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Abstract: Localization as a technique to solve the complex and challenging problems 

besetting line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions has recently 

attracted considerable attention in the wireless sensor network field. This paper proposes a 

strategy for eliminating NLOS localization errors during calculation of the location of mobile 

terminals (MTs) in unfamiliar indoor environments. In order to improve the hidden Markov 

model (HMM), we propose two modified algorithms, namely, modified HMM  

(M-HMM) and replacement modified HMM (RM-HMM). Further, a hybrid localization 

algorithm that combines HMM with an interacting multiple model (IMM) is proposed to 

represent the velocity of mobile nodes. This velocity model is divided into a high-speed and 

a low-speed model, which means the nodes move at different speeds following the same 

mobility pattern. Each moving node continually switches its state based on its probability. 

Consequently, to improve precision, each moving node uses the IMM model to integrate the 

results from the HMM and its modified forms. Simulation experiments conducted show that 

our proposed algorithms perform well in both distance estimation and coordinate calculation, 

with increasing accuracy of localization of the proposed algorithms in the order M-HMM, 

RM-HMM, and HMM + IMM. The simulations also show that the three algorithms are 

accurate, stable, and robust. 
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1. Introduction 

Wireless Sensor Networks (WSNs) are ideal for various scenarios, including environmental monitoring, 

medical care, military operations, and disaster relief [1–5]. In these systems, information relating the 

location and trajectory (i.e., localization) of the mobile terminals (MTs) need to be communicated. 

However, localization is difficult and faces a number of challenges [6]. Consequently, several methods 

have been proposed to solve these localization problems. The proposed methods can be broadly divided 

into two sets of approaches: range-free and range-based approaches. Range-free approaches attempt to 

localize the position of an MT without relying on the measured distances between target nodes and anchors. 

Instead, they calculate its position using satellites or some arithmetic according to the sequence of the 

signal received by the nodes. Examples of range-free approaches include global positioning system 

localization [7], the multiple-sequence positioning method [8], and the regulated signature distance  

method [9]. These methods are efficient and accurate in outdoor environments. However, they require 

costly hardware and are less accurate for indoor environments. 

Two types of transmission are dealt with in this paper: line-of-sight (LOS) and non-line-of-sight 

(NLOS). If there is no obstruction to signal transmission between an MT and a base station (BS), then 

the transmission is said to be a LOS transmission. On the other hand, in small-scale indoor environments, 

obstacles such as walls, doors, metal bookcases, and even crowds, can obstruct signal propagation. In 

such scenarios, the transmission is said to be NLOS transmission. Range-based solutions are more 

suitable for this kind of environment than range-free solutions. In practical environments, NLOS and 

LOS transmissions are mixed. 

Several range-based techniques have been proposed to reduce the effect of significant NLOS 

measurement errors. Range-based solutions such as the time of arrival method, time difference of arrival 

method, and received signal strength indicator method are commonly used to resolve localization issues [10]. 

On the basis of measurements obtained from these methods, a variety of mathematical techniques can be 

used to solve the problems, especially for the NLOS scenario. Kalman filter [11] works well for linear 

systems with a Gaussian assumption, whereas for nonlinear systems with a non-Gaussian assumption, the 

extended Kalman filter (EKF) [12], the H-infinity filter [13], and particle filters (PFs) [14] have been 

proposed. Of these, PF is a class of recursive Bayesian estimation filters based on sequential Monte Carlo 

methods. This method divides the area into several grids to form a particle of sufficient density, prior to 

localization. PF has been proved efficient for models of nonlinear systems and outperforms common 

nonlinear filters. However, the performance of PF relies heavily on the number of particles and the sequential 

resampling method. Furthermore, the time required for calculations is inversely proportional to the number 

of particles selected. Vera et al. presented the Easy to Deploy Indoor Positioning System [15], which is able 

to support the typical localization requirements involved in loosely couple mobile work base on a WIFI 

system. This method is aimed for fast deployment and real-time operations rather than for location accuracy. 
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The hidden Markov model (HMM) filter, used extensively in speech processing, is another grid-based 

method that utilizes Bayesian techniques to estimate the location. In HMM-based localization, a common 

approach is to use the Viterbi algorithm to calculate position. Morelli et al. [16] proposed a 

Detection/Tracking Algorithm (D/TA) based on this technique and reported satisfactory experimental 

results. Chen et al. [17] proposed an interacting multiple model (IMM) that combines various methods, on 

the basis of the probability of interaction, to solve the localization problem with satisfactory precision. 

Performance analysis methods for WSN localization have also been extensively researched. Of these, the 

Cramér–Rao lower bound (CRLB) is an optimality criterion for the simulation environment. 

In this paper, we propose a method that enhances the HMM filter using a modified hidden Markov 

model (M-HMM). This method determines a compromise solution to improve both efficiency and 

accuracy. The IMM technique is then used to transform the hidden states between the high-speed and  

low-speed situations. Thus, it can satisfactorily simulate a real movement environment. Moreover, the 

IMM is treated as a two-state Markov process to interact with high-velocity and low-velocity  

models. The CRLB of the environmental simulation is also calculated to determine the accuracy of the 

algorithm. Simulation results show that our proposed method is closer to the CRLB and superior to  

conventional methods. 

The remainder of this paper is organized as follows: Section 2 provides a brief overview of the 

methods that have been proposed for the elimination of NLOS errors. Section 3 discusses background 

assumptions made. Section 4 presents the details of the proposed modified HMM method. Section 5 

presents the integrated algorithm formed by combining IMM and HMM. Section 6 presents the CRLB 

of the environment. Section 7 outlines the simulation experiment conducted and discusses the results 

obtained. Finally, Section 8 concludes this paper. 

2. Related Work 

NLOS identification and mitigation techniques have been extensively researched. Several algorithms 

that operate by identifying and rejecting data received in NLOS situations and using access points (APs) 

to calculate the position of an MT in LOS situations have been proposed to solve the NLOS localization 

problem. Chan et al. [18] proposed a method that uses a residual test to identify APs in LOS scenarios 

and then uses the APs identified to locate the position. Heidari et al. [19] proposed definitions for  

under-detected direct path conditions and direct path conditions, followed by a consequent identification 

technique that uses binary hypothesis testing and a neural network architecture. Yu et al. [20] proposed 

conducting a hypothesis testing analysis in NLOS environments, which significantly improved the 

accuracy of position calculation. For unknown parameters in the NLOS error method, Chen [21] used a 

residual weighting algorithm to mitigate the effects of NLOS error. Marano et al. [22,23] used a support 

vector machine to solve the problem of nonparametric NLOS identification. On the one hand, this 

method imposes a formidable computational burden during LOS selection, while on the other hand, it 

abandons information obtained from the APs in NLOS transmissions. Wang et al. [24] presented a data 

association scheme that incorporates LOS and NLOS range measurement into the PF framework to effect 

location estimation. 

The localization performance of algorithms depends on the NLOS model used. Most NLOS algorithms 

assume that NLOS error takes the form of a Gaussian distribution. However, in real environments, the 
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distribution of NLOS error is uncertain. Merino [25] and Wang [26] used the Gaussian Mixtures Model to 

solve the problem. McGuire et al. [27] proposed a nonparametric kernel method to calculate the propagation 

delay. Morelli et al. [16] proposed an HMM-based method that relies on high-resolution ultra-wideband 

(UWB) technology. This grid-based approach was proposed to jointly track the sequence of the positions 

and sight conditions of the MT. The HMM method does not rely on linearization and the Gaussian 

assumption, which is the hypothesis regarding noise background in most algorithms. Furthermore, in 

simulations, an exponential distribution is assumed for NLOS. Considering the large computational burden 

of the HMM algorithm, Nicoli et al. proposed a jump Markov particle filter approach to locate the  

positions [28]. This method is more efficient than that of Morelli et al. [16] while exhibiting a similar 

accuracy to it. In this paper, we propose a modified localization algorithm based on the HMM method that 

can utilize more information than that of Morelli et al. [16] and Nicoli et al. [28] regarding the signal received. 

Although the above algorithms all exhibit robustness, each algorithm has another specific advantage in 

particular conditions. Consequently, several of these algorithms have been combined into dynamic systems 

using IMM. Liao et al. [29] proposed a Kalman-based IMM smoother that fuses LOS and NLOS conditions 

in cellular networks based on TOA measurements. Subsequently, Chen et al. [17] proposed an extended 

Kalman-based interacting multiple mode (EK-IMM) smoother and a fuzzy-based interacting multiple mode 

smoother [30] for mobile localization in order to estimate LOS/NLOS transition based on data fusion with 

TOA and received signal strength (RSS) measurement data. However, they assumed the mobile terminal to 

have a constant velocity in both methods, which affects the adaptability of the algorithm. Hammes et al. [31] 

combined the EKF in LOS and the robust EKF in NLOS with IMM. Cheng et al. [13] integrated the Kalman 

filter with the H-infinity filter in IMM to improve range measurement. Compared with the algorithm 

proposed by Hammes et al. [31], Cheng used a different arithmetic to solve problems in different situations. 

In the methods proposed above, IMM is used extensively to integrate the LOS and NLOS states. However, 

both the LOS and NLOS information are already considered in the HMM localization model in this paper. 

Consequently, there is no need to switch modes between LOS and NLOS. Furthermore, the static speed 

model is a weakness of the arithmetic in the HMM model. Consideration of the velocity of the MT is 

restricted in the indoor environment, and thus we simply divide the speed model into two parts, using the 

IMM to render the algorithm more robust against random movements. 

Several methods have been proposed to analyze the advantages and disadvantages of various algorithms 

in this context. They include geometric dilution of precision and the CRLB. Qi [32], Huang [33], and  

Yin [34] analyzed the CRLB in varying noise backgrounds and sight situations. In this paper, we use the 

method proposed by Huang et al. [33] to calculate the CRLB value of our simulated environment. 

3. Background Assumptions 

A virtual circular area is first hypothesized as shown in Figure 1. The MT is then assumed to carry 

out k random motions around the particular UWB infrastructure Q which is defined as the circumscribed 
circle of three static APs. Its kth localization position ( ) ( ){ , , {1, 2,3}}i i

jM q s j= ∈  is calculated by using 

the signal received from the three ( )   [1,  2,  3]APs j ∈ , where ( ) ( ) ( ),  i i iq x y=     denotes the Cartesian 

coordinate of the MT in two-dimensional space at the kth time step. In HMM framework, it is impossible 

to get the exact sequential Bayesian inference. And as a result, all trajectory points mentioned in this 

paper are approximated to the nearest grid point that divides the region b, 0.5 mdΔ =  as shown in Figure 
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1a. The APs are also assumed to be located on the stationary points, which trisects the circle. Further, if 

the lth AP and the MT can communicate without obstructions, as shown by the area in white in  
Figure 1b, this situation is defined as an LOS condition and ( ) 0i

ls = . Conversely, if the path between 

the AP and the MT is impeded by a thick wall, a metal door, or any other obstacle such that they cannot 
directly communicate, this situation is known as an NLOS condition, and ( )i

ls  is assigned a value of one 

in this case. To simplify this analysis, we assume that each sight condition ( ) i
ls  is independent of position 

( )iq  and is only related to ( -1) i
ls . The MT can obtain signal sequence , i ly  from any AP at any time. 

Given the above hypothesis, the MT can be localized using knowledge of HMM probability. In the  

next section, we introduce a signal model and the relationship between the signal model and  

location probability. 

(a) (b) 

Figure 1. (a) Discrete approximate schematic diagram; (b) NLOS/LOS condition schematic diagram. 

According to Heidari et al. [19], the ideal discrete-time description equation for the indoor channel 

profile is characterized by:  

1

( ) ( )
pN

k k
k

h t e t
=

= α − τ  (1)

where  ( )e ⋅  represents the time-domain pulse shape of the filter, Np is the number of multipath 

components, exp( )j
k k k

α = α φ  represents uncorrelated fading amplitudes, θ  represents the phase of 

the kth path, and kτ , including 1, 2 10, K… −τ τ τ   , is the time delay. We are only concerned with the first 

arrival delay 1τ , for localization, which is equal to the propagation time given by:  

( )
1    i

lsτ = τ + Δτ×  (2)

where ( ) 1i
ls = . for NLOS and ( ) 0i

ls =  for LOS. According to Morelli et al., [35] ( ) /  d c tτ = Δ  at any 

discrete-time τ , and the lth MT–AP link is defined as two independent real-value zero-mean white 

Gaussian signals: 

( ) ( ) ( ), , ,    n n n
i l i l i ly t z t w t= +  (3)

where ( ) ( ) ( ) { }( ) ( )
,

( ) ,   1,  1n n n n
i lz t b g t h t b= × × − +  and ( ) ( ) ( ) ( )( )2 2

1 / exp 1/ 2 /g t Tg t Tgt   = − −    
, 

which is a second-order Gaussian pulse for user n. To simplify this, we consider only a single-user 
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situation. Morelli et al. [16] state that ~ 0,( )  ),(zz N C τ Δτ  is a zero-mean Gaussian vector with 

covariance matrix ( ) ,  zC τ Δτ . The entire signal ( ),i ly t  is ( )( )0,   ,  N C τ Δτ  with covariance matrix 

( ) ( )2
0 ,    ,  P zC I Cτ Δτ = σ + τ Δτ , where 0σ  is the covariance of the background noise. Moreover 

( ) ,  zC τ Δτ , is a diagonal matrix with diag ( ) ( )( ),  ,  1 ,  ,   ,  ,  z zL L Pτ Δτ … τ Δτ : 

( ) ( ) ( )( )2 ,  ,   1k
z zL P u p−ττ Δτ = σ τ ρ − τ  (4)

where  ρ  is the attenuation factor, fixed at 0.9 in this paper, and the receiving power zσ  decreases with 

increasing propagation distance d. Note that ( )( )2 2 /  z ref refd d
−α

σ = σ . 

An instance of the value of the measured RSS power is shown in Figure 2. In the Figure 2, 
( )20,   10,  1i

lsτ = Δτ = = . Figure 2a shows the signal received by the AP at P disperse times. And in Figure 

2b the solid blue line represents the absolute value of the received signal, and the red dotted line represents 

the fitting curve of the covariance at each time point. Figure 2c shows when an AP receives a set of signals, 

it can estimate the probability of the position of the source by rotating the power delay profile model. In the 

simulation for HMM, the NLOS delay has an exponential probability density function (PDF) 
1 exp( / )−

δ δσ −τ σ  with 10δσ = . In this paper, we assume that the NLOS delay is generated by 7δσ = . 

According to the nonparametric kernel method proposed by McGuire et al. [27], the estimated PDF of NLOS 

delay is as follows: 

( )2

2
1

b Sb1
(b) exp

22

P
ijt

t ijij

f
hPh =

 − = −
 π
 

  (5)

In the above equation, exp( )⋅  is a Gaussian kernel function, and ijh  is the smoothing constant that 

determines the width of the kernel function. In this paper, we choose ijh  as 0.4 and P as 200  

(cf. Appendix A). The fitting curve is shown in Figure 3, with the red line representing the PDF of the 

Gaussian kernel function and the blue line denoting the PDF of the exponential distribution. 

(a) (b) 

Figure 2. Cont.  
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(c) 

Figure 2. An instance of the value of the RSS power measured. (a) Example of receive 

signal; (b) RSS power delay profile model; (c) Example of log-likelihood function for the 

signal measured by AP. 

 

Figure 3. PDF comparison for Gaussian kernel distributions and exponential distributions. 

In traditional localization systems, the basic approach is to estimate the position of the MT through 

maximum likelihood estimators. As mentioned earlier, the maximum likelihood probability density 

function of the RSS model, which is the Gaussian probability density function with variables in vector 

form, is as follows: 

( ) ( ) ( ) ( )1/2 /2 1
,  ,  2 exp 1/ 2/ ,  

P Ti
i lP y C Y CM Y

− − −= τ Δτ π − τ Δτ    (6)

As long as MT obtains received signal sequence Y from the AP, it can calculate the distance 

probability. On obtaining the distance information from three non-collinear APs, we can calculate the 

coordinates by executing trilateration or maximum likelihood estimation by merging: 

( ) ( )1:
) ( )

3 ,
(    | |i

i
l l

i iP M P yY M== ∏  (7)

Although this method works well for the LOS case, it has shortcomings. On the one hand, when the 

MT and AP are in an NLOS situation, significant errors can occur. Further, this method does not consider 

the regular pattern of motion of the MT, in which the probability of the movement at any moment 

contains information related to the signal sequence. The HMM algorithm and our proposed improvement 

on it, described in the next section, solve these problems. 
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4. Localization Based On HMM 

An HMM is a statistical Markov model in which the system modeled is assumed to be a Markov 

process with unobserved latent variables. On the basis of the mathematical models used in this article, 

location variable ( ) ( ) ,i i
i lM q s=     is not directly visible, but output iY , depending on the state, is 

perceptible. Each state iM  has a probability distribution over possible output iY . Therefore, sequence 
iY  expresses some information about the sequence of the location states. To solve the classical HMM 

problem, we need to construct a transition probability matrix ( ){ }1| i iMA P M −= , an observation 

probability matrix ( ){ }1| i iYB P M −= , and an initial value ( ){ }0 P xπ = . In this paper, we initially set 

( )0 (5,7), (000)P x = , which means that the initial moving point is at (5, 7) and the MT is in an LOS 

condition for all three APs. 

4.1. Matrix Based on Dynamic State 

As ( ) ( ) ,i i
i lM q s=    , the transition probability ( )-1| i ip M M  can be divided into two parts: position 

transition probability (PTP) and sight transition probability (STP): 

( ) ( ) ( )-1
( ) ( 1) ( ) ( 1) | | |i i i i

l li ip M M p q q p s s− −= ×  (8)

In the real environment, STP is related to position information. In brief, it assumes that the probability 

of the sight state maintaining its status is 0.7 compared with the previous moment. Consequently, the 

probability of a change in the sight state is 0.3. 

In this paper, we focus on the calculation of PTP. Morelli et al. [16] described this in three forms, 

with the circular Gaussian PDF scenario simulated as a sample. However, they consider neither the 

actual trajectory of the MT nor inertia in the direction of motion. In order to solve this problem,  

Ru et al. [36] changed the weights of different angles based on the laws of motion obeyed by objects in 

different situations, which is a very efficient method. The formulation then changes as follows: 

( ) 2

-
( ) ( -1) 21

 | ( , )
2

d
i ip q q e f Q dσ= Δ

πσ
 (9)

Here, ( , )f Q dΔ  is the additional weight with two parameters, namely, the distance d between 1iM −  

and iM , and the deflection angle QΔ  between 1iM −  and 2iM − . If the MT moves as a circular Gaussian 

PDF with deviation 3σ = , as shown in Figure 4a, where the MT moves at any angle with the additional 

weight one, the trajectory of the simulation for 50 steps is shown in Figure 4b. Similarly, if the additional 
weight is a Gaussian function with variable QΔ , the trajectory is as shown in Figure 4d. Thus, the 

trajectory changes as the model changes, which also implies that different sorts of motion correspond to 

different models. Moreover, it is clear that the more similar the mathematical model is to the phenomena, 

the more accurate will be the results obtained. Thus, it is not suitable to use separate PTPs for each 

motion model. Consequently, we introduce an interacting multiple model algorithm in the ensuing 

sections to solve this problem. 
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(a) (b) 

 
(c) (d) (e) 

Figure 4. Examples of -1( | )i ip m m  PDF models. The arrows represent the forward direction 

of the MT: (a) Circular Gaussian PDF with deviation 3vσ =  in [16]; (b) Trajectory of (a). 

(c) Gaussian distribution with variable QΔ  and 0.5σ = ; (d) Trajectory of (c); (e) PDF with 

[ ]  90 ,  90QΔ − ° ° . 

4.2. Detection/Tracking HMM 

In this section, we look at a more efficient HMM. In HMM theory, there are two common methods 

for extracting potential relationships between the signal sequence Y and the state M. The 

backward/forward algorithm (BFA) is first invariably used to estimate the probability of an observed 

sequence provided by an HMM. The Viterbi algorithm (VA) provides a similar method to calculate the 
most probable sequence by traversing all 0:( 1) 0:( 1)( | )i iP m y− − and determining the most efficient sequence, 

m0:i‒1. However, neither BFA nor VA is appropriate for the localization problem [16]. The 

Detection/Tracking Algorithm (D/TA), which uses the HMM to satisfactorily solve the localization 

problem, was subsequently proposed by Spagnolini and Ram [37] and employed to estimate the 

localization by Morelli et al. [16]. The main idea underlying the D/TA is to find the maximum value of 
0:( | )i iP m y in all signals received at the ith moment, which is quite similar to the process of calculating 
0:( 1)( | )i iP m y − in the ‘forward’ step of the BFA. Its fundamental formula is as follows: 

1

0: 1 1 0:( 1)

'
( | ) ( | ) ( | ) ( | )

i

i i i i i i i i

m M
P m y p y m p m m P m y−

− − −
∈

=   (10)

The flow diagram below explicates the working principle of the D/TA in HMM. 

In Figure 5, each node represents a probability calculated for each state. Each line represents  

a different state, as stated above, and the values of each column change with time. Yi represents the  

signal received at the corresponding time i. For example, the node in the third column and first line 

represents the probability that the state is M1(1, 1){0, 0, 0}, which means that the coordinates of the  

MT are (1, 1) and that the MT is in LOS with AP1, AP2, and AP3 at i = 3, with the signal received 

Y3(d1, d2, d3) represented by the blue-black circle. Each arrow maps the multiplication state Mi to the 

transition probability P(Mi│Mi‒1), and the line linking them signifies a summation operation. We 
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calculate the probability P(mi│y0:1) of every state at time i based on the result calculated in the last step. 

Finally, the maximum of each line is extracted and the final trajectory is determined corresponding to  

the coordinates obtained. By integrating the flow diagram with the formula, the entire process  

of positioning can be described as follows: in Figure 6, the yellow points represent the estimated location 

for the MT and the circular ring represents the area that the MT might occupy the next moment.  

Note that although the MT can be anywhere the next moment, we ignore positions where the MT  

might occur with a probability that has empirically been determined to be negligibly small. 

 

Figure 5. Flow diagram of D/TA. 

In Figure 6, the transition probability P(Mi│Mi‒1) is selected as a function distributed uniformly to 

simplify the analysis. The blue circles represent areas that can receive signals at any given time. The 

detailed procedure for localization is as follows: 

a. Confirm an initial value, or the corresponding values of the previous time point. 

b. Determine where the MT will be and draw a hollow ring depending on P(Mi│Mi‒1). 

c. Use the blue circle to represent the signal source of the MT, depending on P(yi│mi) and the signal 

received at time i. 

d. Combine Steps 2 and 3, and eliminate the area marked by the shadow. 

e. Obtain the position of the MT using the weighted sum of probability P(mi│y0:1) and the coordinates. 

Then, mark a yellow dot and link it to the previous point, shown by the red line in Figure 6. 

This method is limited in that it only considers past and present situations but loses sight of the 

“future.” In Section 4.3, we present a novel future-based modified method that solves the localization 

problem from a broader perspective. From another standpoint, it can be considered as a correction for 

past records. 
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Figure 6. Flow diagram of the location algorithm. 

4.3. Modified HMM 

The location is calculated only once in ordinary localization theory for each position. There is no 

modification from the next time, i + 1. In other words, if we once fix the position at the ith moment in 

time, the accuracy of this determination will not be considered at time i + 1 because it reduces efficiency. 

However, the position in the i + 1th moment and the signal received in the i + 1th moment are important 

for estimation of the position in the ith moment. Because most signals are reliable and the signal at the 

next moment in time usually contains hidden information regarding the location of the MT, the weight 

of the state estimated at the preceding moment in time should be reassigned based on transition 

probabilities P(Mi+1│Mi) and observation probabilities P(yi+1│mi+1). In other words, the weight of the 

state with a greater probability of receiving the signal should have more merit, and this corresponds to 

the value of P(mi│y0:(i+1)) . Through this method, we solve the smoothing problem in a discrete way 

HMM to improve the localization precision. To explicate this idea, another schematic diagram is shown  

in Figure 7. 

 

Figure 7. Flow diagram of HMM location algorithm. 

Y1

Y4
Y3

Y2



Sensors 2015, 15 14309 

 

 

In Figure 7, the meaning of the pattern is virtually identical to that in Figure 6, except for the parts in 

orange and green. The deep-orange solid circles signify areas that can receive signal Y4 at the fourth 

time step and the light-orange solid circles signify areas where the MT might be located at the third time 

step. The precondition for these is based on the transition probabilities P(Mi+1│Mi) and signal Y4. In 

short, the light-orange area constitutes a new limited condition on the MT at the third time step. It shows 

where the MT could come from. Using this scope, the boundary of the MT estimated at the third time 

step is further reduced, which is shown as the light-green area in the figure. The yellow point estimated 

at the third time step is then transferred to the dark-green one, as the diagram shows. Steps a to e of 

localization are identical to those listed in Section 4.2. The following are the additional steps: 

f. Receive the signal in the “future” 1iY + . 

g. Calculate area 1iY +  based on P(yi+1│m i+1) , and represented by the deep-orange solid circle. 

h. Calculate the limiting condition based on both P(Mi+1│Mi) and the area obtained in Step 7, and 

mark it with light-orange. 

i. Shrink the possible area shown around Y3 from Step 8 using the area shadowed in Figure 5 around 

Y3 from Step 4. Obtain a new scope filled with light-green. 

j. Perform the same calculations as in Step 5 using the weighted sum of probability P(mi│y0:(i+1)) and 

the coordinates. Finally, mark the location as a dark-green point and link it to the last point, which 

is shown as the blue line in Figure 6.  

The traditional localization methods mentioned above are used to calculate the probability 
0:( | )i iP m y or 0:( 1)( | )i iP m y − . These methods always take into account efficiency and precision, and the 

method presented in this subsection is intermediate. Having outlined the principle of the modified 

method, we can represent it as follows: 

1

0: 1 0: 1 1 1

'
( | ) ( | ) ( | ) ( | )

i

i i i i i i i i

m M
P m y P m y p m m p y m+

+ + + +
∈

=   (11)

A flow diagram that calculates P(m1│y0:4) is shown in Figure 8. 

 

Figure 8. Flow diagram of the M-HMM algorithm. 
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In the figure, we can distinguish the proposed method from the one mentioned above. The legends 

are similar to the ones in Figure 6, with the difference that we here need to reflect on backward 

multiplication based on received signal y4, the observation probability P(y4│m1), and the transition 

probability at each state. From the formula and the figure above, we know that probability P(mi│y0:i) is 

the basis for probability P(mi│y0:(i+1)), and thus this method involves an unavoidable delay. In  

real-time processing, we should calculate the coordinate information P(mi│y0:i) by D/TA first and display 

it to users temporarily. Then, the M-HMM method should be used to modify the calculated position. The 

performance is enhanced because of the readjustment calculation of every unknown coordinate in the 

trajectory that provides a balance between precision and efficiency.  

4.4. Replacement of the Modified HMM Method 

In the previous subsection, we proposed a modified HMM method to improve localization accuracy. 

The fundamental part of the modified algorithm is the calculation of P(mi│y0:(i+1)) at each i + 1 moment. 

However, as the results of our simulation subsequently show, P(mi│y0:(i+1)) exhibits better performance 

than traditional P(mi│y0:i) estimation. Given the above description of the HMM algorithm, the 

calculation process can be regarded as an iteration in which the ratio coefficients of each state  

Mi = [q(i),sl
(i)] update themselves through the HMM chain. Because the trajectory obtained from 

P(mi│y0:(i+1)) is more accurate than that obtained from P(mi│y0:i) on the ith occasion, the modified ratio 

coefficient of each state calculated from P(mi│y0:(i+1)) may also be more accurate than the ones obtained 

from P(mi│y0:i). In other words, at the (i + 1)th time step, when we calculate state probability 

P(mi+1│y0:(i+1)), the initial iteration coefficient of P(mi│y0:i) can be replaced by P(mi│y0:(i+1)) from earlier. 

In actual fact, P(mi│y0:(i+1)) are different from P(mi│y0:1) and P(mi+1│y0:(i+1)) will also change its original 

meaning. Thus, we use symbols RP(mi│y0:(i+1)) and RP(mi+1│y0:(i+1)) to express them, as follows:  

1 0:( 1) 1 1 1 0:( 1)

'
( | ) ( | ) ( | ) RP( | )

i

i i i i i i i i

m M
RP m y p y m p m m m y+ + + + + +

∈
= ×  (12)

This replacement method can only be used when 3i ≥ . Furthermore, as our simulation subsequently 

shows, this replacement makes a slight contribution to improving localization accuracy. Although  

M-HMM and RM-HMM improve localization precision, this method is deficient because, in practice, 

the transition probability matrix should not be unique for variable motion of the MT. 

5. Combination of HMM and IMM 

In practice, the single transition probability matrix model produces numerous errors because of the 

variable motion of the MT. This is because each velocity distribution corresponds to a reasonable 

probability function. Although we can choose a uniform distribution function or other functions, these 

yield imprecise results. The best approach to solve this problem is to create several separate transition 

probability models and derive results depending on the velocity distribution in each. The IMM estimator 

is one of the most effective approaches to this problem in uncertain environmental conditions, where a 

dynamic system with multiple switching probabilities is used to select the proper transition probability 

model at the appropriate time. 
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The MTs in this paper refer to robots or human, and their velocities usually range from 0 to 4 m/s. 

We thus divide the velocities into low- and high-velocity parts in order to simplify our model. The  

low-velocity part is a Gaussian function with mean value zero and variance 1.5, and the high-velocity 

part is one with mean value three and variance 1.5. Note that the narrower the spaces into which we 

divide the velocity, the more precise the results we obtain. However, our two-part strategy is effective 

in describing the trajectory of the terminal in this narrow range of velocities. Figure 9 shows the Markov 

switching model, which shows that the system varies between the low- and high-velocity models, where 

abP  represents the Markov transition probability from mode a to mode b. 

 

Figure 9. The two models proposed in this paper. 

A schematic diagram of IMM is shown in Figure 10. 

 

Figure 10. Flow diagram of the IMM algorithm. 

In the figure, U1(i−1) represents the probability of the presence of the MT in the low-velocity model 

at time i−1, U2(i−1) represents the probability of the presence of the MT in the high-velocity model at 

time i−1, and E(i) represents the position estimated at time i, which is the final position. From the figure, 

we know that the system selects a model based on 0:( 1)
1( | )i i

m M

P m y +

∈
  and 0:( 1)

2 ( | )i i

m M

P m y +

∈
 , which are 

considered the prior probabilities of each model. It then adds them to the Markov chain and calculates 

the weight of each model at the final position. The system subsequently calculates the coordinates based 

on the weighted sum of U1(i) and U2(i) along with their coordinates l1(i) and l2(i), respectively. This 

process can be expressed by the following equations:  

0:( 1)
1 1 1 1( ) (1/ ) ( 1) ( | )i i

j j
j m M

U i C P U i P m y +

∈

= ⋅ ⋅ − ⋅   (13)

0:( 1)
2 2 2 2( ) (1/ ) ( 1) ( | )i i

j j
j m M

U i C P U i P m y +

∈

= ⋅ ⋅ − ⋅ 
 

(14)

0:( 1)
1 1 1( 1) ( | )i i

j j
j m M

C P U i P m y +

∈

= ⋅ − ⋅  (15)



Sensors 2015, 15 14312 

 

 

0:( 1)
2 2 2( 1) ( | )i i

j j
j m M

C P U i P m y +

∈

= ⋅ − ⋅ 
 

(16)

( ) 0:( 1)
1 1( | )

l Q

i i i
iq P m y l

∈

+= ⋅
 

(17)

( ) 0:( 1)
2 2 ( | )

l Q

i i i
iq P m y l

∈

+= ⋅
 

(18)

( ) ( )
1 1 2 2

1 2

( ) ( )
( )

( ) ( )

i iU i q U i q
E i

U i U i

⋅ + ⋅=
+

 
(19)

In the above equations, C1 and C2 represent the normalized coefficients of the low-velocity model 

and the high-velocity model, respectively; P1(mi│y0:(i+1)) and P2(mi│y0:(i+1)) express P(mi│y0:(i+1)) based 

on different P(Mi│Mi‒1) models, as described above; li represents the coordinate information of the MT 

at time I; and q1
(i) and q2

(i) represent the positions estimated based on two sequential frames. Finally, the 

system updates the models and plugs the values of NP1(mi│y0:i) and NP2(mi│y0:i) into each model as the 

initial values for the next calculation, as illustrated in Figure 11. 

 

Figure 11. Updating of weights. 

The following equations express the schematic diagram:  

0: 0:
1 1 1( | ) (1/ ) ( ) ( | )i i i i

j j j
j

NP m y C P U i P m y= ⋅ ⋅ ⋅  (20)

0: 0:
2 2 2( | ) (1/ ) ( ) ( | )i i i i

j j j
j

NP m y C P U i P m y= ⋅ ⋅ ⋅
 

(21)

where each NP1(mi│y0:i) and NP2(mi│y0:i) is an update for a model used to continue the long-term 

evolution of the system. And both models are independence. In the next section, we demonstrate the 

feasibility of our proposed method and its superiority over other methods via simulations. 
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6. Cramér–Rao Lower Bound on Localization Error in NLOS Environments 

The CRLB is a theoretical lower limit for the variance or covariance matrix of any unbiased estimate 

of an unknown parameter(s). The effects of position precision can be better demonstrated using CRLB, 

which involves using a nonparametric kernel method to build a probability density function of NLOS 

errors. The CRLB is also derived in NLOS. In this paper, the arithmetic introduced by Huang et al. [33] 

is used to estimate the value of CRLB related to the deployment of the APs detailed in Section II. The 
MT with unknown coordinates, 1 1.... n nx y x y , and the APs with known coordinates, 1 1 3 3...n n n nx y x y+ + + + , are 

deployed as described in Section III. The vector of the unknown parameters is [ ]1 1... ...
T

n nx x y yθ =  If θ̂  

is an estimate of θ , the CRLB of this situation can be defined as:  

1ˆ ˆ[( )( ) ]E JΤ −
θ θθ − θ θ − θ ≥  (22)

where 1J −
θ  is the inverse of the Fisher information matrix (FIM), defined as follows: 

( ) ( )ln | ln |f r f r
J E

Τ

θ

  ∂ θ ∂ θ
 = ⋅ ∂θ ∂θ   

 (23)

where r represents observation matrix, Y. The log of the joint conditional PDF is: 
3

1

ln ( | )
n

ij
i j i

f r l
+

= <

θ =  (24)

( )( )ln | , , ,ij ij ij i i j jl f r x y x y= (25)

Considering that the area of the simulation region is 30 m × 30 m, the limited link capacity, H, is 

neglected. Furthermore, the positions of the APs are fixed and can be precisely obtained; thus, the 

information matrix corresponding to the statistics of ranging error in this environment is also neglected. 

The FIM in CRLB for the case without uncertainty [33] can then be written as: 

xx xy

xy yy

J J
J

J J

 
=  
 

 (26)

Further, the CRLB can be divided into two parts, which can be written as: 

( ) ( ){ }1 11 11 T T
xx xy yy xy yy xy xx xyCRLB trace J J J J J J J J

A

− −− −= − + −         (27)

where 
1 1 1
, ,xx xx xy xy yy xyA A A

J J J J J J
= = =

           = = =           
      . 

One part of the CRLB is the parameter 1/A, which is a function containing information on the 

background noise and the NLOS errors in the environment. Moreover, parameter A can be divided into 

an LOS part, ALOS, and an NLOS part, ANLOS. The relationship between these two parts can be extracted as:  

LOS LOS NLOS NLOSA p A p A= ⋅ + ⋅  (28)

1LOS NLOSp p+ =  (29)

where LOSp  and NLOSp  are the probabilities of the occurrence of the LOS error and the NLOS error, 

respectively, and should give a total sum of one. Thus, it is clear that when the NLOS error is very small, 
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the value of NLOSA  is close to that of LOSA  and the total value of A is close to that of LOSA . In this paper, 

the value of both LOSp  and NLOSp  is estimated to be 0.5 for the simulation environment. 

The { }trace  function in Equation (27) above contains information about the system’s geometric 

distribution. In this paper, the positions of the APs are fixed but those of the MT are randomly generated. 

For flexibility, we generated 10,000 rational trajectories with 80 steps and calculated their average value. 

The vector with the value closest to the average value was selected as the most representative trajectory 

vector to be used as a reference vector. 

7. Simulations and Results 

In this section, we discuss the simulations conducted to establish the effectiveness of our modified 

method as well as the precision attained by combining the IMM and HMM using simulation diagrams 

generated in MATLAB. The PF method proposed by Morelli et al. [35] was also used to estimate the 

equal trajectory in the same signal receiving framework. 

We first executed a simulation in a circular environment, as described in Section II (R = 15 m), and 

set out three APs evenly at the edge of the area. (A robot or a human should actually walk randomly in 

this area with a terminal communicating with the APs.) We then generated an MT trajectory, as shown 
in Figure 6, using Equation (9) with [ ]  45 ,  45QΔ − ° °  and σv = 3 in 50 iterative steps. The parameters 

were the same as utilized by Morelli et al. [16]: an environment with white Gaussian noise with zero 

mean and variance σ0
2 = 2, path loss with exponent α = 2.4 and ρ = 0.9 and reference distance dref = 2. 

An additional NLOS Δτ  was created in line with the discrete exponential PDF: σd
‒1exp(‒k/σd), where  

σd = 7. Sampling frequency fs = 1 GHz, reference SNR ηref = 40 dB, channel delay spread τrms = 10 ns. 

This mathematical model was first used to locate the position for a constant trajectory in order to 

compare the ML, D/TA, PF, improved [36], and the modified and replacement algorithms proposed in 

this paper. The aim is to highlight the improvement in precision by using the modified method 

[ ]90 ,  90QΔ ∈ − ° °  was considered to simplify the analysis and eliminate the data training process. The 

trajectory was generated as described before. Furthermore, it is worth mentioning that the MT rebounds 

back into the circle when it “impacts” the edge of the circle, just as light does. 
The results for the six algorithms are displayed in Figure 12. Figure 12a shows the simulation based 

on calculations using the ML algorithm, Figure 12b shows that based on calculations using the D/TA, 

Figure 12c represents that using I-D/TA, Figure 12d shows the results of the simulation based on the PF 

algorithm, and Figure 12e,f show simulations based on our proposed modified method and replacement 

method, respectively. 

The blue and the red trajectories in the figures refer to the correct and estimated paths, respectively. 

From Figure 12a, we know that the ML estimation contains several false points. Figure 12b shows that 

the estimated points show a large disparity with the true trajectory, especially in the determination of the 

tendency of the MT movement. However, no false points are apparent. This is because the improved 

( )1| i ip m m −  is closer to the real-world situation ( [ ]45 ,  45QΔ ∈ − ° ° ). Figure 12c shows that the 

improved algorithm indeed improves the accuracy of localization, whereas Figure 12d shows that the 

PF algorithm is similarly accurate to the D/TA algorithm. Figure 12e shows that the trajectory calculated 
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by the modified algorithm is smoother and more stable, and Figure 12f shows that the replacement 

algorithm is more accurate than the M-HMM algorithm. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 12. Simulation trajectory of various algorithms: (a) Trajectory estimated by the ML 

algorithm; (b) Trajectory estimated by the D/TA estimation in [16]; (c) Trajectory according 

to I-D/TA estimation; (d) Trajectory estimated by the PF algorithm; (e) Trajectory estimated 

by the M-HMM algorithm; (f) Trajectory using RM-HMM estimation. 

The sight conditions with respect to all APs are represented in Figure 13, where the blue and white 

squares represent NLOS and LOS situations, respectively. It is clear that the MT is in an adverse sight 

condition at the conclusion of the constant trajectory. 

 

Figure 13. LOS/NLOS situations. 
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The average error and the variance of the six algorithms are shown in Figure 14. From the calculated 

data, it can be seen that I-D/TA has a much greater effect on the simulated trajectory than ML estimation, 

even though D/TA performs significantly better than the ML algorithm. The PF algorithm exhibits a 

similar accuracy and stability to that of I-DT/A. In the same manner, M-HMM and RM-HMM show 

similar accuracy and stability, whereas the RM-D/TA algorithm is the most accurate and stable method. 

 

Figure 14. Means and variances of the six algorithms. 

In order to better represent the error, a cumulative distribution function (CDF) was plotted for the 

simulation, Figure 15. The blue line represents the CDF of the estimation using the ML algorithm, the 

cyan line represents that of the D/TA, and the red line represents that of the I-D/TA [36]. The CDF of 

the PF has accuracy similar to that of the I-D/TA. The RM-HMM and M-HMM also show similar 

precision, with the former exhibiting the best performance. In Figure 15, the accuracy of the proposed 

algorithm can be clearly seen. 

 

Figure 15. CDF analysis of the six algorithms. 
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We calculated the probability P(yi│mi) of the fourth, 14th, 24th, 34th, 39th, and 45th steps to show 

the transformation from the original algorithm to the improved algorithm. To highlight the improvement, 

we used contours to represent the probability, with higher probability corresponding to a deeper shade 

of the relevant color representing it. At every step, the position of the MT was estimated by summing 

the coordinates and the corresponding P(yi│mi). Consequently, the pattern of the contours can be used 

to illustrate the precision of the algorithm. Figure 16a shows the original P(yi│mi) of the I-D/TA, whereas 

Figure 16b shows that of M-HMM. It can be seen that the multi-peaks and chaotic peaks obtained in the 

original algorithm have been reduced in number by M-HMM, which is hence more accurate. 

We now describe the use of simulation to establish the effectiveness of the combination of the IMM 

and the HMM algorithms and compare them with the methods discussed above. We first assumed the 

new trajectory shown in Figure 17c. In consideration of the speed of robots and humans, we assumed 

that the acceleration of the MT was 1 m/s2 with a maximum velocity of 3 m/s. 

(a) (b) 

Figure 16. Analysis of five dispersion points based on P(yi│mi). 

( )( ) |i iP MY  Further, in view of the building corners, the steering angle at every corner was assumed 

to be a right angle, which is, in practice, a difficult situation. The MT moved around the square four 

times (i = 128). It began at (−7.5 m, −8 m), moved to the right, accelerated uniformly, slowed, and then 

swerved for each turn. The dispersal motion model is as follows: 

mod( 1,8)n i= −  (30)

1  (0 n 2)n nV V a n−= + ⋅ ≤ ≤  (31)

           (3 n 5)n topV V= ≤ ≤  (32)

1  (6 n 7)n nV V a n−= − ⋅ ≤ ≤
 (33)

where i represents discrete time and Vtop = 3 m/s, a = 1 m/s2, V0 = 0 m/s, and n is iterated from zero  

to seven. A value of n = 0 signifies that the MT is at a bend or turn; in this case, Vn is 0 m/s, which means 

that the MT stops once at every corner. The MT iterated 17 times through the trajectory. The  
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high-speed model was chosen to be a Gaussian function with an average value of three and a variance 

of 1.5, as shown in Figure 17a. The low-speed model was selected to be a Gaussian function with an 

average value of zero and variance of 1.5, as shown in Figure 17b. The values of the parameters of the 

model were empirically determined. 

 
(a) (b) (c) 

Figure 17. PDFs of the high- and low-speed models and the original path. 

The simulation results are shown in Figure 18. The lines represent the same quantities as in Section  

V-A. The figures compare the true trajectory (blue line) with that calculated (red line) using (a) EKF 

estimation; (b) ML estimation; (c) D/TA estimation; (d) I-D/TA estimation; (e) PF estimation; (f) M-HMM 

estimation; (g) IMM + D/TA estimation; (h) IMM + RM − HMM estimation; and (i) IMM + M-HMM 

estimation. It is clear that ML estimation exhibits the worst performance in localization, whereas  

IMM + RM-HMM has the best results, which are similar in precision to IMM + M-HMM.  

The CDF of each of these seven algorithms are shown in Figure 19. It is clear that the ML estimation 

is significantly disturbed, and PF, I-D/TA, and M-HMM show more precise results in increasing order. 

On this basis, IMM combined I-D/TA and M-HMM. The resulting model further improved the precision 

of the results, which shows the effectiveness of IMM. It is worth noting that the result obtained from  

M-HMM is better than that obtained using IMM + I-D/TA. RM-HMM is the best algorithm, and is a 

modified form of IMM + M-HMM. 

Figure 20 shows that accuracy and stability improved every time the algorithm improved. For a single 

reduction in locating error, I-D/TA exhibits the best performance. EKF performs the best in improving 

locating stability. Although the improvements resulting from later algorithms are smaller, they improve 

the accuracy by approximately 10%. In comparison with M-HMM, the accuracy of RM-HMM is closer 

to that of CRLB. 

The IMM state in IMM + M-HMM is shown in Figure 21. In this paper, the MT interconverts between 

the low-speed and high-speed situations. To show this operation more intuitively, the probability of the 

MT occurring in the high-speed mode is shown in Figure 21 using a blue line with an initial value of 

0.2. In the figure, the green background represents the acceleration and deceleration, whereas the yellow 

background denotes uniform velocity. The red line is a line of reference with probability 0.5. From these 

data, it can be seen that the probability fluctuates with changing colors, and virtually all the peaks of the 

blue line match the yellow area, which means that the high-speed model was well selected. On the other 

hand, the bottom of the blue line matches the green area, which implies that the low-speed model was 

also well chosen. 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 18. Simulation trajectories of different algorithms. (a) EKF; (b) ML; (c) D/TA; (d) I-D/TA; 

(e) PF; (f) M-HMM; (g) IMM-D/TA; (h) IMM + RM-HMM; (i) IMM + M-HMM. 

 

Figure 19. CDF analysis of various algorithms. 
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Figure 20. Means and variances of the nine algorithms. 

 

Figure 21. Transformation of patterns in the simulation. 

 

Figure 22. The error distribution of the improved algorithm. 
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Figure 22 shows the error distribution of D/TA and IMM + RM-HMM. The blue star represents the 

D/TA error and the red square represents the IMM + RM-HMM’s. It can be seen that the algorithm 

proposed above improves the estimate performance in robustness and precision generally. The analysis 

of complexity of the algorithms above is shown in Appendix B. 

A real experiment is done in the third floor of the Comprehensive Technical Building of Northeastern 

University to show the effectiveness of the algorithm in complex indoor environments. For comparison 

purposes, the trajectory of MT is as the same as before, so are the parameters. The AP1 and AP2 are put 

in the corridor of the building, and the AP3 is put into a room and each AP is bound on a 1.5 meters tall 

table tripod. Some important signs are put on the ground of the aisle based on the calculation and 

measurement as shown as blue circle in Figure 23. A person takes a mobile node walking along the mark 

points to receive the signal from the three APs. After rounding one lap, the received data are transferred 

into the computer server with 16 cores and 32GB RAM to estimate the trajectory of MT.  

To illustrate the effectiveness of such methods, we set up two experiments in the described scenario 

and we analyze the results both in simulation and practice environment. The mean value of localization 

error is found to be 2.73 m in D/TA and 1.69 m in IMM combined with RM-HMM for the simulation 

respectively. Although the layout of the APs is different from before, the algorithms still show similar 

precision of localization. In Figure 23, green circle represents the trajectory of IMM + RM-HMM, and 

the red square represents the trajectory of D/TA. 

 

Figure 23. The trajectory of the MT in simulation. 

The practice experiments trajectory is shown in Figure 24. The legends are similar to the ones in 

Figure 23. The new mean values of localization errors are found to be 3.49 m in D/TA and 2.08 m in 

IMM combined with RM-HMM for the practice experiments.  

As can be verified from the scenario, the presence of five big metallic elevators, several power 

transformation boxes in the wall and metal bookcases cause severe degradation to the accuracy of the 

localization system in practice. It is worth mention that these phenomena are not reflected in simulation 
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experiment. As is expected, localization with IMM + RM-HMM results in more accurate and stable 

locations than D/TA. 

 

Figure 24. The trajectory of the MT in practice. 

8. Conclusions 

In this paper, we focused on WSN localization in LOS and NLOS mixed situations using an improved 

HMM algorithm. We first defined the concept of a UWB computation module and the HMM model. We 

then proposed a novel approach to locate the positions of an MT in dense multipath indoor environments. 

We proposed a Modified-HMM (M-HMM) method and a Replacement Modified-HMM (RM-HMM) 

method, and compared them with the D/TA, I-D/TA, PF, ML estimation algorithms. An IMM model 

was subsequently used to combine the low-velocity model with the high-velocity model in order to 

render the algorithm more robust and further improve precision. Simulation and real experiment results 

showed that our proposed methods can improve both the precision and the stability of localization. The 

location error was very close to the limit of CRLB. 
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Appendix 

A. Analysis of Complexity 

Va is defined as the result value of the integral of Equation (5) minus the integral of exponential 

probability density function σδ‒1exp(‒τ/σδ) with σδ = 7, and the data range of integral is the integer from 

0 to 100. It is obvious that the smaller Va is, the better the curve fitting will be. Firstly, the value of P is 

supposed to be 400, then the relationship between hij 
 and Va is shown as follows. 

 

Figure A1. Relationship between hij 
and Va. 

From Figure A1, we can see that the Va has the minimum value when the hij equals 0.3 or 0.4. As the 

right side of the curve is more flat, the hij is selected to be 0.4. After that the relationship between P and 

Va is analysed in Figure A2. 

 

Figure A2. Relationship between P and Va. 
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From Figure A2, we can find that P = 200 is the best choice when hij = 0.4. 

B. Analysis of Complexity 

From the reference [38], the notation used is as follows: 

N: total number of unique states in HMM set; 

T: number of observations. 

The complexity of the standard forward, backward, Viterbi algorithms are normally given as O(N2T), 

so the complexity of D/TA is O(N2T). In consideration of the M-HMM and RM-HMM both contain with 

forward and backward process, so the complexity of them is O(N4T2). The IMM algorithm in this paper 

is essentially a Markov model with two states, and the complexities of both high-velocity and  

low-velocity models are O(N4T2), so the whole complexity of RM-HMM combined IMM can be 

approximated as O(2 × N4T2). 

In order to reduce complexity of the mentioned algorithm, we have to reduce the value of N and T. N 
relates to the number of discrete points in the area Q and the number of APs. In this paper, the region is 

divided into a lot of grid points with Δd = 0.5 m which can effectively reduce the value of N, so does the 

selection of three Aps. In order to reduce the value of T, we also disperse the signal value into integer 

number, and ignore the decimal part. We use MATLAB to assess all the computing time mentioned in 

this paper as follows in Table B1. 

Table B1. Computing time of different algorithms. 

Algorithm ML EKF D/TA I-D/TA PF(400) 

Time 77s 34s 155s 167s 172s 
Algorithm PF (1000) IMM M-HMM IMM + M-HMM IMM + RM-HMM 

Time 488s 270s 290s 370s 396s 

The “PF(400)” means PF’s particle number is 400. These algorithms are used to calculate the same 

trajectory of the MT with 30 steps, in the same computer server. It is deserve to be mentioned that 

computing time of every method is not only based on different algorithm structures, but also based on 

different efficiency of programming.  
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