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Abstract: Topography affects forest canopy height retrieval based on airborne Light 

Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting 

deviations caused by topography based on individual tree crown segmentation. The point 

cloud of an individual tree was extracted according to crown boundaries of isolated 

individual trees from digital orthophoto maps (DOMs). Normalized canopy height was 

calculated by subtracting the elevation of centres of gravity from the elevation of point 

cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on 

the DOM. Second, point clouds of the individual trees are extracted based on the 

boundaries. Third, precise DEM is derived from the point cloud which is classified by a 

multi-scale curvature classification algorithm. Finally, a height weighted correction method 

is applied to correct the topological effects. The method is applied to LiDAR data acquired 

in South China, and its effectiveness is tested using 41 field survey plots. The results show 

that the terrain impacts the canopy height of individual trees in that the downslope side of 

the tree trunk is elevated and the upslope side is depressed. This further affects the 

extraction of the location and crown of individual trees. A strong correlation was detected 

between the slope gradient and the proportions of returns with height differences more than 
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0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, 

and 0.60 (n = 41), respectively. 

Keywords: LiDAR; canopy height point cloud; Dinghushan National Nature Reserve; 

multi-resolution segmentation; topography 

 

1. Introduction 

Airborne light detection and ranging (LiDAR) has become an effective and reliable way to map 

terrain and retrieve forest structural parameters [1]. In fact, forest managers have found LiDAR to be 

of great utility when compared with traditional methods as a way to obtain forest information. Many 

important forest parameters can be obtained directly or indirectly from LiDAR data, such as tree 

height, crown width, diameter, canopy density, volume and biomass [2–4]. Before forest parameters 

obtained by LiDAR inversion can be applied, understanding the causes and magnitude of errors of 

such parameters is essential. A variety of factors can cause errors in LiDAR-based estimates including 

the terrain, forest structure and point cloud filtering algorithms; variations in topography also play a 

key role in data extraction. 

A series of studies have shown the accuracy of LiDAR-derived digital elevation models (DEMs) 

and tree parameters generally decreases as slope gradient increases. When the slope gradient increases 

from 15.6° to 37.6°, the vertical Root Mean Square Error of tree height extraction increases from  

0.576 m to 0.901 m [5]. Hodgson and Bresnahan [6] examined the effects of topography on tree height 

and spatial structure of forest within a small plot. Gatziolis et al. [7] studied the accuracy of an 

airborne LiDAR-derived DEM in a coniferous forest area with high biomass. Their results showed that 

DEM accuracy was mainly affected by the ground slope and sensor accuracy; increasing slope gradient 

resulted in reduced tree height because LiDAR inversion and DEM errors led to forest volume errors. 

Breidenbach et al. [8] investigated tree height retrieved from LiDAR and InSAR data and 

concluded that slopes generally impacted the estimation of tree height. They also suggested that as the 

slope gradient increased, models neglecting slopes would overestimate tree height, and noted that this 

could be corrected by a slope coefficient that would allow a more accurate estimation of tree height. 

Complex forest habitats and systems require accurate DEM extraction as the basis for forest 

parameter inversion. The accuracy of DEM extraction in turn is related to ground point classification 

and DEM interpolation. Complex terrains tend to cause misclassifications and missed points; therefore, 

the ground point cloud does not always reflect the actual terrain conditions, resulting in lower DEM 

accuracy, thus affecting parameter extraction [9]. Evans et al. [4] studied the effect of ground point 

misclassifications on the extraction of vegetation height. Interpolation is typically required to generate 

a DEM. However, the precision of the interpolation is again dependent on terrain complexity [10]. 

Much attention has been placed on the impact of DEM interpolation on the extraction of canopy  

height and tree height. Filtering algorithms used to generate LiDAR-based DEMs for complex forests  

mainly include Iterative Approximation [11–13], Progressive Densification [14], Morphological  

Filtering [15–17], and Multi-scale Curvature Classification (MCC) [18]. 
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Forest canopy height describes the top of the vegetated canopy as well as the vertical and horizontal 

distribution of the canopy; it is the key to assessing forest parameters [2,19]. An accurate estimate of 

canopy height significantly affects the inversion of forest parameters. Canopy height can be used to 

directly measure individual tree parameters such as crown vertices, crown diameter, and height to the 

first live branch [20]. Additionally, canopy height can also be used to calculate the Diameter at Breast 

Height (DBH) of individual trees, the average DBH of a forest stand, as well as stand volume and 

biomass through relative growth equations. In a word, canopy height is the basis for individual tree 

parameters such as tree height, crown diameter, height to the first live branch, DBH, canopy density, 

and other parameters including parameters related to forest structure, volume and biomass. Therefore, 

the accurate extraction of canopy height is the key to accurate estimation of forest structure parameters 

and biomass retrieval. Two methods used to express canopy height are the discrete normalized point 

cloud method and grid canopy height models (CHM). The former is obtained directly by subtracting 

DEM data from filtered and classified point cloud data, while the latter was produced by subtracting 

DEM data from a Digital Surface Model (DSM); a DSM can be generated by interpolating filtered and 

classified point cloud data [21,22]. Therefore, a CHM is also known as a Normalized Digital Surface 

Model (nDSM), Digital Canopy Height Model (DCHM) or Digital Canopy Model (DCM) [23]. 

Both the normalized point cloud and CHMs are subject to the influence of terrain. Previous 

researchers have paid a considerable amount of attention to the influence of terrain on DEMs and the 

impact of classifications and filtering algorithms on forest parameter extraction, but few studies have 

explored the process of obtaining normalized point cloud data or CHMs. Canopy height differences are 

generated by subtracting a DEM from a DSM or the raw point cloud data. This paper proposes a 

method for terrain correction of canopy height based on individual tree crown segmentation. The  

aim is to assess and correct topographical effects on forest canopy height retrieval using airborne  

LiDAR data. 

2. Study Area and Data 

2.1. Study Area 

The study area (Figure 1) is located in Dinghushan National Nature Reserve (23°05′, 23°15′N, 

112°30′, 112°57′E), Dinghu District of Zhaoqing City, in the west central part of Guangdong Province, 

China. The area has a mean elevation of 545 m (minimum, 14.1 m; maximum, 1000.3 m). A rather 

complex terrain characterises the topography of the study area. The mountains in this hilly area run 

downhill from southwest to northeast. The area is covered by steep slopes, among which 44.7% are 

between 0–5°; 2.0%, 5–8°; 3.3%, 8–5°; 6.8%, 15–25°; 17.1%, 25–35°; and 26.1% are ≥35°. 

Vegetation in the area falls into six categories: evergreen broadleaf forest, coniferous and broadleaf 

mixed forest (here after referred to as “mixed forest”), tropical evergreen coniferous forest,  

montane evergreen shrub, montane evergreen bushes, and anthropogenic vegetation. The main tree  

species in the study area were Pinus massoniana, Schima superba, Castanopsis chinensis, and  

Eucalyptus robusta. 
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Figure 1. Distribution of slope in study area and plots. 

2.2. LiDAR Data 

The LiDAR survey was carried out on 24 December 2012 using LiteMapper 6800 (Ingenieur 

Geshellshaft für Interfaces mbH (IGI), Kreuztal, Germany, www.igi.eu); the main technical parameters 

are presented in Table 1. LiteMapper 6800 is capable of providing full waveform LiDAR data and 

high-resolution aerial images simultaneously because it is equipped with Rollei PRO 6.5 megapixels 

digital cameras (Rollei, Braunschweig, Germany). A Y-5 aircraft was used as an aerial platform. The 

aircraft covered a total area of 60 km2, with an average speed of 160 km/h, an absolute cruising 

altitude of 1300 m, an average relative altitude of 750 m, and an average point cloud density of  

15.0 p/m2. 

Table 1. Main technical parameters of LiteMapper 6800. 

Device Type LiteMapper 6800 

Pulse repetition frequency Up to 400 KHz 

Laser wavelength 1550 ns 

Pulse length 3.5 ns 

Laser beam divergence ≤0.5 mrad 

Multiple target separation within single shot 0.6 m 

Return pulse width resolution 0.15 m 

Scan pattern Parallel scan 

Scan angle range ±30° 

Angle readout resolution 0.001° 

Ground sample spot diameter 0.24 m (@800 m) 

Horizontal accuracy 0.08 m (@800 m) 

Vertical accuracy 0.04 m (@800 m) 

http://www.igi.eu/
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2.3. Field Inventory Data 

The ground-truth data were collected from 16 November 2012 to 9 December 2012. A total of  

41 plots (30 × 30 m2), with most slopes between 8–40° (Figure 2a), were established, including four in 

coniferous forests, 22 in broadleaf forests, and 15 in mixed forests. Parameters measured mainly 

included: DBH of individual trees with a DBH >5 cm (DBH is measured from 1.3 m above ground), 

tree height, height to the first live branch, crown diameter, canopy density, slope gradient and aspect; 

all served as samples and evidence for LiDAR-based biomass inversion and biodiversity research. Plot 

area was measured by a forest compass combined with a measuring tape. Slope gradients were also 

determined by a forest compass. Angular point coordinates of plots were determined by the wide area 

differential signals of a Trimble3000 handheld GPS (Trimble, Sunnyvale, CA, USA), with sub-meter 

nominal accuracy. Individual tree DBHs were measured by a DBH tape; tree height and height to the 

first live branch were measured by a laser altimeter; crown semidiameter was measured in east-west 

and north-south directions with a measuring tape. Figure 2b shows that the average crown semidiameter 

in the plots was 1.6–5.2 m, and maximum crown semidiameter was 3.3–25.0 m, respectively. 

 

Figure 2. Distribution of terrain slope in the plots, average and maximum crown 

semidiameter. (a) terrain slope; (b) average and maximum crown semidiameter. 

Plot number 34, a broadleaf forest plot with S. superba, Mallotus paniculatus and Ficus variolosa 

as the dominant tree species, is cited again as an example. This plot had average elevation 562.4 m and 

average slope 31.2°. Field surveys detected a total of 98 trees, with an average height of 7.86 m 

(maximum, 13.5 m; minimum, 3.6 m). The average, maximum, minimum DBH of all trees were 9.2 cm, 

37.0 cm and 5.0 cm, respectively, average crown at 4.1 m (maximum, 16.8 m; minimum, 1.5 m). The 

plot point cloud comprised 14,047 points. 
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3. Methodology 

3.1. Terrain Impacts on Canopy Height 

Both the canopy height point cloud and CHM are by nature elevation differences between the point 

cloud data, DSM and DEM for the same point in a coordinate plane. For an upright tree, the canopy 

height should be the difference between the elevation of the canopy and the elevation where the roots 

enter the ground. However, when the ground surface slopes, which is often the case, or other complex 

terrain features are present such as ridges, valleys, escarpments, and eroded areas are present, the 

elevation differences deviate from the actual canopy height.  

 

Figure 3. Influence of slope on canopy height. 

Figure 3 shows the influence of ground slope on canopy height when the canopy height is 

calculated as the difference between point cloud data and the DEM. The black dots in the figure 

represent laser hits on the canopy, where i is the angle of the slope gradient. On flat ground, the 

difference between the point cloud data and DEM reflects the actual canopy height (Figure 3a). The 

tree is located near the lower end of the slope, with part of its canopy covering the slope (Figure 3b). 

The difference between the elevation of the laser hit at the left side and DEM is its actual canopy 

height (a). The actual canopy height corresponding to the laser hit at the right side is b. However, the 

difference between the laser hit at the right side and the DEM leads to another height b’ = b – c tan(i), 

which represents an error of –c tan(i).Similarly, when the tree stands on a slope (Figure 3c), canopy 
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height calculated as the differences between DEM and laser hits at the left and the right side are  

a’ = a + d1 tan(i) and b’ = b – d2 tan(i), respectively, representing respective differences in +d1 tan(i)
 

and –d2 tan(i). Additionally, where the tree is located at the top of the slope with its canopy covering 

part of the slope, the canopy height error at the left side is +c tan(i) (Figure 3d). 

Terrain-induced canopy height differences are mainly determined by the slope gradient and the 

crown radius in that larger slope gradients and wider crowns lead to greater differences. When the laser 

hit is on the edge of the crown, and is in the upslope direction, the maximum height difference is 

expected to be observed. Laser hits farther away from the centre point of the trunk cause larger 

differences. The maximum differences of canopy height was calculated by the formula d/2 tan(i) 

(Table 2), where d is the diameter of the crown, and i is the slope gradient. Obviously, the influence of 

terrain on individual tree canopy height measurement is too significant to be ignored. 

Table 2. Maximum canopy height difference calculated by slope gradient and crown. 

Slope i (°) 

Crown d (m) 
5 10 20 30 40 50 

3 0.13 0.26 0.54 0.86 1.26 1.79 

5 0.22 0.44 0.91 1.44 2.10 2.97 

10 0.44 0.88 1.82 2.88 4.20 5.96 

15 0.66 1.32 2.73 4.33 6.29 8.94 

 

Figure 4. Flowchart of methods used in this study. 
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This shows that the terrain-induced canopy height difference is, in essence, the elevation difference 

between the laser hit and tree root elevation. That is, canopy height differences exist without exception 

because of the uneven ground. The differences will, in turn, influence the extraction of canopy 

vertices, trunk location, crown, volume and biomass. Extracted forest parameters will be distorted. It is 

thus imperative to remove the influence of terrain to conduct a more accurate extraction of canopy 

height. Because the normalized point cloud or CHM is obtained by subtracting the DEM data from 

DSM data or the raw point cloud, the influence of topography on canopy height varies with individual 

trees. Therefore, the point cloud of individual trees should be segmented first and foremost. Figure 4 

shows a flowchart of the method used. The details are described below. 

3.2. Processing of LiDAR Data 

LiDAR points were classified into ground and non-ground (vegetation) returns with MCC. MCC 

was designed for classifying LiDAR returns in forested environments occurring in complex  

terrains [18]. The MCC algorithm operates by discarding returns that exceed a threshold curvature 

calculated using a surface interpolated [18]. Ranges for initial parameters were selected for MCC 

based on the scale and curvature ranging from 0.8 to 1.5 and 0.01–0.10, respectively. Ground returns 

were used to generate DEM intervals of 0.3m.  

Studies have shown that first echo point cloud data can better reflect the forest canopy  

structure [24]. Therefore, the first echo point cloud was mostly employed in the current paper. Because 

the first echo point cloud higher than 1.8 m is believed to reflect the actual structure and morphology 

of the entire crown, these data are usually used for retrieval of forest parameters. Thus echo points of 

higher than 1.8 m above the ground were generally adopted as vegetation points to avoid the 

interference of shrub layer [25]. Moreover, point cloud percentiles could reflect the distribution of 

laser hits [26–28]. The proportions of points higher than given thresholds in the total number of points 

were calculated. 

3.3. Crown Segmentation 

To obtain individual tree height, the initial process is to isolate individual trees and delineate tree 

crown boundaries. Previous researchers have been done on isolating individual trees using large-scale 

aerial photos or high-spatial resolution remotely sensed imagery. The methods for isolating individual 

trees from imagery or photos include: edge detection using scale-space theory [29], local maxima 

detection [30], local maxima filtering with fixed or variable window sizes [31], local transect  

analysis [32], and watershed segmentation [33,34]. These methods are mostly based on the assumption 

that there are “peaks” of reflectance around the treetops and “valleys” along the canopy edges. 

Crown segmentation was performed using the eCognition (Definiens Developer 8.7) software 

package, with multi-resolution segmentation (MS), and a digital orthophoto map (DOM) with a 

resolution of 0.2 m as input in our study. To avoid over-segmentation as a result of DOM, the 

segmentation process was applied to a median filtered version of DOM. The median filter applied to 

the images had a window size of 7 × 7 pixels. The MS algorithm required scale, shape ratio and 

Compactness ratio as input parameters, a scale parameter associated with the average size of resultant 

objects, a Shape ratio associated with the shape criterion of homogeneity, and a Compactness ratio 
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associated with the optimization criteria for object shape. The parameters were adjusted as required for 

each image to account for differences in vegetation structure and distribution. The best segmentation 

parameters for different forest types were set after repeated experimentation. Segmentation was 

performed using different parameters: the scale parameter ranging from 10 to 14, the shape ratio 

ranged from 0.6 to 0.8 and the Compactness ratio ranged from 0.6 to 0.9. The final segments were 

reviewed manually to ensure quality. 

3.4. Terrain Correction of Normalized Point Cloud 

Point cloud data from individual trees were segmented based on crown boundaries which formed a 

closed polygon in the segmented DOM. The coordinate planes of centres of gravity were calculated 

through the weighted height of each point cloud group (Equation (1)). In Equation (1), xig, yig are the 

coordinates of centres of gravity in the point cloud group i; Aij are the elevations of points in the point 

cloud group i extracting from DEM; xij, yij, zij are the 3D coordinates of point in the point cloud  

group i; j is serial number of grounds 1, 2, ..., n, while n is the total number of points in group i: 
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 (1) 

For individual trees and forest gaps, the calculated coordinates represent the peak of the tree’s 

canopy relative to the ground and the geometrical centre of the gap, respectively. When a tree stands 

upright, its peak is directly over the base of the tree. Because this paper focuses on the effects of terrain 

to canopy height and forest biomass, the forest gap point cloud was removed by setting a height 

threshold. Finally, elevation values of centres of gravity zig, namely the elevation values of the tree 

base, were extracted from DEM according to their same plane coordinates. Additionally, the difference 

between zig and elevation of the point cloud in each group was considered to be the normalized point 

cloud after correction. 

3.5. Individual Tree Locations Extracted 

Before correction, CHM I was generated by subtracting DEM data from DSM data or the raw point 

cloud data. Normalized point cloud data based on individual tree crown segmentation was used to 

generate CHM II after correction through the Inverse Distance Weighted (IDW) interpolation  

method [35]. Individual tree crowns and individual tree locations were extracted to assess deviation 

caused by terrain of CHM retrieval from LiDAR data before and after correction. Individual tree 

crowns were also extracted by the canopy morphological-controlled watershed method from both 

CHMs before and after correction [36]. Morphological crown control was introduced to ensure that the 

watershed results are accurately located in the crown area. Additionally, both CHMs were used to 
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extract individual tree locations through the region growing method [36]. The local maxima algorithm 

is used to identify potential tree positions in crown area. 

Regression analysis was conducted using Microsoft Excel to assess the correlation between the 

slope gradient and the proportions of points with different thresholds of canopy height differences 

before and after correction. 

3.6. Assessing the Consequence of Correcting Topographic Effects 

We apply a mean stand height weighting scheme, named the Lorey’s height (basal-area-weighted 

average height) [37], which already is in common use in forestry. Lorey’s height is defined by 

Equation (2): 

i i

i

G h
Lh

G



  (2) 

where Lh is the Lorey’s height (basal-area-weighted average height), Gi is the basal area of stem i, and 

hi is the height of stem i. 

Stepwise multiple regressions were used to find a relationship between canopy heights variables and 

field surveyed Lorey’s height. Canopy heights variables from the LiDAR data before and after terrain 

correction were used as independent variables in the regression analysis. Two models were built 

respectively (Equation (3)). We used a K-fold cross-validation procedure (JMP 10, SAS Institute, 

Cary, NC, USA) to identify the most appropriate dimension for the regression models. This procedure 

splits the dataset into K groups and fits a regression model to all groups except one. The model giving 

the best validation statistic is chosen as the final model. This method is best for small data sets, 

because it makes efficient use of limited amounts of data: 

0 1 10 2 20 9 90 10 meanLh h h h h             (3) 

where h10, h20, …, h90 and hmean is 10%, 20%, …, 90% height quantile and average height of airborne 

LiDAR point cloud respectively; β0, β1, β2, …, β9 and β10 is the coefficient of model respectively; ε is 

the error of model. 

Stepwise variable selection and the maximum K-fold R-square improvement variable selection 

techniques were applied to select the LiDAR-derived variables to be included in the models [24]. The 

two Lorey’s height estimation models based on 41 plots were named Models I and II, respectively.  

In assessing deviation caused by terrain of canopy height, we report R2 for statistically significant (at  

p < 0.001) regressions, the RMSE, equation intercept and coefficients, and the maximum K-fold  

R-square. 

4. Results  

4.1. CHMs before and after Correction 

Figure 5 shows the results of crown and point cloud analysis segmented by MS in plot No. 34. The 

MS segmentation parameters were set to the Scale parameter of 14, the Shape ratio is 0.6 and the 

Compactness is 0.8. The point cloud was separated into both individual tree and forest gap point 

clouds (Figure 5b). 
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Figure 5. Multi-resolution segmentation in Plot No. 34: (a) segmented digital orthophoto 

map; (b) segmented point cloud. 

Figure 6a,b shows CHM I and II based on the IDW interpolation before and after correction. The 

differences between CHMs before and after correction ranged from −2 m to 2 m (Figure 6c). The 

positive and negative values appear alternately along the direction of slope. The differences are 

negative at the upslope side from the centre point of the trunk, and are positive at the downslope side. 

 

Figure 6. Canopy model heights (CHMs) before and after correction and difference  

image in plot No. 34: (a) CHM I before correction (b) CHM II after correction; (c) image 

of the differences. 

4.2. Impact of Topography on Individual Tree Extraction 

Figure 7 shows the point cloud of an individual tree in the study area. The ground slope gradient is 

38.2°, tree height is 24.4 m, and crown radius is 6.5 m and 5.5 m in cross direction. Figure 7a shows 

the raw point cloud data; Figure 7b presents the new normalized point cloud proposed in this paper; 

Figure 7c shows normalized point cloud data by the conventional method, i.e., by subtracting the DEM 
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from the raw point cloud. The long dashed lines represent the trunk. Point cloud data in Figure 7a,b are 

highly consistent with tree morphology, while Figure 7a,c are quite different. To be specific, the point 

cloud data in the oval box on the left side of the dashed line of Figure 7c are higher than the raw point 

cloud, whereas those in the square box on the right side of the dashed line are lower than the raw point 

cloud. The left and right sides of the dashed line is the downslope and upslope sides, respectively. In 

other words, the conventional normalized point cloud, which is the differences between raw point 

cloud and DEM, actually increases the modelled downslope side of the canopy by up to 2.23 m; while 

the upslope side of the canopy is lowered by up to −2.34 m. The extent to which the canopy height is 

raised or lowered is related to the slope gradient and the horizontal distance between the point cloud 

and the trunk. Greater gradients and longer distances from the point cloud to the trunk cause greater 

height differences. Points close to the trunk centre display nearly zero difference. 

 

Figure 7. Point cloud of individual tree canopies: (a) raw point cloud; (b) new normalized 

point cloud; (c) normalized point cloud by a conventional method. 

CHM is a key factor affecting the accuracy of parameter extraction from individual trees in that 

CHM directly influences the extracted location and crown of single trees. CHM is acquired from the 

normalized point cloud after interpolation. Figure 8 shows individual tree crowns and individual tree 

locations extracted. The results showed differences in both the number of trees and tree positions:  

62 trees from CHM I and 63 from CHM II and a maximum distance difference of 1.57 m in terms of 

tree location (Figure 8a). The number of crowns based on CHM I and CHM II were 71 and 68, 
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respectively, representing some integrations and separations. Apart from different crown numbers, 

there was also a considerable amount of difference in the shape and size of crowns (Figure 8b,c). 

 

Figure 8. Individual tree location and crown comparison: CHM I vs. CHM II.  

(a) Individual tree locations extracted from CHM I and CHM II; (b) crowns extracted from 

individual trees based on CHM I; (c) crowns extracted from individual trees based  

on CHM II. 

Because the traditional normalization method results in raising or lowering a point cloud, the 

normalized point cloud shows a much different morphology from the raw point cloud data, making it 

impossible to capture the accurate canopy structure of trees. There would be significant variation in the 

canopy vertices, individual tree locations and crowns extracted using these two methods. 

4.3. Impact of Topography on Plot-Level Canopy Height 

Point clouds in plot-level data areas are often used to establish biomass estimation models. 

Normalized point clouds and related statistics at the plot level have important effects on the precision 

of forest biomass models making it important to analyse how topography impacts canopy height at the 

plot level so that the precision of biomass estimation can be improved. 

Figure 9a–c shows canopy heights in plot No. 34 before and after correction in ascending order as 

well as their differences. Figure 9d presents canopy height differences in ascending order; canopy 

height differences before and after correction, i.e., terrain-triggered canopy height differences, are 

within ±2.0 m, and show a symmetrical distribution (Figure 9). This is the main reason that the ground 

slopes are basically uniform, and canopy has a symmetrical form with the trunk as the axis. The 

normalized point cloud at the downslope side was elevated with the normalized point cloud by the 

conventional method, so the differences are positive. Conversely, the normalized point cloud at the 

upslope side was lowered in elevation, so their differences are negative. In Figure 9b, with a canopy 

height showing the new normalized point cloud data of within ±1.8 m that corresponds to shrub or 

ground points, data within ±1.8 m is excluded by setting a threshold when forest parameters are 

extracted, such as tree height, crown, height to the first live branch, canopy density, biomass and so on. 

In other words, canopy height of less than ±1.8 m has nothing to do with forest parameters. The 

remaining point cloud whose canopy height is taller than 1.8 m after correction reflects the natural form 

of the canopy structure, and is thus conducive to subsequent extraction of parameters as listed above. 
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Figure 9. Canopy height before and after correction and canopy height differences in  

plot No. 34: (a) canopy height before correction; (b) canopy height after correction;  

(c) canopy height differences before and after correction; (d) canopy height differences in 

ascending order. 

The absolute value of terrain-caused canopy height differences of all plots was calculated and 

analysed. A difference threshold, k, was set at 0.3, 0.5, 0.8, 1.0, 1.2, and 1.5 m for various tests. 

Average values of differences above each threshold k are labelled as mean0.3, mean0.5, mean0.8, mean1.0, 

mean1.2, and mean1.5, respectively. The proportions of the point counts of canopy height differences 

higher than a given threshold k in the total number of points are labelled as p0.3, p0.5, p0.8, p1.0, p1.2, and 

p1.5, respectively. The plots were numbered based on their slope gradients in ascending order.  

Figure 10 shows average differences before and after canopy height correction. A zero average 

difference indicates no difference is greater than the corresponding threshold k. Based on the statistical 

results, the average values of mean0.3, mean0.5, mean0.8, mean1.0, mean1.2, and mean1.5 of all plots vary: 

0.58, 0.72, 0.97, 1.11, 1.21, and 1.28 m, respectively, and the maximum values of all plots were 0.83, 

0.98, 1.25, 1.43, 1.67, and 1.95 m, respectively. In general, the average value of differences increases 

as the slope becomes steeper (Figure 10). However, when the slope is ≥22°, the average canopy height 

difference barely increases. This can be mostly explained by the small crown radius within the plots 

which is average 3.5 m. Smaller crowns indicate that slope has less impact on the canopy height than 

larger crowns. Additionally, the canopy height differences tend to be symmetrical, which means that 

similar characteristics are observed regardless of whether the differences are negative or positive. 
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Figure 10. Average values of terrain-triggered canopy height differences versus slope. 

Figure 11 shows the proportions of points higher than given thresholds for the total number of 

points. Average values of p0.3, p0.5, p0.8, p1.0, p1.2, and p1.5 of all plots were 20.0%, 11.0%, 4.2%, 2.2%, 

1.1%, and 0.35%, respectively, and maximum values of p0.3, p0.5, p0.8, p1.0, p1.2, and p1.5 of all plots 

were 32.6%, 23.2%, 12.9%, 8.5%, 5.3%, and 2.6%, respectively. When the slope increases from zero 

to 38.2°, the proportions of points with differences larger than 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 m increase 

from 0% to 32.6%, 23.2%, 12.9%, 8.5%, 5.3% and 2.6%, respectively (Figure 11). Overall, the 

proportion increases as the slope increases, but it decreases as the threshold grows. 

 

Figure 11. Proportions of points with differences greater than given thresholds  

versus slope. 

Meanwhile, regression analysis shows a strong correlation between the slope gradient and the 

proportions of points with differences greater than 0.3, 0.5 and 0.8 m (Figure 12); the coefficient of 

determination R2 is 0.83, 0.76, and 0.60 (n = 41), respectively. But when the threshold is increased to 
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≥1.0 m, the correlation weakens. This is also attributable to smaller crowns, which means terrain 

creates less impact. Larger crowns apparently lead to more slope-caused canopy height differences.  

 

Figure 12. Regression relationships between slope and proportions of points with 

differences greater than selected thresholds: (a) threshold = 0.3 m; (b) threshold = 0.5 m; 

(c) threshold = 0.8 m. 
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4.4. Consequence of Correcting Topographic Effects 

To assess the consequence of correcting topographic effects on forest canopy height, the two best 

regression models were chosen and built according to the maximum R-square stopping rule from  

10-fold cross validation, namely Model I and Model II (Table 3). The height of the canopy at the 10th, 

40th, 60th, 90th percentile and average height were selected in Model I, the determination coefficient 

R2 is 0.61, corresponding adjusted R2 is 0.58, RMSE is 2.24 m, the response mean is 12.72 m, and the 

maximum K-fold R2 is 0.52. The height of the canopy at the 10th, 40th, 50th, 70th, 80th, 90th 

percentile and average height were selected in Model II, the determination coefficient R2 is 0.77, 

corresponding adjusted R2 is 0.71, RMSE is 1.86 m, and the response mean is 12.72 m, and the 

maximum K-fold R2 is 0.62 respectively (Figure 13). Experimental results show that the correlation 

between Lorey’s height calculated by filed survey and canopy height quantiles after terrain correcting 

is better than before terrain correcting, which reveals that normalized canopy height point cloud after 

the terrain correction is closer to the natural formation of forest canopy. It can demonstrate that the 

method of terrain correction restores natural forms of forest canopy. 

Table 3. Regression coefficients, estimated values and precision indexes of the models. 

Coefficients 

Model I ( n = 41) Model II ( n = 41) 

Estimated 

Values 

Error Sum 

of Squares 

(SS) 

F Ratio P > F 
Estimated 

Values 

Error Sum 

of Squares 

(SS) 

F Ratio P > F 

β0 1.382009 0.0 0.000 1 0.814054 0.0 0.000 1 

β1 −3.0262 36.37898 8.80696 0.005382 −3.33578 34.44685 9.895305 0.003499 

β2         

β3         

β4 2.62023n7 34.95306 8.46176 0.006263 3.454034 26.42372 7.590555 0.009475 

β5
 

    −6.26901 21.0267 6.04019 0.019406 

β6 −3.33947 40.49818 9.804176 0.003506     

β7     8.454889 19.45856 5.589724 0.024103 

β8     −7.81642 29.14998 8.37371 0.006697 

β9 0.569135 23.73004 5.744788 0.022012 1.141369 52.70873 15.14126 0.000458 

β10 3.614737 19.06262 4.614855 0.038697 5.001009 25.61142 7.357213 0.010527 

5. Discussion 

This paper offers a correction method of terrain-induced canopy height differences under the 

premise that the trees stand vertically. Of course, the suggested correction may not be applicable to 

tilting trees. Accurate measurement of the canopy height of tilting trees is more complicated, although 

this can be performed using auxiliary ground measurements [7]. 

Another premise of this paper is that the point clouds representing individual trees must be 

generated by DOM segmentation. The segmentation process relies on user-specified parameters 

regarding the scale, shape ratio and Compactness ratio in this study. When segmenting crown from 

remote sensing image and aerial photography image with high resolution, these methods are mostly 

based on spectral properties. However, the “peaks” and “valleys” are not always distinct since canopy 
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reflectance is affected by various factors such as illumination conditions, canopy spectral properties, 

and complex canopy structure. 

 

Figure 13. Correlation and residual error of the estimated Lorey’s height before and after 

terrain correction. (a) Correlation of the estimated Lorey’s height before terrain correction; 

(b) Residual error of the estimated Lorey’s height before terrain correction; (c) Correlation 

of the estimated Lorey’s height after terrain correction; (d) Residual error of the estimated 

Lorey’s height after terrain correction.  

Meanwhile, there may be overlapping point clouds in complex terrain and/or closed-canopy forest. 

Moreover, because the airborne LiDAR scanning was done at a large side-viewing angle, shadows fall 

into the DOM image. Therefore, only point clouds within the plots were segmented in this study and 

there may be some errors in the segmentation. Nevertheless, the DOM segmentation was done after 

repeated experimentation, and we believe that point clouds of single trees obtained this way had only 

minor errors. Segmentation of point clouds for the entire region is not currently feasible and warrants 

further study. 

The crown segmentation is the key procedure for terrain correction of forest canopy height retrieval 

using airborne LiDAR. Another crown segmentation method bases on airborne LiDAR data. 

Compared with passive imaging, LiDAR has the ability of directly measuring the three-dimensional 

coordinates of canopies. Therefore, the geometric, rather than spectral, “peaks” and “valleys” can be 

detected. Researchers have applied LiDAR data into crown segmentation and individual tree isolation 

directly [38–40]. The crown segmentation methods using airborne LiDAR can be divided into two 

kinds, and they are based on discrete point cloud and with surfaces derived from point cloud. The first 
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method segments crown using the point cloud directly. The later method usually transforms the point 

cloud into a raster. The first and final returns were used for generating the DSM and the CHM. The 

CHM has inherent errors and uncertainties from a number of sources. Such LiDAR-derived surface 

models often contain so-called “pits” which occur. The pit-free algorithm can be used for generating 

the pit-free CHM [41]. Meanwhile, spatial error can be introduced during the interpolation process 

from the point cloud to the gridded height model [7]. The uncertainty introduced by the interpolation 

method can affect the accuracies of the segmentations. Compared with using CHM, the crown 

segmentation methods using discrete point cloud can take advantage of the full 3D structure inherent in 

the LiDAR point cloud. Many approaches using point clouds have been developed to segment crown, 

such as region growing [42], marker-controlled watershed segmentation [43], combination of pouring 

algorithm and knowledge-based assumptions [44], adaptive clustering [45]. Jakubowski et al. [46] 

compared a 3D lidar point cloud segmentation algorithm to an object-based image analysis (OBIA) of 

CHM to determine the difference between the two types of approaches. The two approaches delineated 

tree boundaries that differed in shape: the lidar-approach produced fewer, more complex, and larger 

polygons that more closely resembled real forest structure. Effectively, the lidar segmentation method 

tended to under-segment and under-detect trees, while the OBIA method over-segmented the trees. 

However, there are over-segmentation and under-segmentation in segmenting forest crown using 

remote sensing image and using airborne LIDAR data. Further research is necessary to improve 

precision of segmentation and to automate the segmentation process. However, the correction method 

based on individual tree crown segmentation is only applicable on the plot scale, because of 

overlapping point clouds caused by complex terrain, closed forest canopies, and other reasons. 

Consequently, the segmentation of point clouds representing the entire region is worth further study. 

Geoscience Laser Altimeter System (GLAS, footprint size = ~70 m), with a larger-footprint and 

wide spatial coverage, has provided practical means for monitoring various global forest attributes. 

The sloped terrain generally lengthens the full extent of GLAS waveform and decreases the level of 

laser energy at the forest canopy and ground peaks [47]. Lee et al. [48] found that the larger footprint 

size and greater slope tend to generate more errors in the retrieved lidar forest canopy heights.  

Park et al. [49] found that both Laser Vegetation Imaging Sensor (LVIS, footprint size = ~20 m) and 

GLAS campaigns could be benefited from the physical correction approach, and the magnitude of 

accuracy improvement was determined by footprint size and terrain slope, off-nadir pointing angle. 

Our results indicate that airborne LiDAR data also can be benefited from topographic correction. It can 

be concluded that both large and small footprint LiDAR data will encounter high terrain slop problem, 

and topographic correction is required. 

6. Conclusions 

Canopy height serves as basic data for the extraction of forest parameters using LiDAR. However, 

canopy height obtained by subtracting DEM data from DSM data contains errors because of the 

influence of terrain. This paper proposes a method for correcting terrain-derived canopy height 

differences based on individual tree crown segmentation. The new normalized point clouds are very 

consistent with raw point clouds morphologically. The method can obtain accurate normalized canopy 

heights which recover the natural structure of the canopy. 
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The results show canopy height differences are connected with slope gradients and crown radius. 

Steeper slopes and larger crowns cause greater differences. For individual trees, terrain influences the 

estimated canopy height of individual trees when the DEM is subtracted from the DSM, the downslope 

side of the tree trunk is elevated and the upslope side is lowered. For plot scale measurement, a strong 

correlation exists between the slope gradient and the proportions of points with differences higher than 

0.3, 0.5 and 0.8 m, with the coefficient of determination R2 at 0.83, 0.76, and 0.60 (n = 41), respectively.  
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