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Abstract: In this work, we propose a multi-parametric sensor able to measure both 

temperature and radiation intensity, suitable to increase the level of integration and 

miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon  

p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation 

and temperature sensor independently. We found a maximum value of responsivity equal to 

350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated 

the effects of the temperature variation on light intensity measurement and of the light 

intensity variation on the accuracy of the temperature measurement. We found that the 

temperature variation induces an error lower than 0.55 pW/K in the light intensity 

measurement at 550 nm when the diode is biased in short circuit condition, while an error 

below 1 K/µW results in the temperature measurement when a forward bias current higher 

than 25 µA/cm2 is applied. 
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1. Introduction 

Lithography-based microtechnology, initially used to realize integrated semiconductor structures for 

microelectronic chips, was soon applied to fabricate microsystem devices suitable for several 

applications. In particular, the introduction of the concept of the micro Total Analysis Systems (µTAS) [1] 

and the development of the Micro Electro Mechanical Systems (MEMS) led to the development of  

Lab-on-Chip (LOC) systems as a powerful tool for biomolecular analysis in point-of-care  

applications [2–5]. LOC device is an example of a system where the high miniaturization level allows 

accomplishing several laboratory functions, usually done at lab-scale, with a fast response time, low 

sample consumption and on-site operation [6,7]. Although the application of LOCs is still novel and 

modest, a growing interest of companies and research groups is observed in different fields, such as 

chemical analysis, environmental monitoring, and medical diagnostics. However, only few LOC are 

currently commercially available and in many cases laboratory equipment is still required for their 

operation. Thus, current research efforts are directed towards the integration, on the same substrate (that 

can be either glass, plastic or crystalline silicon), of different physical and optical sensors, together with 

microfluidic devices, in order to produce a single analysis tool, where all the steps of the analysis, such 

as sample preparation, sample handling and analytical detection, can be carried out [8–10]. 

Sample preparation is usually implemented by heating the substrate for thermal treatments of the 

biomolecules and/or to improve the surface functionalization [11,12]. Monitoring and control of 

temperature is often performed with thin film sensors due to their high degree of integration [13]. 

Detection is usually performed using off-chip detection systems able to measure the fluorescence 

emitted by fluorescent dyes attached to the target molecules [14]. Recently, different groups have 

integrated electrical and/or optical sensors with the microfluidics, with the aim of achieving on-chip 

detection for improving the system sensitivity and compactness. In particular, optical detection of 

biomolecules based on organic [15–17] and inorganic [18] thin film photosensors has been developed. 

One of the most promising materials to this aim is hydrogenated amorphous silicon (a-Si:H) and its 

alloy. The low deposition temperature (below 250 °C) and its physical characteristics prompt the use of 

this material in different devices such as solar cells [19], electronic switching [20], strain sensors [21,22] 

and photosensors [23]. The use of thin film a-Si:H photosensors for the detection of biomolecules has 

already been developed by different research groups [24–29], and in particular by the authors in both 

labeled and label free techniques [30–32]. Furthermore, the same a-Si:H structure has recently been used 

as temperature sensor in a lab-on-glass system for the molecular amplification by Polymerase Chain 

Reaction (PCR) technique, in order to achieve a point-monitoring of the temperature distribution within 

the device area [33–35]. 

In this work, we propose the use of a single a-Si:H diode as multi-parametric sensor to measure both 

temperature and radiation intensity, in order to increase the level of integration and the miniaturization 

of LOC systems. In particular, we present a detailed investigation of the requirements that the structure 

has to satisfy, taking into account that the temperature variation affects the photo-response and that, on 

the other hand, light intensity variation can induce a reduction of accuracy in the temperature measurement.  

The paper is organized as follows: details of the device fabrication process are reported in the Section 2 

“Materials and Methods”, in Section 3 the structure and the fabrication process of the a-Si:H device are 

described, together with the characterization of the structure as radiation and temperature sensor;  
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in Section 4, experimental results are described and discussed in details with focus on the reciprocal 

influence of the two measured parameters; and in Section 5, conclusions are drawn.. 

2. Material and Methods 

Fabrication Process of the Device 

We have fabricated several 2 × 2 mm2 diodes arranged in array structure by the use of standard 

microelectronic technologies and four photolithographic steps for the geometry patterning. 

Below are described details of the technological steps used for the fabrication of the diode array. 

1. Cleaning of the glass substrate: 

a. ultrasonic cleaning in Detergent 8 (by Alconox) diluted at 5% in deionized water (DI) for 30 min; 

b. ultrasonic rinse in DI at 50 °C for 15 min; 

c. ultrasonic cleaning in Liquinox (by Alconox) diluted at 2% in DI for 30 min; 

d. ultrasonic rinse in DI at 50 °C for 15 min; 

e. drying in nitrogen flow; and 

f. immediately positioning of the glass substrate inside the RF magnetron sputtering system. 

2. Sputter deposition (in Material Research Corporation system) of 200 nm thick layers from a  

6-in-diameter Indium Tin Oxide (ITO) target (with 90% In2O3–10% SnO2 in weight composition), 

at 200 W of RF power, 2.7 mTorr of pressure process, 25 sccm of argon flow and 120 °C substrate 

temperature (Figure 1a). 

3. First lithographic step: 

a. spin coating of photoresist (AZ1518 from Shipley); 

b. soft bake at 100 °C for 1 min; 

c. UV exposure through a lithographic mask at 320 mJ/cm2 for 45 s; and 

d. development of the photoresist in AZ351B diluted at 25% in DI for 45 s. 

4. Patterning of ITO layer (with mask #1 in Figure 1b) by Sputter Etching at 180 W, 50 sccm Argon 

flow and 90 mTorr. 

 

Figure 1. (a) Structure of the sensor after step 4 of the fabrication process.  

(b) Photolithographic mask used for the patterning of ITO bottom electrode of the device. 

5. Covering the ITO markers with kapton tape to allow the subsequent alignments. 
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6. Sequential deposition, by Plasma Enhanced Chemical Vapor Deposition (PECVD) in a three 

UHV chamber system, of the hydrogenated p-type a-SiC, intrinsic and n-type a-Si layers, that 

constitute the stacked structure of the diode. The following Table 1 reports the deposition 

parameters of the PECVD process. 

Table 1. PECVD parameters used in the deposition of the a-Si:H and a-SiC:H layers. The 

gases are: SiH4 pure silane, PH3 silane diluted (5%), B2H6 helium diluted (5%), CH4 pure 

methane; PD is the process pressure; PRF is the power density of the plasma discharge; TD is 

the substrate temperature; tD is the deposition time. The thicknesses reported above have 

been estimated from the growth rate of the different materials. 

Layer 

type/material 

SiH4 

(sccm) 

PH3 

(sccm) 

B2H6 

(sccm) 

CH4 

(sccm) 

PD 

(Torr) 

PRF 

(mW/cm2) 

TD 

(°C) 

tD 

(sec) 

Thickness 

(nm) 

p/a-SiC:H 40  5 60 0.7 25 150 60 10 

i/a-Si:H 40    0.68 25 180 2100 400 

n/a-Si:H 40 10   0.3 25 200 180 50 

7. Deposition of a three metal layer stack of Cr/Al/Cr with thickness of 30/200/30 nm, respectively, 

in an Ultra Vacuum system (thermal evaporator by Balzers) with measured growth rate of 0.3 nm 

for Cromium and 1 nm for Aluminum. 

8. Peeling of the kapton tape, for the subsequent alignments. 

9. Lithographic steps (see point 3) with Mask #2 in Figure 2b. 

10. Patterning of the Cr layer by wet etching in a solution of 30 g Ce(NH4)2(NO3)6, 9 mL CH3COOH 

and 200 mL DI for 1 min. 

11. Patterning of the Aluminum layer by wet etching in a solution of 80 mL H3PO4 (85%), 5 mL 

HNO3 and 10 mL DI. 

12. Patterning of the Cr layer by wet etching (see point 10). 

13. Patterning of the a-Si:H n-i-p structure by dry etching in a Reactive Ion Etching system  

(by IONVAC) (Figure 2a) with the following parameters: 

a. Oxigen (O2) flow O2: 10 sccm; 

b. Carbon tetrafluoride (CF4) flow: 100 sccm; and 

c. Radio Frequency Power Density: 300 mW/cm2. 

 

Figure 2. (a) Structure of the sensor after the step 13 of the fabrication process.  

(b) Photolithographic mask used for the patterning of the mesa structure of the device. 

a)

b)

p-i-n

Cr/Al/Cr

Glass

ITO

MASK #2
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14. Deposition by spin coating of a 5 µm-thick SU8 (from Micro-Chem, MA, USA) and its pattering 

through Mask #3 in Figure 3b for opening via holes over the diodes (Figure 3a). The deposition 

of the SU-8 film is implemented through the following steps: 

a. spin coating at 500 rpm for 5 s followed by another run at 3000 rpm for 30 s; 

b. bake at 65 °C for 1 min followed by another bake at 95 °C for 2 min; 

c. UV-light exposition at 250 mJ/cm2; 

d. bake at 65 °C for 1 min followed by another bake at 95 °C for 1 min; 

e. developing in SU-8 remover; 

f. rinse in isopropyl alcool; and 

g. hard bake at 150 °C for 30 min. 

 

Figure 3. (a) Structure of the sensor after step 14 of the fabrication process.  

(b) Photolithographic mask used for the patterning of the via on the SU8 insulation layer. 

15. Deposition of a three metal layer stack of Cr/Al/Cr with thickness of 30/200/30 nm, respectively, 

in an Ultra Vacuum system (see point 7). 

16. Lithographic steps (see point 3) with Mask #4 in Figure 4b. 

17. Patterning of the Cr/Al/Cr layers (see points 10 an 11).  

 

Figure 4. (a) Structure of the sensor after step 17 of the fabrication process;  

(b) Photolithographic mask used for the patterning of the metallic lines for the electrical 

connection of the top electrode of the device to the edge of the glass substrate. 

MASK #3

SU-8

p-i-n

Cr/Al/Cr

Glass

ITO

a)
b)

Cr/Al/Cr

SU -8SU -8

p -i-n

Cr/Al/Cr

Glass

ITO

MASK #4

a)
b)
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18. Deposition by spin coating of a 5 µm-thick SU-8 as passivation layer and hard baking at 150 °C 

for 30 min. 

3. Structure and Characterization of the Device 

3.1. Sensor Structure 

The basic structure of the device is a p-type doped amorphous silicon carbide (a-SiC:H)/intrinsic 

a-Si:H/n-type doped a-Si:H heterojunction. The diode is deposited by Plasma Enhanced Chemical Vapor 

Deposition (PECVD) on a glass substrate covered with a Indium Tin Oxide (ITO) transparent conductive 

layer [36]. This layer acts as bottom electrode of the device, and for the light sensor application, as 

window layer for the light impinging on the photodetector through the glass. A Cr/Al/Cr stacked 

structure vacuum evaporated on the a-Si:H diode behaves as the top contact of the structure. An SU-8 

insulation layer is deposited over the diode in order to avoid the short circuit between top and bottom 

electrodes and to reduce the current component induced by or the exposed diode perimeter [37]. 

We have fabricated several 2 × 2 mm2 diodes, arranged in array structure, by the use of standard 

microelectronic technologies: Physical and Chemical Vapor Deposition of thin film, Dry and Wet 

etching of different materials, and four photolithographic steps for the geometry patterning. All the 

details of the device fabrication process are reported in Section 5 “Material and Methods”. 

The device current-voltage characteristics were evaluated using a Keithley 236 Source Measure Unit 

(SMU). We achieved a current of 10−11 A/cm2 at small (10 mV) reverse voltage, with an excellent 

reproducibility among the samples. This value determines a noise current contribution in the order of  

2 fA/√Hz, which is below the minimum detectable signal in our experimental set-up. 

3.2. Characterization as Radiation Sensor 

Due to the a-Si:H optical properties, the p-i-n junction is widely used as thin film devices for light 

detections. The active layer of the sensor is the intrinsic one, where the holes/electrons,  

photo-generated by the absorbed light, are swept toward the doped-regions by the electric field existing 

in the intrinsic region. The doped layers provide the built-in potential of the junction, but do not 

contribute to the photocurrent, because the high density of charged dangling bond defects, induced by 

doping in amorphous silicon, strongly traps the minority photo-generated carriers [37]. 

The spectral responsivity of the p-i-n photodiode can be designed through the optical absorption of 

the three layers, by tuning their thicknesses and energy gaps. In our devices, the energy gap of the p, i 

and n-type materials, measured on single film deposited on Corning glass substrates, are equal to 1.92, 

1.79 and 1.71 eV, respectively, while the thicknesses are equal to 10, 400 and 50 nm, respectively. 

The structure has been designed with the aim to maximize the responsivity at wavelengths between 

400 and 600 nm, which ensures the suitability of our photosensors for biochemical applications, where 

chemiluminescent or fluorescent signals have to be detected [38–40]. 

Figure 5a reports the quantum efficiency (QY) curve of one photodiode, measured in short circuit 

condition. As reported in [41], this operation mode minimizes the peripheral leakage current and 

therefore this is the bias condition we have chosen when the diode acts as radiation sensor. 
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Characterization has been performed on a double-arm set-up, including a tungsten light source, a 

monochromator Spex 340E, a beam splitter and a calibrated UV-enhanced crystalline silicon diode. 

From this characterization and from the following equation: 

hc

qQY
R




  (1) 

where  is the wavelength, q the electron charge, h the Planck constant and c the light speed, we derive 

that the photosensor responsivity (R) reported in Figure 5b. R is around 280 mA/W at 450 and 600 nm 

and shows a maximum equal to 350 mA/W at 510 nm. 

  

(a) (b) 

Figure 5. Quantum efficiency (a) and responsivity (b) curves of p-i-n a-Si:H photodiode 

measured in short circuit condition. 

3.3. Characterization as Temperature Sensor  

The same a-SiC:H/a-Si:H p-i-n diodes have been characterized as temperature sensors measuring 

their current–voltage characteristics as a function of temperature in the range 30 °C–90 °C, both under 

forward and reverse bias voltage conditions. Measurements have been performed in a probe station with 

a temperature-controlled chuck, by using a thermocouple as temperature reference. As expected [42], at 

constant voltage, in reverse bias condition, we observe an exponential dependence of the reverse 

saturation current with temperature, while at constant current, in forward bias condition, a linear decrease 

of the voltage across the diode with temperature results. These results are summarized in Figure 6. In 

particular, Figure 6a reports the diode current as a function of temperature when the diode is biased at 

0.2, 0.6 or 1 V reverse voltage, while Figure 6b shows the voltage drop across the diode as a function of 

temperature when a forward current of 10 or 20 nA is flowing in the device. 

In forward bias condition, with a bias current higher than 10 nA, the achieved temperature sensitivity 

(ST) is equal to 3.2 mV/K, greater than the one of a crystalline silicon diode [43], showing that the  

a-Si:H diode can be considered a very promising candidate for detecting very small temperature 

variations in LOC applications. 
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Figure 6. (a) Current flowing in the device diode as a function of temperature at reverse 

voltage bias equal to −0.2 V (triangle symbols), −0.6 V (circular symbols) and −1 V (square 

symbols); (b) Voltage drop across the diode as a function of temperature when a forward 

current of 10 nA (triangle symbols) or 20 nA (circular symbols) is flowing in the device. 

4. Results and Discussion 

The use of the same device as both light and temperature sensor has to consider the mutual influence 

of these two physical parameters. Indeed, temperature variation affects the current flowing through an 

irradiated diode, and, on the other hand, light intensity variation can induce a reduction of accuracy in 

the temperature measurement. In the following, we analyze in some detail the effect of one parameter 

(light intensity or temperature) on the measurement of the other parameter (temperature or light  

intensity, respectively). 

4.1. Temperature Effect on Light Measurement 

To investigate the effect of temperature on the sensor photo-response, we measured the current 

flowing in the a-Si:H diode as a function of temperature. In particular, Figure 7 reports the diode current, 

measured through a charge sensitive circuit with the device in dark condition and biased to the virtual 

ground of the amplifier, in the temperature range 25–80 °C. 

 

Figure 7. Diode dark current as function of temperature, with the device biased to the virtual 

ground of the amplifier. 
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We see an increase of the dark current (ID) from 0.25 pA at room temperature to 5 pA at 80 °C.  

The slope of this curve increases exponentially with temperature, with a maximum of 195 fA/K. 

When the device is used as light sensor the output signal is a current proportional to the light intensity. 

In this case, a current variation (ID) due to a temperature variation (T) induces an error in the measure 

of the light power (PT), defined as: 

PT = (ID/T)/R   [W/K] (2) 

For example, when the temperature presents small variations around 80 °C, applying Equation (2) 

and considering R values at 450 and 600 nm, the error in the light power measurement is lower than  

0.7 pW/K, while at 510 nm wavelength, corresponding to the maximum of R, the error does not exceeds 

0.55 pW/K. 

Under large temperature variation (between T1 and T2), the total error (PT,tot) in the light power 

measurement is given by: 

PT,tot = ((ID(T2) − ID(T1))/R   [W] (3) 

This behavior is illustrated in Figure 8. The two current values, measured under the same 

monochromatic (465 nm). 

Light pulse at 23 and 70 °C, have a difference of 2.1 pA. This value represents the influence of the 

temperature on the measurement of light intensity. Referring to Equation (3), with T1 = 23 °C and  

T2 = 70 °C, and considering a photosensor responsivity (R) around 290 mA/W at 465 nm, we calculate 

a total error in the light intensity measurement equal to 7.25 pW. 

 

Figure 8. Diode current under two equal light pulses at temperature equal to 23 and 70 °C. 

ON and OFF refer to turning on and off a light source impinging on the device. 

4.2. Effect of Light Intensity on Temperature Measurement 

When the sensor is used to measure the temperature, with the diode biased by a constant forward 

current, the output signal device is a voltage inversely proportional to the measured temperature.  

A voltage variation (V) induced by a light power variation (P) corresponds to an error in the 

measurement of the temperature (TL), defined as: 



Sensors 2015, 15 12269 

 

 

TL = (V/P)/S   [K/W] (4) 

This is illustrated in Figure 9, which reports the current-voltage characteristics measured, at stabilized 

temperature (30 °C), in dark conditions and under 0.5 µW monochromatic illumination at 465 nm. The 

photocurrent measured in reverse bias is about 10−7 A, four orders of magnitude higher than the dark 

current (10−11 A), while in forward bias (above 0.5 V), the two curves are almost superimposed. In 

particular, we found that, at a bias current of 1 µA, the voltage difference between the two curves, due 

the light intensity, is equal to 0.85 mV. Taking into account the thermal sensitivity (ST = 3.2 mV/K) of 

the a-Si:H diode, we derive that the error in the temperature measurement is equal to 0.5 K at 0.5 µW 

light intensity. This error can be considered negligible in biological analysis [38], where 0.5 µW is well 

above the optical power to be detected. 

 

Figure 9. Current-voltage characteristics measured at room temperature in dark conditions 

(solid symbols) and under monochromatic illumination at 465 nm with light intensity equal 

to 0.5 µW (open symbols). 

5. Conclusions 

We have proposed the use of an amorphous silicon p-i-n junction as both temperature and radiation 

sensor. In particular, we have analyzed the mutual effect of the temperature on light intensity 

measurements and of the light intensity variation on the accuracy in the temperature measurement. These 

effects induce very low errors in both light and temperature measurements if the diode is biased in short 

circuit or in high injection conditions, respectively. These positive characteristics of the structure make 

the device a very promising candidate as thin film sensor in integrated LOC systems, where optical 

detection of biomolecules is often required during a heat treatment of the analyte. 
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