradation of edge details in the input image.  
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3.3. Noise-Adaptive Pixel Binning 

Although the proposed context adaptive pixel binning can preserve the details in the image, it 

cannot suppress noise if the current pixel contains a noisy component. For this reason, uniform binning 

is effective in a noisy region as: 

( ) ,, T
u x yub x y r s=  (16)

where ur  represents the uniform pixel binning coefficient vector whose elements are defined as: 

( ) ( ){ }2

1, if 1

, 1 , oth
1

erwise
1

u

q

r q
r x y

p

=
=  − −

 (17)

The unity value of q  implies the current pixel whose position coefficient is equal to 1. However, 

coefficients of other pixels are determined by the number of total pixels to reduce the noise effect.  
If

 ( ), 3.4r x y = , the uniform binning kernel is expressed in matrix form as: 

0.3 0.3 0.3

0.3 1 0.3

0.3 0.3 0.3
uK

 
 =  
  

 (18)

The low-pass filtering performance of this kernel is higher than ordinary four-pixel digital pixel 

binning because its kernel has greater support. The result of the proposed binning is computed as: 

( ) ( ) ( ) ( ), 1 , ,c ub x y b x y b x y= − γ ⋅ + γ ⋅ , for ( ) ( )1
1s q s

λ
γ = −  (19)

where ( )s q  represents the mean value of the local window, and λ  a constant for the sensitivity of 

noise suppression. In this work, 1λ =  was used for empirically best result.  

3.4. Image Blending for Anti-Saturation 

Although the brightness-adaptive procedure adjusts the binning ratio, the binning algorithm itself simply 

amplifies the brightness and results in saturation in the processed image. In order to prevent saturation, the 

proposed algorithm combines the input low-light and the binning result given in Equation (19) using the 

image blending method. 
The blending image is computed by combining the amplified image ( , )b x y  and the input ( , )g x y  as: 

( ) ( )( ) ( ) ( ) ( )ˆ , 1 , , , ,f x y w x y b x y w x y g x y= − ⋅ + ⋅  (20)

where the blending weighted coefficient is defined as: 

( ) ( ) ( ), ,
,

1 2

1

b

b x y g x y
w x y

R
= +

−
 
 μ  

 (21)

In Equation (9), μ  represents the maximum bit depth of the image for normalization. If the 

maximum binning ratio increases, ( ),w x y  becomes smaller because ( ),b x y  is divided by ( )1bR − . 
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For this reason, the saturated value is substituted by the lower one. If ( ),w x y  increases, ( )ˆ ,f x y  becomes 

closer to ( ),g x y , which is the input image in low-light environments. On the other hand, if ( ),w x y  

decreases, the corresponding region becomes darker. In this case, ( )ˆ ,f x y  takes the data from the 

amplified image ( ),b x y . As a result, ( )ˆ ,f x y  is the image of suppressed noise and saturation. 

4. Experimental Results 

Three test images were acquired using two different types of camera for the experiment. A digital 

camera with a 20 megapixel CMOS image sensor was used to acquire two groups of test images:  

(1) a resolution chart; and (2) a parking garage. A commercial surveillance camera with a full  

high-definition (1920 × 1080) CMOS image sensor was also used to capture the outdoor scene. In 

order to obtain images with different exposure values (EVs), multiple ISO values were used with a 

fixed aperture and shutter speed. For evaluation of the performance of noise suppression, entropy and 

variance values are computed in a flat region of images. In order to acquire input test images, auto 

white balance (AWB) and AE parameters are fixed, and edge enhancement and color suppression 

functions are bypassed. In order to evaluate the independent performance of digital pixel binning, 

noise reduction functions were turned off, and only gamma correction is applied as shown in Figure 3. 

In order to evaluate the performance of brightness enhancement, the proposed algorithm is 

compared with ordinary digital pixel binning, Kim’s clipped histogram equalization [8], and Jiang’s 

image enhancement [9]. Each amplification ratio of image enhancement algorithms was set to preserve 

the same brightness as the reference value. However, the average brightness of output images is not 

exactly the same because of the different properties of each amplification algorithm. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Enhancement results using the ISO 12233 resolution chart image: (a) The 

reference image with ISO 3200 (EV = 0); (b) one-step lower exposure image using ISO 1600 

(EV = −1); (c) enhanced image of (b) using the ordinary two-pixel digital pixel binning;  

(d) enhanced image of (b) using Kim’s algorithm; (e) enhanced image of (b) using Jiang’s 

algorithm; and (f) enhanced image of (b) using the adaptive four-pixel digital pixel binning. 
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Figure 6 shows the experimental results of enhancing the ISO 12233 resolution chart image under 

15 lux illumination. Three test images are acquired using different ISO values including 3200 and 

1600, fixed aperture size F11, and shutter speed 1/16 s. 

Figure 6a,b respectively show the normal and one-step lower exposure images. Figure 6c shows the 

enhanced image of Figure 6b using the ordinary digital pixel binning with 1  2×  horizontal kernel, 
such as [ ]1 1 . Figures 6d,e show enhanced images of Figure 6b using Kim’s and Jiang’s algorithms, 

respectively. Figure 6f shows the enhanced image of Figure 6b using the proposed algorithm with a 

maximum binning ratio of 4. For clearer visual comparison, the magnified region of the red box in  

Figure 6 is shown in Figure 7. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The magnified version of the red box in Figure 6a: (a) The reference image with 

ISO 3200 (EV = 0); (b) one-step lower exposure image using ISO 1600 (EV = −1);  

(c) enhanced image of (b) using ordinary two-pixel digital pixel binning; (d) enhanced 

image of (b) using Kim’s algorithm; (e) enhanced image of (b) using Jiang’s algorithm; 

and (f) enhanced image of (c) using adaptive eight-pixel digital pixel binning. 

The red arrows in Figure 7 indicate the position where lines can be just resolved with the differential 

intensity value over 20. Figure 7d is so severely distorted that it is not possible to find a position that has 

difference of 20 or larger. As shown in Figures 7d–f, the proposed binning algorithm can better preserve 

vertical edges and suppress noise than existing ordinary image enhancement algorithms.  

For evaluating the performance of noise suppression, Table 1 summarizes the entropy [10] and 

variance values of a 400 × 400 flat region in the blue dotted box in Figure 6a. The mean value 
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represents the average luminance of the image, and variance the average value of squared difference 

between the pixel intensity and the corresponding local mean. As shown in Table 1, the higher the ISO 

value, the more noise in the acquired image. As shown in Table 1 both ordinary binning and Kim’s 

algorithms (c and d) significantly amplify the noise. On the other hand, the proposed algorithm (f) gives 

lower entropy and variance values. Although Jiang’s algorithm has a noise filtering function, the noise 

suppression performance is lower than the proposed algorithm. Noise-adaptive uniform pixel binning can 

also better suppress noise than ordinary digital pixel binning. 

Table 1. Mean, entropy, and variance values of six images in Figure 6. 

 Mean Entropy Variance 

(a) 87.4027 5.658747247 49.18756931
(b) 58.8574 5.404929441 40.20226864
(c) 101.7330 6.214999006 69.25368623
(d) 113.9225 6.995119196 117.132437 
(e) 87.57096 5.574787129 46.6319541 
(f) 91.3899 4.926924468 24.62198825

Figure 8 shows the experimental results of enhancing a typical low-light image acquired under low 

illumination of under 8 lux. Two input test images are acquired using different ISO values of 3200 and 

800, and fixed aperture size F5.6 and shutter speed 1/15 s. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 8. Experimental results using the parking garage image: (a) The reference image 

with ISO 3200 (EV = +1); (b) one-step lower image using ISO 800 (EV = −1);  

(c) enhanced image of (b) using ordinary four-pixel digital pixel binning; (d) enhanced 

image of (b) using Kim’s algorithm; (e) enhanced image of (b) using Jiang’s algorithm; 

and (f) enhanced image of (b) using the adaptive four-pixel digital pixel binning algorithm. 

Figure 8a,b shows one-step upper and one-step lower exposure images. Figure 8c shows the 

brightness-enhanced image of Figure 8b using ordinary digital pixel binning with the 2 × 2 binning 

kernel. Figures 8c,d show brightness-enhanced images of Figure 8b using Kim’s and Jiang’s 
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algorithms, respectively. Figure 8f shows the brightness-enhanced image of Figure 8b using the 

proposed algorithm with the maximum binning ratio of 4. For clearer visual comparison, the magnified 

version of Figure 8 is shown in Figure 9. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 9. The magnified version of the red box shown in Figure 8a: (a) The reference image 

with ISO 3200 (EV = +1); (b) one-step lower exposure image using ISO 800 (EV = −1);  

(c) enhanced image of (b) using ordinary 2 × 2 digital pixel binning; (d) enhanced image of 

(b) using Kim’s algorithm; (e) enhanced image of (b) using Jiang’s algorithm; and  

(f) enhanced image of (b) using the adaptive 2 × 2 digital pixel binning algorithm. 

As shown in Figure 9, the proposed binning algorithm can better preserve details in the saturated 

region than ordinary algorithms.  

Table 2. Mean, entropy, and variance values of four images in Figure 8. 

 Mean Entropy Variance 

(a) 80.8791 5.643978317 49.27466869
(b) 51.1724 3.96713916 6.93515173 
(c) 107.4580 5.666662266 51.28301441
(d) 97.76097 6.146823904 66.20613885
(e) 86.25345 5.377880622 40.39314018
(f) 88.7303 5.251893518 37.16049859
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To evaluate the performance of noise suppression, Table 2 summarizes the entropy and variance 

values of a 400 × 400 flat region in the blue dotted box in Figure 8a. As shown by the experimental 

results in Table 2, the higher the ISO value, the more noise in the acquired image. As shown in  

Table 2, existing enhancement algorithms (c–e) cannot avoid noise amplification. On the other hand, 

the proposed algorithm (f) produces lower entropy and variance values. 

Figure 10 shows the experimental results of enhancing a typical low-light image acquired by a 

survaillence camera under low illumination of 3 lux. Two input test images are acquired using different 

analog front end (AFE) gain of 12 dB and 18 dB, fixed aperture size F1.4, and shutter speed 1/30 s. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 10. Experimental results using the outdoor image: (a) The reference image with  

18 dB gain; (b) underexposed image with 12 dB gain; (c) enhanced image of (b) using 

ordinary two-pixel digital pixel binning; (d) enhanced image of (b) using Kim’s algorithm; 

(e) enhanced image of (b) using Jiang’s algorithm; and (f) enhanced image of (b) using the 

adaptive four-pixel digital pixel binning algorithm. 

Figure 10a,b respectively show 18 dB and 12 dB AFE gain images. Figure 10c shows the 

brightness-enhanced image of Figure 10b using the ordinary digital pixel binning with the 1  2×  

horizontal binning kernel. Figure 10c,d show brightness enhanced images of Figure 10b using Kim’s 

and Jiang’s algorithms, respectively. Figure 10f shows the brightness-enhanced image of Figure 10b 

using the proposed algorithm with a maximum binning ratio of 4. For clearer visual comparison, the 

magnified versions of Figure 10 are shown in Figure 11. 

As shown in Figure 10, the proposed binning algorithm can better preserve details in the saturated 

region than the ordinary algorithms.  

To evaluate noise suppression performance, Table 3 summarizes the entropy and variance values of a 

100 × 100 flat region in the blue dotted box in Figure 10a. As shown in Table 3, the higher the AFE gain, 

the more noise in the acquired image. As shown in Table 3, existing enhancement algorithms (c–e) 

cannot avoid noise amplification. On the other hand, the proposed algorithm (f) gives lower entropy and 

variance values. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 11. The magnified version of the red box shown in Figure 10a: (a) The reference 

image with 18 dB gain; (b) underexposed image with 12 dB gain; (c) enhanced image of 

(b) using ordinary two-pixel digital pixel binning, (d) enhanced image of (b) using Kim’s 

algorithm; (e) enhanced image of (b) using Jiang’s algorithm; and (f) enhanced image of 

(b) using the adaptive four-pixel digital pixel binning algorithm. 

Table 3. Mean, entropy, and variance values of four images in Figure 10. 

 Mean Entropy Variance 
(a) 85.99876 6.275580147 72.95065843 
(b) 44.42691 5.547833288 47.37427703 
(c) 76.56178 6.389223771 78.242229651 
(d) 112.9766 6.012225161 74.25892886 
(e) 89.08364 6.083478838 71.54243048 
(f) 88.74255 5.839596986 62.86275855 

5. Conclusions 

This paper proposed an adaptive digital pixel binning algorithm in terms of brightness, context, noise, 

and anti-saturation. In order to solve the noise amplification problem encountered with ordinary 

brightness amplification methods, the proposed algorithm performs digital pixel binning in an adaptive 

manner in various aspects. As shown in the experiment, noise-adaptive uniform pixel binning can better 

suppress noise than the ordinary enhancement methods. Moreover, incorporation of context-adaptive 

pixel binning can successfully preserve the resolution of high-frequency details in an image.  
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The proposed algorithm consists of simple, fundamental arithmetic operations and sorting. The 

computational complexity depends on the sorting algorithm, which dominates the computational 

complexity of the entire algorithm. When using the general sorting algorithm, the complexity is 

( )logO n n , where 2n p=  represents the number of pixels in the window. Since the proposed 

algorithm neither requires a frame-memory nor an iterative computation, it is suitable to be embedded 

in a general image signal processor. Since the proposed algorithm does not affect existing noise 

reduction or contrast enhancement algorithms, it is very efficient to implement the algorithm along 

with ISP functions. Future work will combine existing noise reduction algorithms by sharing the 

hardware to reduce computational complexity. 
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