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Abstract: For linear arrays with fixed steering and an inter-element spacing smaller than 

one half of the wavelength, end-fire steering of a data-independent beamformer offers 

better directivity than broadside steering. The introduction of a lower bound on the white 

noise gain ensures the necessary robustness against random array errors and sensor 

mismatches. However, the optimum broadside performance can be obtained using a simple 

processing architecture, whereas the optimum end-fire performance requires a more 

complicated system (because complex weight coefficients are needed). In this paper, we 

reconsider the oversteering technique as a possible way to simplify the processing 

architecture of equally spaced end-fire arrays. We propose a method for computing the 

amount of oversteering and the related real-valued weight vector that allows the 

constrained directivity to be maximized for a given inter-element spacing. Moreover, we 

verify that the maximized oversteering performance is very close to the optimum end-fire 

performance. We conclude that optimized oversteering is a viable method for designing 

end-fire arrays that have better constrained directivity than broadside arrays but with a 

similar implementation complexity. A numerical simulation is used to perform a statistical 

analysis, which confirms that the maximized oversteering performance is robust against 

sensor mismatches. 
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1. Introduction 

Data-independent beamforming is a well-known array signal processing method characterized by a 

moderate computational burden [1,2], which is frequently applied in low-cost, small-sized linear arrays 

with a fixed steering direction. These arrays are useful in numerous electronic systems for spatially 

processing far-field acoustic waves, such as microphone arrays for sound capture and voice-based 

interactions [3–6] and hydrophone arrays for underwater acoustic monitoring and communications [7,8]. 

In this context, end-fire steering is frequently preferred to broadside steering [3,4,6] because it 

enables a significantly higher directivity. In principle, an end-fire array can attain a directivity of N2, 

where N is the number of sensors [9]. However, to limit the sensitivity to random array errors and 

sensor mismatches, a constraint on the sensitivity factor, i.e., the inverse of the white noise gain 

(WNG), can be introduced [2,10,11]. Because random errors and mismatches are uncorrelated between 

sensors, they serve as spatially white noise [2,10,11]. As a result, the constrained directivity maximization 

is a classical approach to achieve robust superdirective performance via end-fire arrays [2,10,11]. 

Although the WNG constraint prevents a directivity of N2, the maximum constrained directivity is 

often significantly greater than N and is attained for a value of the inter-element spacing d that is 

greater than zero and smaller than λ/2, where λ is the wavelength. Figure 1 illustrates the maximum 

constrained directivity versus the inter-element spacing for end-fire and broadside arrays, when N = 10 

and WNG ≥ 0 dB. Figure 2 illustrates the maximum constrained directivity versus N for the two 

steering directions when D = 0.45 λ, where D is the array aperture and when WNG ≥ 0 dB.  
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Figure 1. Maximum constrained directivity obtained for a 10-element array versus the 

normalized inter-element spacing (i.e., d/λ) for end-fire (solid line) and broadside (dashed 

line) steering. Optimum weights are computed by imposing WNG ≥ 0 dB and solving 

Equation (23).  
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Figure 2. Maximum constrained directivity obtained for an array aperture of D = 0.45 λ 

versus the number of sensors, N, for end-fire (solid line) and broadside (dashed line) steering; 

Optimum weights are computed by imposing WNG ≥ 0 dB and solving Equation (23).  

Despite its advantages, end-fire steering requires a more complex processing structure than broadside 

steering. To achieve the maximum constrained directivity of an end-fire array, complex-valued weight 

coefficients (in this paper the weight coefficients do not include the phase terms that correspond to the 

time delays required to steer the main lobe at end-fire) should be applied. A typical delay-and-sum 

beamforming structure [1,2] must be doubled to process both the real part and the imaginary part of the 

signals. In addition, the real signals generated by the array sensors must be converted to their complex 

analytic versions prior to processing. To simplify the processing system, an alternative is the processing 

of real signals, which are scaled using the moduli of the weight coefficients and opportunely delayed. 

The delays that are required to steer the main lobe at end-fire must be updated based on the phases of 

the weight coefficients. This alternative of the complex processing is only valid for narrow-band 

signals. Moreover, the updated delays are not integer multiples of a given time interval; consequently, 

their implementation in digital electronic systems is challenging.  

In this paper, we demonstrate that an oversteered end-fire array, if adequately optimized, yields a 

constrained directivity that is similar to the maximum directivity (achieved by complex weight coefficients) 

and circumvents the previously mentioned implementation difficulties. Oversteering [3–5,7,10,12,13] 

is a technique applied to increase the directivity of an end-fire array by pushing its main-lobe peak past 

the end-fire, outside the visible region. The main lobe is steered past the end-fire (or oversteered) by 

inserting additional delays. If the sensors are spaced less than λ/2 and the beam pattern shift is 

adequately tuned, a reduction in the width of the main lobe in the visible region is obtained and the 

appearance of grating lobes is avoided. Unfortunately, the main-lobe absolute level is reduced, whereas 

the absolute levels of the side lobes are not modified. Thus, as shown in Figure 3, the oversteering 

operation reduces the main-lobe width but increases the side-lobe level relative to the main-lobe [10]. 

In particular, if the weight coefficients are held constant, a gradual increase in the oversteering amount 

causes a progressive decrease in the WNG (this statement can be easily demonstrated by the equation 

that defines the WNG, which is introduced in Section 2) (i.e., a robustness reduction). 
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Figure 3. Normalized end-fire beam patterns for an array of 10 sensors with a spacing  

d = 0.15 λ without oversteering (solid line) and with oversteering (dashed line), using a 

uniform weighting window.  

For these reasons, the oversteering amount is typically carefully set [12] or tuned [5,7,10] to avoid 

exceeding the “mild oversteering” extent. In addition, real-valued weight coefficients that are traditionally 

used to reduce side lobes (especially the Taylor window) are also adopted in this context [5,7,10]. 

The contribution of this paper is twofold. First, we propose a mathematical framework that enables 

the computation of the complex weight coefficients and real weight coefficients that maximize the 

constrained directivity for end-fire arrays. The merit of this framework, which we preliminary 

presented in [14], is the ability to consider oversteering. This framework enables the performance of 

delay-and-sum end-fire arrays (with optimum complex or real weight coefficients) to be compared 

with the performance of oversteered arrays (with traditional weighting windows or optimum real-valued 

weight coefficients). 

Second, we propose an optimization algorithm that determines the oversteering amount and the 

real-valued weight coefficients to maximize the constrained directivity for a given inter-element 

spacing and a given lower bound for the WNG value. For the computation of the weight coefficients, 

the proposed algorithm exploits the previously mentioned framework.  

The contribution of this paper is innovative because the oversteering literature does not attempt to 

optimize the oversteering amount and does not propose any method to compute the weight coefficients 

that maximize the directivity by satisfying a lower bound for the WNG value. The synthesis of a 

weighting window that considers the presence of a given oversteering amount has only been addressed 

in [13]. However, only a sub-optimal, specific technique, devoted to reduce the side-lobe level, is 

proposed in that study. In addition, this paper demonstrates that when oversteering is adopted for an 

equally spaced (ES) linear array and a suitable sampling frequency is established, all delays to be 

applied to the received signals are integer multiples of the sampling period. This fact dramatically 

simplifies the system architecture. Because the WNG constraint assures robust performance against 
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sensor mismatches [2,10,11], the opportunity for using low-cost sensors is provided. This robustness is 

statistically assessed by assuming a microphone array and simulating numerous realizations for the 

sensor characteristics.  

This paper is organized as follows: Section 2 provides background information on beamforming. 

Section 3 presents the framework to compute the weights that maximize the constrained directivity and 

the algorithm for the oversteering optimization. In Section 4, the obtained directivities versus the 

spacing are discussed, some implementation issues are explored, and the robustness is assessed using 

numerical simulations. Finally, the conclusions are presented in Section 5. 

2. Beamforming and Oversteering  

Let us consider an ES linear array composed of N omnidirectional point-like sensors that is centered 

at the coordinate origin and placed on the x axis (because fixed steering is considered, if we assume 

that the array is composed of finite-sized transducers pointed at the array end-fire, the main lobe 

magnitude is not altered and the side lobe magnitude is only marginally reduced. However, the 

directivity increase is negligible because the small inter-element spacing considered here strictly limits 

the transducer aperture). The nth sensor is placed at the position xn and generates the signal sn(t), which 

is proportional to the sum of the desired and noise wavefields. According to conventional  

delay-and-sum beamforming [1,2], the beam signal b(t, θ0) steered in the direction θ0 is computed as: 

( ) ( )
=

τ−=θ
N

n
nnn tswtb

1
0   ,  (1) 

where t is the time and wn is the weight coefficient associated with the nth sensor. For far-field plane 

waves, the delay τn is computed as: 

cuxcx nnn 00sin =θ=τ  (2) 

where c is the wave propagation speed and the angle θ0 is measured with respect to the y axis (i.e.,  

θ0 = 90° at end-fire), and u0 = sinθ0. 

If the weight coefficients wn are real values, the real signals generated by the sensors can be directly 

employed as the input signals sn(t). If the weight coefficients wn are complex values, the input signals 

sn(t) are complex analytic signals computed from the real signals generated by the sensors; the real part 

of the analytic beam signals obtained from the beamforming output can then be employed as the final 

result. However, if the input signals have a narrow-band spectrum centered at the frequency f, an 

equivalent result is obtained by working with the real signals and using the phases φn of the weight 

coefficients wn as additional delays for the signals sn(t) as follows:  

( ) 
=

π
ϕ






 +τ−=θ

N

n
fnnn

ntswtb
1

20   ,  (3) 

Unlike conventional delay-and-sum beamforming, when the oversteering technique is applied,  
an additional delay o

nτ  is introduced to steer the main lobe past end-fire. The beamforming  

equation becomes: 

( ) ( ),
0

1

N ob t w s t
n n n n

n
θ τ τ= − +

=
 (4) 
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where ε is the amount of oversteering, which rules the additional delay and is expressed in a scale that 

is comparable with u0 = sinθ0. A better physical understanding of ε will be possible after the 

introduction of the beam pattern function. At this stage, we observe that the weight coefficients are real 

values and the input signals and output beam signal are real functions in both Equations (3) and (4). 

The total delays to be applied to the nth signal are determined for the two cases as: 

, 2
n

n cmp n
n n
f

x k
c

ϕ ϕ
πτ τ −= − = (6) 

( )
c

xno
nnovsn

ε+=τ+τ=τ 1
,

 
(7) 

where τn,cmp is the total delay to be used in Equation (3), τn,ovs is the total delay to be used in  

Equation (4), and k is the wavenumber, k = 2πf/c. 

For a plane wave of frequency f and direction of arrival θ, the resulting complex beam pattern B(u) 

is expressed as: 

( ) ( )[ ]
=

ε−−=
N

n
nn uujkxwuB

1
0exp  

 
(8) 

where u = sinθ. This expression is valid for both real-valued and complex-valued weight coefficients 

wn. Moreover, it can be used for end-fire steering (u0 = 1) with or without oversteering (depending on 

the value of ε), as well as for any other steering (u0 ≠ 1 and ε = 0).  

In conventional end-fire steering, the main-lobe peak occurs at u = u0 = 1. When an amount of 

oversteering is introduced, the main-lobe peak occurs at u = u0 + ε = 1 + ε, i.e., which is outside the 

visible region u ϵ [–1,1]. Consequently, the main-lobe portion that remains inside the visible region is 

narrower than the main-lobe in conventional end-fire, as shown in Figure 3. This result is obtained 

using the additional delays that are defined in Equation (5). They act similarly to the phases φn of the 

complex weights in Equation (3) but with fewer degrees of freedom (i.e., only one variable –ε– instead 

of N variables –φn). In the frequency domain, the additional delays used to oversteer the main lobe are 

equivalent to the addition of the phase terms that are linear with the sensor position. In some  

cases [10], the linear-phase adequately approximates the phase of the complex weights, and similar 

performances are obtained. 

The directivity D of a linear array steered in the direction θ0 is defined [2] as follows: 

( )

( )
−

=
1

1

2

2
0

2

1
duuB

uB
D

 (9) 

By substituting Equation (8) in Equation (9), the following equation is obtained after some mathematics:  

( )[ ]
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(10) 
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where sinc(η) = sin(πη)/(πη) and mw  is the complex conjugate of wm. For the same array, the WNG 

GW is defined [2] and computed as follows: 

( ) ( )[ ]
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(11) 

The directivity and WNG can be rewritten in matrix form by defining a column vector w for which 

the nth element is w[n] = wn, n = 1, 2, …, N, a square matrix A of size N for which the element in the 

mth row and nth column is:  

[ ]A , exp[ ( )( )]sinc[ ) / ]m n 0 n mm n jk x x u k(x xε π= − + − (12) 

and a square matrix B of size N for which the element in the mth row and nth column is:  

[ ]B , exp[ ( ) ]m nm n jk x x ε= − (13) 

With this notation, the directivity and WNG are defined as: 

 

A 
D

∗
=

∗
w B w

w w  
(14) 

ww

wBw

 

  
∗

∗
=WG

 
(15) 

where * indicates the complex-conjugate transpose.  

Properties of Matrix A 

Regarding matrix A, because w*Aw is equal to the integral of the beam pattern modulus squared, 

w*Aw is greater than zero for all non-zero complex vectors w. Consequently, A is a positive-definite 

matrix, implying that A is a Hermitian matrix. Therefore, the real part of A is a symmetric and 

positive-definite real matrix, whereas the imaginary part is a skew-symmetric real matrix (i.e., 

wTIm{A}w = 0 for all real vectors w, where T indicates the transpose).  

3. Optimization Method  

First, we consider the well-known maximum directivity problem without any constraint on the 

WNG. Our goals are to encompass the presence of oversteering and to emphasize the symmetry 

properties of the weight vector toward proposing a method to compute the real weight coefficients that 

provide the maximum constrained directivity. The proofs of these symmetry properties are essential 

for demonstrating that the related weight vectors maximize the directivity. In addition, the 

unconstrained optimization is a valuable background for approaching the constrained optimization.  

3.1. Directivity Maximization by Weight Coefficients 

Assuming, without loss of generality, a unitary response in the steering direction:  
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(16) 

the numerator in Equations (14) and (15) becomes one because w*B w = |B(u0)|2. Therefore, the 

problem of finding vector w that maximizes the directivity can be expressed in the form: 

   1      subject to

     Minimize

=∗

∗

wb

wAw
w

 
(17) 

where b is a column vector for which the nth element is b[n] = exp(jkxnε) and b*w = B(u0). By using 

the method of Lagrange multipliers (because A is positive definite and the Lagrangian function is  

real-valued [15]), it can be concluded that for a given oversteering amount ε, the solution wo is 

expressed as follows: 

bAb

bA
w

  

 
1

1

−∗

−
=o (18) 

Proposition 1. For an ES linear array, the complex weight coefficients wo that solve Equation (17) are 

conjugate symmetric with respect to the array center.  

Proof. When the discrete antenna is an ES linear array, matrix A is a Toeplitz matrix. Because A is 

positive definite, its inverse, A−1, is also positive definite. Moreover, because A is a Hermitian and 

Toeplitz matrix, its inverse is a Hermitian and persymmetric matrix [16]. As an example, let us denote 

the element (m, n) of matrix A−1 as amn (i.e., amn = A−1[m, n]) and set N = 5. Due to the aforementioned 

symmetry properties, matrix A−1 has the following form:  





























=−

1112131415

1222232414

1323332313

1424232212

1514131211

1

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

A
 (19) 

Now, let us denote the nth element of vector b as bn, i.e., bn = b[n]. Assuming that the ES linear 

array is centered at the coordinate origin, vector b has the following form: 























=

1

2

2

1

0

b

b

b

b

b
 

(20) 

Because all of the elements on the main diagonal of any Hermitian matrix are necessarily real, it is 

easy to verify that the product A−1b produces a vector that is conjugate symmetric with respect to its 

center. Finally, because we know that b*A−1b is a real number greater than zero, the solution wo in 

Equation (18) is a complex, conjugate-symmetric vector. Although this fact has been demonstrated for 

odd values of N, it is straightforward to verify that the same conclusion holds for even values of N. 
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In the special case of broadside steering (i.e., u0 = 0 and ε = 0), matrix A and vector b are both real, 

so the optimum weights in vector wo are real valued and symmetric. If complex weights must be 

avoided, the vector of real-valued weight coefficients that solves the problem in Equation (17) should 

be computed.  

Proposition 2. For an ES linear array, the real weight coefficients woR that solve Equation (17) are 

symmetric with respect to the array center, and vector woR is given by:  

RR
T
R

RR
oR

bAb

bA
w

  

 
1

1

−

−
=

 
(21) 

where AR = Re{A} and bR = Re{b}. 

Proof. Because we know that wT Im{A}w = 0 for all real vectors w, to solve Equation (17) it is 

sufficient to minimize wTARw. Regarding the constraint, to assure b*w = 1 with a real vector w, it is 

necessary that Re{b*}w = 1 and Im{b*}w = 0. Therefore, the optimization problem in Equation (17) 

can be rewritten as follows:  

   1      subject to

     Minimize

=wb

wAw
w

T
R

R
T

 
(22) 

if the solution of this problem, woR, verifies the equation Im{b*}woR = 0. Because AR is positive 

definite and the Lagrangian function is real, for a given oversteering amount ε, the solution woR for 

Equation (22) is provided in Equation (21). Moreover, for any ES linear array, matrix AR is a 

symmetric and Toeplitz matrix, with an inverse that is a symmetric and persymmetric matrix [16]. 

Analogous to the proof of Proposition 1, it is possible to verify that vector woR is symmetric with 

respect to its center. Therefore, due to the conjugate symmetry of b and the symmetry of woR, the 

equation Im{b*}woR = 0 is verified for any solution woR. 

3.2. Constrained Directivity Maximization by Weight Coefficients  

The design of robust solutions for maximum-directivity arrays requires the introduction of a constraint 

on the WNG. The WNG constraint is not only used for data-independent beamforming [2,10,11]; it has 

also been used to improve the robustness of data-dependent beamforming techniques, e.g., the  

norm-constrained Capon beamforming [17–19]. The introduction of this constraint prohibits the use of 

the analytical solutions in Equations (18) and (21). The problem in Equation (17) should be rewritten 

as follows:  

   
1   *

   *
   subject to

  *   Minimize

1







=
≤ −

wb

ww

wAw
w

thG  
(23) 

Here, Gth is the lower bound for the WNG value, i.e., GW ≥ Gth. Because the WNG value cannot 

exceed the number of sensors (GW ≤ N), the lower-bound Gth should be appropriately established, i.e., 

0 < Gth ≤ N. The weights wn = (1/N)exp(jkxnε) satisfy b*w = 1 and yield the maximum WNG, i.e.,  
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GW = N. Therefore, for every ε and every Gth, 0 < Gth ≤ N, at least one complex vector exists that  

solves Equation (23). 

This optimization problem is a quadratically constrained quadratic program that can be solved by a 

convex optimization tool (e.g., CVX, a package for specifying and solving convex programs [20]). In 

general, the solution is a vector wo of complex weight coefficients. The introduction of a convex 

inequality constraint on the norm squared of vector wo does not alter the solution symmetry properties 

discussed in Proposition 1.  

Proposition 3: For an ES linear array, the complex weight coefficients wo that solve Equation (23) 

are conjugate symmetric with respect to the array center.  

Proof: To demonstrate this proposition, let us introduce the Lagrangian [15] for the problem in 

Equation (23):  

( ) ( ) ( )1   ,,  1 −α+−λ+=αλ ∗−∗∗ wbwwwAww thGL (24) 

where α and λ are real-valued Lagrange multipliers, with α being arbitrary and λ ≥ 0 due to the 

inequality constraint. By forcing the gradient of the Lagrangian function to be equal to zero: 

( ) 0ww =αλ∇ ,, L (25) 

where 0 is a column vector of size N, the solution for the problem in Equation (23) is obtained as a 

function of α and λ: 

( ) bIAw  
2

1−λ+α−=o
 

(26) 

where I is an N × N identity matrix. By imposing the equality constraint b*wo = 1, the solution in 

Equation (26) becomes: 

( )
( )

1

1*b  
o

λ
λ

−

−

+
=

+

A I b
w

A I b  
(27) 

Because   0λ ≥ ,   + λA I  and its inverse are definite positive. Moreover, because A is a Hermitian and 

Toeplitz matrix, IA λ+  is also a Hermitian and Toeplitz matrix. Therefore, ( ) 1
  

−+ λA I  is a Hermitian and 

persymmetric matrix [16]. Following the same reasoning as in the proof of Proposition 1, wo is again a 

complex, conjugate-symmetric vector.  

The similarity between Equation (27) and the optimum weight vector equation in norm-constrained 

Capon beamforming [17–19] is evident. In the latter technique, the matrix A is replaced by the 

covariance matrix of the array signals and the oversteering is not included. The data-dependent 

solutions are equivalent if the oversteering amount is zero and an isotropic noise field is assumed to be 

the only signal that impinges on the array. 

The general formulation in Equation (23) can be adapted to the specific cases addressed in this 

paper. The computation of the optimum complex-valued weights is of interest when oversteering is not 

active (i.e., ε = 0 and all of the elements of vector b are equal to one). In contrast, the computation of a 

solution composed of real weights may be of interest either with or without oversteering.  
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However, for a given ε, ε > 0, the maximum WNG value that is achievable by real weights is less 

than N. The maximum GRmax is dependent on ε and is equivalent to GRmax(ε) = bR
T bR. Therefore, a real 

solution for Equation (23) only exists if Gth ≤ GRmax(ε). 

Proposition 4: For an ES linear array, if the real vector woR that solves Equation (23) exists, the 

weight coefficients in woR are symmetric with respect to the array center and vector woR can be 

computed by solving the following problem: 

   
1   

   
   subject to

     Minimize

1







=

≤ −

wb

ww

wAw
w

T
R

th
T

R
T

G  
(28) 

Proof: Because we know that wT Im{A}w = 0 for all real vectors w, to solve Equation (23) it is 

sufficient to minimize wTARw. Regarding the equality constraint, to assure b*w = 1 with a real vector 

w, it is necessary that Re{b*}w = 1 and Im{b*}w = 0. Therefore, the optimization problem in  

Equation (23) can be rewritten as in Equation (28) if the solution woR of this new problem satisfies the 

equation Im{b*}woR = 0. By applying the identical reasoning as the proof of Proposition 3, it can be 

verified that the solution of Equation (28) is: 

( )
( )

1

1T

 

 
o

R R
R

R R R

λ

λ

−

−

+
=

+

A I b
w

b A I b  
(29) 

For any ES linear array, matrix   R + λA I  is a symmetric and Toeplitz matrix, with an inverse that is a 

symmetric and persymmetric matrix [16]. Analogous to the proof of Proposition 1, it is possible to 

verify that vector woR is symmetric with respect to its center. Therefore, due to the conjugate symmetry 

of b and the symmetry of woR, the equation Im{b*}woR = 0 is verified for any solution woR. Similar to 

Equations (23) and (28) this can be solved using a convex optimization tool [20], which obtains a real 

vector woR. 

3.3. Oversteering Optimization  

When the oversteering is applied and real weight coefficients are desired, the constrained directivity 

must be maximized with respect to both w and ε because the elements of AR and bR are dependent on 

ε. Unlike the optimization with respect to w, the optimization with respect to ε does not have an 

analytical solution. A feasible approach is to compute the optimum vector woR for each possible value 

of ε, which is referred to as woR(ε), and to select the couple [ε, woR(ε)] that provides the highest 

constrained directivity. To make this exhaustive search possible, the allowable domain of ε, which 

depends on the ratio λ/d, should be adequately discretized. 

In principle, the upper bound for the oversteering amount is dependent on the sensor spacing: it 

corresponds to the beam-pattern shift that brings the grating lobe from the outside of the visible region 

to the inside. To prevent a grating lobe at θ= −90°, the allowable domain for the oversteering amount ε is 

the interval (0, λ/d − 2). If the inter-element spacing d is decreased, the extent of the domain of ε increases. 

Note that the problem in Equation (23) can be solved by a real weight vector only if Gth ≤ GRmax(ε), 

where ε ϵ (0, λ/d − 2). 
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Based on these considerations, the total optimization algorithm for w and ε can be summarized  

as follows: 

1. A discretization step is defined for ε and the interval (0, λ/d − 2) is discretized accordingly  

(a beam-pattern shift due to a given ε has an impact on the directivity value that depends on the 

main-lobe width. Because we desire that a change of ε equal to its discretization step will 

produce a small directivity change, such a step must be much smaller than the main-lobe width). 

The discrete values of ε are indicated by εk. 

2. The values εk for which the inequality Gth ≤ GRmax(εk) is satisfied are determined and indicated 

by εz. 

3. For each εz, the optimum weight vector woR(εz) that maximizes the constrained directivity is 

computed by solving Equation (28). 

4. For each couple [εz, woR(εz)], the related directivity is computed by Equation (14). 

5. The couple [εz, woR(εz)] that provides the highest directivity is selected, and the related 

directivity value represents the maximum for the constrained directivity. 

4. Results and Discussion 

4.1. Directivity Versus Spacing 

Initially, a linear array composed of eight ES sensors is considered, and the WNG is imposed to be 

always ≥ 0 dB. The directivity of this array is evaluated as a function of the normalized spacing (i.e., 

the ratio between d and λ, d/λ) considering spacing values smaller than λ/2. Regarding oversteering, 

three different real weighting windows are considered: uniform, Taylor’s, and the optimum window 

computed by solving Equation (28).  

First, we assess the performance of the end-fire array without oversteering when complex or real 

weight coefficients are used. For a given value of d/λ, the optimum complex weights are computed by 

setting ε = 0 and solving Equation (23). The optimum real weights are computed by setting ε = 0 and 

solving Equation (28). CVX software is employed for convex programming [20] on a common PC 

equipped with an Intel® Core i5 CPU with 2.60 GHz of clock and 12 Gbyte of RAM, and the solution 

is found in less than 0.2 s. Figure 4 compares the maximum constrained directivities and illustrates the 

directivity obtainable with uniform weights. In this specific case, the optimum real weights only 

provide a directivity higher than that obtained by uniform weights for d/λ < 0.22, with a gain that does 

not exceed 2 dB. In contrast, the complex weights provide a directivity gain of approximately 5 dB 

over a wide interval of d/λ. The absolute maximum constrained directivity is obtained for d/λ = 0.36 

and has a value of 15.3 dB. Because 10 log(N) is 9 dB and 10 log(N2) is 18 dB, the optimum complex 

weights allow for a robust directivity with an absolute maximum that is significantly higher than N and 

moderately lower than N2.  

Figure 5 compares the performances obtained by the oversteering technique when the uniform and 

Taylor’s weighting windows are applied. The optimum value for the oversteering amount ε, where  

ε ϵ (0, λ/d − 2), is computed by the algorithm described in Section 3.3 using a predefined weight vector 

(uniform or Taylor’s) instead of woR(εz). A discretization step for ε of 0.01 is established and a Matlab® 
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script is run on the previously mentioned PC, which results in a computation time that does not  

exceed 5 s.  
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Figure 4. Maximum constrained directivity obtained for an end-fire array of N = 8 sensors 

by imposing WNG ≥ 0 dB using complex weights (solid line) or real weights (dashed line); 

the directivity obtained using uniform weights (dotted line) is included for comparison.  
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Figure 5. Maximum constrained directivity obtained for an end-fire array of N = 8 sensors 

by imposing WNG ≥ 0 dB using the oversteering technique with uniform weights (solid 

line) and Taylor’s weights (dotted line); the performance obtained without oversteering 

using optimum real weights is included for comparison (dashed line).  

Figure 5 shows that the oversteering technique performs better than the optimum real weights 

without oversteering. In particular, Taylor’s window provides advantageous directivity values over a 

wide interval of d/λ, from 0.05 to approximately 0.42.  According to Figures 4 and 5, the performance 

achieved by real weights (uniform or optimized) without oversteering is poorer than the performance 

achieved by complex weights or by the oversteering technique; as a result, real weights without 
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oversteering will be disregarded in subsequent investigations. The latter is intended to assess the 

oversteering with the real weights that maximize the constrained directivity. For a given value of d/λ, 

the oversteering optimization and the weight computation are performed by the algorithm described in 

Section 3.3. A discretization step for ε of 0.01 is established, and CVX software is employed for 

convex programming [20] on the previously mentioned PC, which results in a computation time that 

does not exceed 4 min. Figure 6 presents the maximum constrained directivities obtained with the 

oversteering technique using three weighting windows: uniform, Taylor’s, and optimized. The absolute 

maximum for the constrained directivity (i.e., the performance obtained with the optimum complex 

weights) is also included for comparison. It is possible to verify that the optimum real-valued weights 

always provide the best oversteering performance and that the achieved directivity is very close or 

equal to the absolute maximum. Although the Taylor’s weights provide results that are only slightly 

poorer over a significant interval of d/λ (from approximately 0.1 to 0.4), the optimized weights ensure 

the achievement of the maximum constrained directivity achievable by the oversteering technique. In 

this specific case, for values of d/λ lower than 0.1, the optimized weights provide a significant 

advantage over traditional weighting windows. To realize this fact, Figure 7 presents a magnification 

of a portion of Figure 6. Figure 8 presents the oversteering amount ε required to obtain the maximum 

constrained directivity using uniform, Taylor’s, and optimized weights. In general, the oversteering 

amount ε necessary to achieve the maximum directivity increases as the spacing d decreases and the 

allowed interval for ε increases. When d/λ is less than 0.04, the optimized weights achieve the 

maximum constrained directivity using an oversteering amount that is smaller than those with uniform 

and Taylor’s weights. Thus, unlike oversteering with traditional weights, the proposed optimization 

performs best when considering both the oversteering amount and weighting window. 
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Figure 6. Maximum constrained directivity obtained for an end-fire array of N = 8 sensors 

by imposing WNG ≥ 0 dB using the oversteering technique with optimum weights (solid 

line), uniform weights (dashed line), and Taylor’s weights (dotted line); the performance 

without oversteering obtained with optimum complex weights is included for comparison 

(dash-dotted line). 
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Figure 7. Magnification of a section from Figure 6. 
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Figure 8. Oversteering amount, ε, that provides the maximum constrained directivity for 

an end-fire array of N = 8 transducers, which is obtained by imposing WNG ≥ 0 dB for 

three weighting windows: optimum weights (solid line), uniform weights (dashed line), 

and Taylor’s weights (dotted line). 

An assessment of the oversteering performance with respect to the number of array sensors is 

shown in Figure 9, where the same comparison as Figure 6 is repeated for N = 4 (Figure 9a) and  

N = 16 (Figure 9b). The computation times do not change considerably with respect to the 

aforementioned values (a moderate increase is observed also if the number of array sensor becomes 

greater than 16). With both four and 16 sensors, the oversteering with optimized weights yields almost 

the same directivity as the optimum complex weights over the entire spacing domain. Where a 

difference is visible, it does not exceed 0.6 dB. Oversteering with Taylor’s and uniform weights does 

not guarantee the same performance level: for N = 4, both weighting windows yield a constrained 

directivity that is approximately 2 dB lower than the best constrained directivity over large intervals of 

the spacing domain; for N = 16, Taylor’s window performs generally well but exhibits a 2-dB fall at the 
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lower bound of the spacing domain, whereas the uniform weights yield a directivity that is approximately 

3 dB lower than the best constrained directivity over a large portion of the spacing domain. 
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Figure 9. Maximum constrained directivity obtained for end-fire arrays of (a) N = 4 and 

(b) N = 16 sensors by imposing WNG ≥ 0 dB for the oversteering technique with optimum 

weights (solid line), uniform weights (dashed line), and Taylor’s weights (dotted line); the 

performance obtained without oversteering using optimum complex weights is included for 

comparison (dash-dotted line). 

For N = 4 and N = 16 (as well as for N = 8), the oversteering with optimum weights allows for  

a robust directivity with an absolute maximum that is significantly higher than N and moderately  

lower than N2. The spacing value at which the maximum directivity is obtained approaches 0.5 λ as  

N increases. 

A final assessment considers robustness against mismatches of the sensor characteristics. A more 

severe bound can be imposed if the robustness provided by a WNG ≥ 0 dB is not sufficient. Figure 10 

presents the same comparison as Figure 6 for the case when the WNG is imposed to be greater than  

5 dB. In this case, the maximum achievable directivity is generally 1–2 dB lower than that obtained  

by imposing WNG ≥ 0 dB. Although the performance graphs are now closer to each other, the 

oversteering with optimum weights is still the only technique that yields a constrained directivity very 

similar to that of the optimum complex weights over the entire spacing domain. The absolute 

maximum of the constrained directivity is now obtained for d/λ = 0.39 and has a value of 14.3 dB 

(compared to 15.3 dB obtained imposing WNG ≥ 0 dB). Because a WNG of 5 dB ensures a very 

robust design (for an eight-element array, the absolute maximum of the WNG is 9 dB), we conclude 

that, in this extreme case, the oversteering with optimum weights also provides a robust directivity 

with an absolute maximum between N and N2. 
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Figure 10. Maximum constrained directivity obtained for an end-fire array of N = 8 

sensors by imposing WNG ≥ 5 dB for the oversteering technique with optimum weights 

(solid line), uniform weights (dashed line), and Taylor’s weights (dotted line); the 

performance obtained without oversteering using optimum complex weights is included for 

comparison (dash-dotted line).  

4.2. System Implementation 

An analysis of Equation (7) reveals that for any ES linear array, the signal delays used with the 

oversteering technique differ from each other by an integer multiple of the quantity Δ, defined  

as follows: 

( )
c

d ε+=Δ 1

 
(30) 

Thus, if the sampling frequency fs is set to 1/Δ or to an integer multiple of 1/Δ, all of the delays to 

be applied to the received signals can be implemented in an easy and exact manner by shifting the 

signal of a given number of samples. Thus, before the beamforming sum, each signal should be 

multiplied by a real gain factor and shifted by an integer number of samples. 

To verify the viability of this procedure, we can consider a linear array of microphones spaced  

3.4 cm each other, working at a nominal frequency of 3.4 kHz (i.e., d = 0.34 λ). In this case, the 

microphone signals should be sampled at a frequency equal to or lower than 10 kHz, depending on the 

value of ε. 

Figure 11 displays a schematic of the implementation of this beamforming technique. After  

low-pass filtering (LPF) to avoid aliasing, the N input signals are digitized through analog-to-digital 

(A/D) converters that sample at a frequency fs = 1/Δ = c/[d(1 + ε)]. If fs is lower than the Nyquist rate, 

an integer multiple of fs can be set as the sampling frequency. The nth delay τn,ovs given in Equation (7) 

can be obtained very efficiently by shifting the nth signal by a given number of samples using a digital 

integer delay line. Before performing the final sum that generates the output signal b(t), the nth signal 

is multiplied by the real weight coefficient wn. If optimum oversteering performance is desired, the 
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weights wn should be computed by solving Equation (28). Otherwise, the weights can be derived from 

a traditional weighting window, such as Taylor’s window. 

 

Figure 11. Schematic of oversteered end-fire beamformer for a suitable sampling frequency fs. 

The same simple implementation cannot be applied for the complex weights because the term φn in 

Equation (6) depends on the index n. The implementation of end-fire beamforming with complex 

weights requires the precise implementation of delays that are not integer multiples of the sampling 

period or the transformation of the received signals in their analytic versions and the processing of 

complex signals. Both these options are more involved than the implementation of the oversteered  

end-fire array, needing a processing architecture that requires additional money, resources, and space. 

Of the two options for conducting end-fire beamforming with complex weights, the use of real 

signals is most similar to oversteering. This beamforming technique is mathematically defined in 

Equation (3), and a potential implementation scheme is shown in Figure 12. After low-pass filtering 

(LPF) to avoid aliasing, the N input signals are digitized through analog-to-digital (A/D) converters 

that sample at a frequency fs, which is greater than or equal to the Nyquist rate. Unlike the oversteering 

case, the deployment of the delays τn,cmp given in Equation (6) requires digital fractional delay lines. 

For each signal, the commonly used implementation scheme includes an interpolator that upsamples 

the signal by a suitable factor U, an integer delay line that approximates τn,cmp by shifting the signal by 

a given number of samples at the higher rate, and a decimator that downsamples the signal by the 

factor U. Before performing the final sum that generates the output signal b(t), the nth signal should be 

multiplied by the modulus of the complex weight coefficient wn. To achieve the maximum constrained 

directivity, the weights wn should be computed by solving Equation (23). An alternative to using the 

interpolator and decimator is to sample and process the input signals directly at the higher rate (i.e., 

fsU). However, the example described in the next subsection demonstrates that such a sampling rate is 

much higher than that required for the oversteering case. 

The comparison of Figures 11 and 12 and consideration of the previously mentioned observations 

confirm that the implementation of the end-fire beamformer with complex weights is more complicated 

than the implementation of the oversteered beamformer. 
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Figure 12. Schematic of end-fire beamformer using complex weights, where delays are 

implemented using digital fractional delay lines. 

4.3. Simulated Testing of an Array Design 

To test the performance of the beamformers considered in this paper, we consider a linear array of  

eight microphones spaced 2.5 cm apart. We consider that a plane wave with a frequency of 680 Hz 

impinges on the array at an arrival angle that varies from −90° to 90°. Random mismatches among the 

microphone responses are introduced according to specified statistics. For each arrival angle, the 

electrical signals produced by the array sensors are digitized and processed according to the schematics 

shown in Figures 11 and 12. The energy of the obtained beam signal is used to compose the actual 

beam power pattern |Ba(u)|2 of the simulated array.  

At a frequency of 680 Hz, the inter-element spacing d is equal to 0.05 λ; thus, the nominal array 

performance for a WNG greater than or equal to 0 dB is as follows. Figure 7 shows that the maximum 

constrained directivity is 8.62 dB using complex weights and 8.43 dB for oversteering using optimized 

weights. In the latter case, Figure 8 shows that the oversteering amount should be ε = 1.71.  

For comparison, if oversteering is used with Taylor’s weights, the maximum constrained directivity is  

7.20 dB and is achieved for an oversteering amount ε = 2.25. The nominal beam patterns for these 

three options are shown in Figures 13–15. 

The performance is assessed using two subsequent tests: in the first test, the sampling frequency 

(and the upsampling factor) needed to achieve an actual beam pattern close to the nominal beam 

pattern is determined. In the second test (see the following subsection), a statistical investigation is 

used to assess the robustness of the beamforming performance against mismatches in the sensor responses.  

In the first test, to clearly determine the relation between the sampling frequency and the beam 

pattern accuracy requires the assumption of ideal microphones (i.e., sensors with perfectly matched 

responses) and the use of a metric for the beam pattern distortion. The metric is developed by 

introducing the percentage error ∑, which is defined as the normalized distance between the actual 

beam power pattern |Ba(u)|2 and the nominal beam power pattern |B(u)|2:  
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(31) 

Obviously, both of the beam power patterns that are substituted into this equation must to be 

normalized functions. 

-80 -60 -40 -20 0 20 40 60 80
-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 b
ea

m
 p

at
te

rn
 [

dB
]

Direction of arrival [deg]
 

Figure 13. Nominal beam pattern (solid line) and actual beam pattern (dashed line)  

for beamforming with optimum complex weights applied to an end-fire array of  

eight microphones. 
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Figure 14. Nominal beam pattern (solid line) and actual beam pattern (dashed line)  

for oversteered beamforming with optimum real weights applied to an end-fire array of  

eight microphones. 
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Figure 15. Nominal beam pattern (solid line) and actual beam pattern (dashed line)  

for oversteered beamforming with Taylor’s weights applied to an end-fire array of  

eight microphones. 

The oversteering amount that optimizes the performance should be used to set the sampling 

frequency fs = 5.018 kHz for the oversteered beamforming with optimized weights. Using this specific 

value of fs for the processing outlined in Figure 11 results in an actual beam pattern that is identical to 

the nominal beam pattern. However, it is not necessary to acquire exactly 5018 samples per second to 

obtain good results: for instance, if the sampling frequency is set to 5 kHz or 5.05 kHz, the percentage 

error, ∑, does not exceed 1.9%. Similar conclusions are obtained for oversteered beamforming using 

Taylor’s weights. A zero error is obtained for a sampling frequency of 4.185 kHz; however, at 

frequencies around this value, the beam pattern is not significantly altered.  
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Figure 16. Distortion of beam pattern (measured in terms of the percentage error ∑) for 

beamforming with optimum complex weights versus the upsampling factor U. 

For beamforming using optimum complex weights, a sampling frequency fs = 1.5 kHz is set that is 

slightly higher than the Nyquist rate. Figure 16 shows the measured percentage error, ∑, when the 

upsampling factor U is increased up to 40. To obtain an error, ∑, that is lower than 5%, an upsampling 
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factor U = 10 is necessary. Instead, if an error, ∑, lower than 2% is desired, the minimum upsampling 

factor is U = 23. If a sampling frequency similar to the sampling frequency of the oversteered case is 

adopted without upsampling (i.e., fs = 5 kHz and U = 1), an error ∑equal to 22.7% is achieved and the 

actual beam pattern exhibits major distortions, as shown in Figure 17. 

-80 -60 -40 -20 0 20 40 60 80
-50

-40

-30

-20

-10

0

Direction of arrival [deg]

N
or

m
al

iz
ed

 b
ea

m
 p

at
te

rn
 [

dB
]

 

Figure 17. Nominal beam pattern (solid line) and actual beam pattern (dashed line) for 

beamforming with optimum complex weights when fs = 5 kHz and U = 1 for an end-fire 

array of 8 microphones. 

The information on the minimum upsampling factor that is needed to assure a small error, joined 

with the implementation scheme in Figure 12, provides a clear indication about the additional 

complexity that the beamforming with optimum complex weights requires. 

4.4. Statistical Assessment 

To start the statistical investigation with a sufficiently accurate beam pattern, the sampling frequency 

is set as follows: 1.5 kHz, with an upsampling factor U = 10 for the optimum complex weights; 5 kHz 

for oversteering with optimized weights; and 4.2 kHz for oversteering with Taylor’s weights. 

Mismatches in the sensor characteristics are typically modeled [2,21] by multiplying the response of 

the microphones by a random complex variable. The random variable An, where An = an exp(–jγn), is 

introduced to model the gain an and the phase γn of the response of the nth microphone. We assume 

that all of the random variables An, where n = 1, …, N, can be described by the same probability 

density function (PDF) fA(A). Moreover, an and γn are assumed to be independent random variables 

such that the joint PDF is separable, fA(A) = fa(a) fγ(γ), where fa(a) is the PDF of the gain, and fγ(γ) is 

the PDF of the phase. To investigate the robustness of the array performance, the PDFs of the 

microphone gain an and the phase γn are assumed to be Gaussian variables with mean values of 1 and 

0, respectively, and with standard deviations of 0.1 and 0.07 rad, respectively. The standard deviation 

values are significantly higher than the experimentally measured values for commercial microphone 
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arrays [22–24]. The reason for testing the array designs considered in this paper under such critical 

conditions is to evaluate the performance that can be achieved by deploying low-cost microphones.  

Figures 13–15 show the actual beam patterns obtained if we consider only one realization of the 

random variables An, n = 1, …, N, (which occurs in a given physical implementation of the array). 

These beam patterns are computed by simulating the reception and processing of a plane wave 

following the procedure described at the beginning of the previous subsection. The related directivities 

are as follows: 8.12 dB for the optimum complex weights (against a nominal D of 8.62 dB); 8.09 dB 

for oversteering with optimized weights (against a nominal D of 8.43 dB); and 7.19 dB for 

oversteering with Taylor’s weights (against a nominal D of 7.20 dB). Thus, the reduction in the 

directivity is a minimum for oversteering with Taylor’s weights and a maximum using the optimum 

complex weights. However, these results only serve as an example.  

To ensure that the performance analysis is statistically relevant, the actual beam patterns are 

evaluated for 104 realizations of the random variables An, n = 1, …, N. The directivities of these beam 

patterns are computed and used to derive the sample mean and the standard deviation and to trace the 

worst-case value. The results are reported in Table 1. Note that the mean directivity is approximately 

0.3 dB lower than the nominal directivity for both oversteering with optimized weights and using 

optimum complex weights. This difference is reduced to 0.2 dB for oversteering with Taylor’s 

weights. The standard deviations for oversteering with optimized weights and Taylor’s weights are 

approximately equal and lower than that obtained using optimum complex weights. The worst-case 

value of the actual directivity is approximately 2.3 dB lower than the nominal directivity for both 

oversteering with optimized weights and using optimum complex weights. This difference is reduced 

to 2.0 dB for oversteering with Taylor’s weights.  

Table 1. Nominal directivity compared with the sample mean and worst-case value of  

the actual directivity for an end-fire array of 8 microphones and 104 realizations of the 

mismatches; Optimum complex weights, oversteering with optimum weights, and oversteering 

with Taylor’s weights are considered; The standard deviation (as a linear scale) of the 

actual directivity is included. 

 
Optimum 

Complex Weights 
Oversteering,  

Optimum Weights 
Oversteering,  

Taylor’s Weights 

Nominal directivity 8.62 dB 8.43 dB 7.20 dB 
Mean directivity 8.32 dB 8.12 dB 7.01 dB 
Stand. Deviation 0.64 0.49 0.46 

Worst-case directivity 6.27 dB 6.12 dB 5.20 dB 

Despite the large magnitude assumed for the microphone mismatches, the three considered end-fire 

beamformers exhibit satisfactory robustness because of the constraint imposed on the WNG value. 

Oversteering with optimized weights and using optimum complex weights yield similar mean values 

and worst-case values for the actual directivity. However, the oversteered beamformer has a lower 

variance. The robustness of oversteering with Taylor’s weights is slightly better than the other cases 

most likely because the related directivity is the lowest for oversteering with Taylor’s weights. Overall, 

the advantages offered by implementing the oversteered beamformer (with optimized or Taylor’s 
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weights) are not compromised by the performance reduction from the sensor mismatches because a 

similar reduction is also observed for the beamformer using optimum complex weights. 

Although this section does not explicitly consider positioning errors, it is well known that they can 

be considered as phase errors whose standard deviation depends on the wavelength. In particular, if the 

transducer positions are affected by independent, zero-mean, Gaussian errors, with equal variances 

along the three Cartesian axes, it is possible to model the position error as a phase error whose standard 

deviation is equal to the standard deviation of the position error multiplied by the wavenumber [2,25]. 

Overall, the impact of a given position error increases as the wavelength decreases. 

5. Conclusions 

In this paper, we proposed a method to compute the amount of oversteering and the related vector 

of real weight coefficients that provide the maximum constrained directivity that can be obtained 

through the oversteering technique applied to a linear end-fire array of ES sensors. The constraint is 

related to the WNG and ensures the robustness of the beam pattern against mismatches of the sensor 

characteristics. The numerical simulation results confirmed that the optimized performance is robust 

even in the presence of considerable sensor mismatches. Moreover, we verified that for every spacing 

value, the constrained directivity achieved by the proposed method is higher than the directivity 

obtained through oversteering with traditional weighting windows and very close to the absolute 

maximum for the constrained directivity. The latter characteristic requires complex weight coefficients 

that make the processing system more involved. In contrast, a linear oversteered end-fire array of ES 

sensors can be easily implemented by selecting an adequate sampling frequency, scaling each received 

signal by a real gain value, shifting each signal of an integer number of samples, and summing all of 

the signals together.  

More generally, we have investigated the maximum constrained directivity of an end-fire array as a 

function of the inter-element spacing for different numbers of sensors and WNG lower bounds. We 

reported a constrained directivity between N and N2 that was obtained at a spacing value d < 0.5 λ by 

using complex weights or oversteering with real weights. In the examined cases, these two techniques 

provided a directivity equal to N when the spacing does not exceed 0.1 λ and when WNG ≥ 0 dB. 

Future activities will be focused to: assess the potential of the oversteering technique in approaching 

the maximum generalized directivity (i.e., the directivity of the mean beam power pattern, computed 

using the statistics of the array errors, as recently proposed in [25]); investigate the opportunity of 

introducing the oversteering concept in the context of the differential microphone arrays, according to 

the latest advancements described in [26]. 
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