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Abstract: Initial alignment is always a key topic and difficult to achieve in an inertial 

navigation system (INS). In this paper a novel self-initial alignment algorithm is proposed 

using gravitational apparent motion vectors at three different moments and vector-operation. 

Simulation and analysis showed that this method easily suffers from the random noise 

contained in accelerometer measurements which are used to construct apparent motion 

directly. Aiming to resolve this problem, an online sensor data denoising method based on a 

Kalman filter is proposed and a novel reconstruction method for apparent motion is designed 

to avoid the collinearity among vectors participating in the alignment solution. Simulation, 

turntable tests and vehicle tests indicate that the proposed alignment algorithm can fulfill 

initial alignment of strapdown INS (SINS) under both static and swinging conditions. The 

accuracy can either reach or approach the theoretical values determined by sensor precision 

under static or swinging conditions. 

Keywords: strapdown inertial navigation (SINS); self-alignment; gravitational apparent 

motion; denoising 
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1. Introduction 

Initial alignment is always a precondition for an Inertial Navigation System (INS) to navigate [1,2].  

For INS, initial alignment is the acquisition of the initial velocity, position and attitude. Because the 

velocity and position are easy to be obtained by an external reference system, such as the Global 

Positioning System (GPS), initial alignment mainly refers to the acquisition of initial attitude. Strapdown 

INS (SINS) uses a mathematical platform as a navigation platform, where the initial alignment 

specifically obtains the matrix between the body frame and navigation frame [3–5]. In SINS, the Inertial 

Measurement Unit (IMU) is directly installed in the vehicle, which easily suffers from the disturbances 

caused by running conditions, therefore making achievement of a robust alignment algorithm difficult. 

The technical manuals of the Octans system developed by the IxBlue Company (Marly le Roi, France) 

claim that the Octans can complete initial alignment under any swinging conditions within 5 min by 

observing the drift of gravity in an inertial frame (gravitational apparent motion) [6,7]. Protection of the 

technology and commercial interests may be the reasons why no details about the realization method are 

given in these manuals. Inspired by the alignment idea of tracing apparent motion, many realization 

methods have been proposed since 2000, which can be divided into two types, namely attitude 

determination based on dual vectors and vector-operational [8–20]. 

Both methods obtain initial attitude with non-collinear vectors of gravitational apparent motions 

which are formed by projecting accelerometer measurements into an inertial frame [10–12], but in the 

former one, the initial alignment problem involves solving the matrix between the initial body frame and 

initial navigation frame; while in the latter, this problem becomes how to solve the matrix between the 

initial body frame and the current navigation frame. Previous analyses [9,21–23] indicate that when we 

use these methods under static conditions, accurate position information is necessary in the former case, 

because the projection of the theoretical gravity in the initial navigation frame is needed, while in the 

latter no external information is needed, which means that it is a complete self-alignment method. 

Table 1. The parameters of the gyros and accelerometers. 

Gyros 

Constant bias ＜0.01 ○/h (1δ) Nonlinearity of scale factor ≤50 ppm (1δ) 

Repetitiveness of constant bias ＜0.01 ○/h (1δ) Repetitiveness of scale factor ≤50 ppm (1δ) 

Random walk 0.005 h  Measuring range −300～+300 ○/s 

Accelerometers 

Measuring range −20～+20 g bias ＜5 × 10−5 g 

Threshold ＜5 × 10−6 g Temperature coefficient of bias 
＜6 × 10−5/○C  

(−40～+40 ○C) 

Repetitiveness of scale factor ＜3.5 × 10−5 (1δ)
 
 Repetitiveness of bias ＜2.5 × 10−5 (1δ)

 
 

Temperature coefficient of 

scale factor 

＜6 × 10−5/○C  

(−40～+40 ○C) 
bandwidth >800 Hz 

However, both of these methods easily suffer from the random noise contained in the accelerometer 

measurements and because of that the measured acceleration are used to construct the apparent motion 

directly [13–20]. Apart from random noise, many other errors also exist in the measurements such as 

random walk, nonlinearity of scale factors and so on. The details of the gyros and the accelerometers 
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which are used in this paper are shown in Table 1. Figure 1 shows the frequency spectrum of the z-axis 

acceleration of an IMU installed on a turntable, when the turntable is swinging to simulate a ship under 

mooring conditions. The sampling frequency is 200 Hz. It can be concluded that the accelerometer 

measurement not only contains the intrinsic sensor noise but also contains some low-frequency and  

high-frequency disturbances. All of these errors have an effect on the accuracy of the initial alignment. 

 

Figure 1. The z axis acceleration frequency spectrum under mooring conditions. 

In order to realize the alignment under mooring conditions, the intrinsic sensor noise, low frequency 

and the high-frequency disturbances should be eliminated. Fortunately, the influence of fixed low 

frequency disturbances caused by the seawaves can be attenuated by the dual vector and vector-operation 

alignment methods and for that the inertial navigation frame is specially selected. The intrinsic sensor 

noise and the external random noise should be eliminated as much as possible [13]. 

To solve this problem [14,17] integrated an apparent motion to form an apparent velocity taking 

advantage of the smoothing effects of integration. Furthermore [15,16] introduced the wavelet denoising 

technique to eliminate the sensor noise and [17–20] introduced a low-pass filter to remove the noise 

taking advantage of the different characteristics of noise and apparent motion. In [9,22,23] the authors 

designed a parameter recognition algorithm based on the recursive least square (RLS) algorithm in which 

they reconstruct the theoretical apparent motion from the calculated apparent motion that does not 

contain random noise. In [24–26] the authors combined a Kalman filter and a IIR filter to reduce the 

external disturbance and the sensor noise. Although all methods seem to be suitable for the studied 

objects, it cannot be neglected that any integration method extends the alignment time making it costly. 

It is also difficult to find universal low-pass filter parameters applicable for the complex noise and 

dynamic environment. Meanwhile, the time-delay problem should be further studied because SINS is a 

real-time system [19,20]. Similarly, with RLS, optimal parameters can be acquired when minimizing the 

errors between the fitted data and measured data but it is vulnerable to wild values [9,22,23], and the wavelet 

denoising technique is always used in a post-processing case for the tremendous computing workload.  

In this paper, the alignment problem for the vehicle with swinging but no translational motion is 

studied. The alignment based on vector-operation is selected in order to reduce the alignment time and 

improve the accuracy of the alignment. To reduce the influence of the random noise of measurement of 

IMU, an online parameter-adjusted Kalman filter technology is introduced to estimate the useful signals 
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based on the knowledge about the system. The online parameter-adjusted Kalman filter technology can 

adjust the gain matrix and the measurement noise variance matrix according to the motion of the vehicle, 

which causes little time delay. Combining the alignment method based on tracing apparent motion and 

vector-operation with denoising method based on the online parameter-adjusted Kalman filter revealed 

exciting results in simulations, i.e., turntable tests and vehicle tests. 

The rest of this paper is organized as follow: in Section 2, the gravitational apparent motion is 

introduced and the alignment algorithm is designed and analyzed with a simulation. In Section 3 an 

online filtering technology is introduced to ease the negative effects of the random measurement noise 

and a new reconstruction algorithm of the gravitational apparent motion is proposed. In Section 4, 

turntable tests and vehicle tests are carried out to verify the effectiveness of this novel algorithm. Finally, 

the paper’s findings are summarized in Section 5. 

2. The Gravitational Apparent Motion and a Novel SINS Alignment Method 

2.1. Self-Alignment Method Based on Gravitational Apparent Motion and Vector-Operation 

The SINS alignment is to obtain the initial attitude matrix ( )n

bC t  between the current body frame and 

the current navigation frame. In the self-alignment method based on the gravitational apparent motion 

and vector-operation, ( )n

bC t  can be decomposed into two parts which are [22]: 

0

0
( ) ( ) ( )b

b

in n

b i bC t C t C t  (1) 

where b and n denote body frame and navigation frame respectively; 0bi is the inertial frame formed by 

fixing initial body frame in inertial space; M

NC  is the attitude matrix between frame M and frame N. 

The matrix 0 ( )bi

b tC  in Equation (1) can be updated with the measurements of gyros as follows: 

0 0 0 0

ˆ ˆ ˆ( ) ( )( ) ( )( )
b b b b

b b b b b

i i ib i i bt t t    C C C
 

(2) 

where the superscripts “
︿
” and “

～
” denote calculated value and measurement value, respectively; 

0b

b

i bω is 

the gyro measurement value. 

According to Equations (1) and (2), solving ( )b

n tC  in SINS alignment is thus converted into solving 

the matrix between the inertial frame and the current navigation frame, 0 ( )bi

n tC . 

2.1.1. Gravitational Apparent Motion 

The concept of apparent motion in INS is initially used to describe the characteristics of gyros. 

Researchers generally observe that gyros that are stable in the inertial frame, but in the navigation frame, 

the gyros and the inertial frame revolve around the Earth. The gravitational apparent motion is usually 

defined as the track of the gravity vector, which is stable in the Earth and rotating in the inertial frame. 

According to [7,8], the gravitational apparent motion in inertial frame is shown in Figure 2. In inertial 

frame, gravitational apparent motion is illustrated as a cone with the vertex at the Earth center and the 

cone axis coinciding with Earth’s rotating axis, the conical bottom radius is determined by the latitude 

where the vehicle is located. Notably, the formation of this cone is independent of the selection of inertial 

frame, but the specific mathematical expressions are related to the selection [9,22].  
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Figure 2. Trajectory of the gravitational apparent motion in inertial space. 

2.1.2. Alignment Method Based on Gravitational Apparent Motion 

The analysis method from [9,22] where “East-North-Up (ENU)” is selected as the navigation frame, 

the geographical relationship between navigation frame and the cone of apparent motion can be 

successfully analyzed. As shown in Figure 3, the points of O  and 
cO  denote the vertex (the Earth’s 

center) and conical bottom center, respectively. At the moment t, the origin of frame n is located at 
tnO

which is at the circle of conical bottom. The vector nOO  connecting the point O  and 
nO  is consistent 

with the Up-axis of frame, but it is reverse from the direction of ( )ig t . The vector cOO  connecting the point 

O  and 
cO  is consistent with the Earth rotating axis. The product of c nOO OO  is consistent with the  

east-axis of n, while that of U E  is consistent with the north-axis of frame n. When the projections of 

all axes in navigation frame are determined in the inertial frame, the matrix 0 ( )bi

n tC  can be constructed 

as follows [22]: 

0
( )

b

T
n T T T

i t    C E N U
 (3) 

where E, N, U are the projections of the axes of frame n in frame 0bi . 
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Figure 3. Alignment mechanism based on gravitational apparent motion. 
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Figure 4. Calculation method for cone axis. 

According to the above analysis, the initial alignment for SINS can be transformed into acquiring the 

projections of the navigation frame axes into the inertial frame. There are two problems which should 

be resolved, i.e., how to acquire gravitational apparent motion in frame 0bi  and how to construct the 

vectors in the apparent motion cone. 

In order to that we define “Right-Forward-Up” as the body frame, and assume that the axes of the 

IMU frame coincide with those body frames. Then, the gravitational apparent motion in inertial frame 

can be calculated as follows: 

0 0ˆ ( ) ( ) ( )b bi i b

bt t tf C f
 

(4) 

where, ( )b tf  is the accelerometer measurement in frame b. According to definitions of navigation frame 

and body frame, as well as the vector relationship described in Figure 3, there is 0 0( ) ( )b bi i
t t f g . Here, 

the first problem is solved. 

Because the vector nOO  coincides with the Up-axis of navigation frame, the vector U can be directly 

calculated as follows: 

0
0

0

00

0

ˆ ˆ ˆˆˆ
ˆˆ ˆˆ

b
b

b

bb

b

in in
i

n
n iin

i

OO    
C f fg

U
g fC f  (5) 

Therefore, the precondition of solving the vector E is to solve the vector cOO . As described in the 

above sections, the cone axis is the Earth’s rotation axis which has a fixed direction. Then, 0ˆ bif  at three 

different moments can be selected to construct cOO  through vector-operations. As shown in Figure 4, 

the apparent motion vectors 0ˆ ( )bi

Atf , 0ˆ ( )bi

Btf  and 0ˆ ( )bi

Ctf  at three different moments tA, tB and tC are used 

to construct procedure vectors 0 0ˆ ˆ( ) ( )b bi i

B AAB t t f f  and 0 0ˆ ˆ( ) ( )b bi i

C BBC t t f f . Thus, the vector cOO  can 

be constructed as follows: 

c

AB BC
OO

AB BC




  (6) 

With the vector cOO  and U, the vector E can be constructed as follows: 
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ˆ
ˆ

ˆ

c

c

OO

OO





U
E =

U  (7) 

Furthermore, the vector N can be constructed as follows: 

ˆ ˆ
ˆ

ˆ ˆ





U E
N =

U E  (8) 

According to equations from Equations (4)–(8), 0 ( )bi

n tC  in Equation (3) can be constructed as follows: 

0

ˆ ˆ ˆ( )
b

T
n T T T

i t  
 

C E N U
 

(9) 

Based on Equations (1), (2) and (9), initial alignment for SINS can be fulfilled, and the theoretical 

alignment accuracy of this method can be expressed as follows: 

, ,
cos

N E E
x y z

ieg g L


  



 
   

 (10) 

where, 
E  and 

N  are the equivalent accelerometer errors of the east and north respectively; 
E  is the 

equivalent gyro drift of the east; g  is the acceleration of the gravity; L  is the latitude; 
x , 

y , 
z  are 

the minimized alignment errors of pitch and roll and yaw, respectively [8,13]. 

2.2. Simulation 

2.2.1. Simulation Conditions 

To facilitate the analysis, we firstly consider the alignment of static base conditions. The simulation 

conditions are shown in Table 2 and the sensors errors are shown in Table 3. 

Table 2. Alignment under the two conditions. 

Case 1 Static and with constant sensor errors 

Case 2 Static and with constant and random sensor errors 

Table 3. Sensors errors setting. 

 Gyro Bias (°/h) Accelerometer Bias (µg) 

Constant Random (White Noise) Constant Random (White Noise) 

x-axis 0.04 0.04 50 50 

y-axis 0.04 0.04 50 50 

z-axis 0.04 0.04 50 50 

In case 1, the simulation assumes that the ship is static, and the IMU instruments only have constant 

sensor errors. This case would not appear in practice, and it is just for theoretical analysis. The 

gravitational apparent motion in the inertial frame of the gravity vector is obtained in this case, which 

can be used as the reference standard in the improvement scheme. Therefore, in this case, there is no 

sway or instrument random error, and the gravity vector obtained by Equation (4) could be regarded as 
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the theoretical value of the projection gravity vector in inertial frame. The simulation takes place in  

118°E, 32°N with a sampling frequency of 200 Hz. The strapdown algorithm update cycle is 5 ms. 

2.2.2. Simulation Results 

In this paper, the simulation time period is 600 s and the alignment errors are shown in Figure 5 where 

only constant sensor errors in IMU can be seen, when the self-alignment for SINS based on three vectors 

of gravitational apparent motion in inertial frame can quickly complete the strapdown inertial navigation 

initial alignment. Alignment accuracy is equal to the theoretical value in Equation (10). When random 

sensor errors exist in IMU, the SINS alignment error increases, and an oscillation within 0.01° in the 

horizontal direction occurs; meanwhile, the yaw error is so severe that it is completely unavailable. Thus, 

the self-alignment for SINS based on three different vectors of gravitational apparent motion in inertial 

frame is heavily affected by the random sensor errors. Firstly, we analyze the reasons leading to the 

failure of the proposed alignment method. 

Alignment errors in case 1 Alignment errors in case 2  

 

Figure 5. Curves of alignment errors. 

2.2.3. Reasons for the Alignment Failure 

According to formulas from Equations (1)–(9), it can be concluded that the main factors that affect 

the alignment results are: (1) error of 0ˆ bi

bC ; (2) error of 0ˆ bif ; (3) error of cOO ; (4) error of Ê . 

(a) Error of 0ˆ bi

bC  

The errors of 0ˆ bi

bC  are mainly composed of the calculation error and measurement error. However, 

the one-step upgrade showed that the calculation error is small enough and could be ignored.  

In [9] the authors pointed out that the gyros whose errors are equivalent to the gyros used in this paper 

can be introduced at a maximum of 0.0083° errors at 600 s in alignment because of the constant drift. 

The effect of random drift to the system only equals 4.1667 × 10−7°. Therefore, it is suggested that the 
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error in 0ˆ bi

bC  has no effect on the self-alignment for SINS based on three different vectors of gravitational 

apparent motion in the inertial frame. 

(b) Error of 0ˆ bif  

From Equation (4), the projection of gravity vector in the apparent coordinate system is obtained by 

the coordinate transformation of the measurement of the accelerometers in the carrier coordinates. 

Therefore, with the analysis of error of 0ˆ bi

bC , the projection accuracy of the gravity vector depends on 

the precision of the accelerometers. The projections of the gravity vector in the inertial frame under the 

situations of no instrument errors and both instrument constant and random errors are shown in Figure 6. 

The red solid line represents the theoretical value under no-error conditions. The blue dotted line shows 

the result when both instrument constant errors and random errors are present. It can be seen from Figure 6 

that the random and the constant errors of accelerometers cause the random and constant errors of the 

gravity vector in the inertial frame, respectively. 

With sensors errors Without sensors errors  

 

Figure 6. Projections of gravitational apparent motion in inertial frame. 

(c) Error of cOO  

From Equation (6), c

AB BC
OO

AB BC





, where 0 0ˆ ˆ( ) ( )b bi i

B AAB t t f f  and 0 0ˆ ˆ( ) ( )b bi i

C BBC t t f f . 

With the analysis in (b), it is known that 0ˆ bif  contains a large amount of random errors. If the intervals 

among tA, tB, tC are too short, the existence of random errors may lead to the collinearity or dislocation 

of 0ˆ ( )bi

Atf , 0ˆ ( )bi

Btf  and 0ˆ ( )bi

Ctf , 0ˆ ( )bi

Btf , which may contribute to the zero or reverse value of AB , 

BC . The vector cOO  obtained by Equation (6) will get a wrong or reverse value. Therefore, the random 

errors in 0ˆ bif  are the main reasons affecting cOO . 
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(d) Error of Ê  

From Equation (7), 
ˆ

ˆ
ˆ

c

c

OO

OO





U
E =

U
, among which Û  is directly obtained by 0ˆ bif . With the analysis 

in (c), cOO  is mainly affected by the random errors of 0ˆ bif . Therefore, the errors of Ê  also result  

from 0ˆ bif . 

Through the above analysis, the accuracy of the self-alignment for SINS based on three different 

vectors of gravitational apparent motion in the inertial frame is determined by 0ˆ bif . The random errors 

in 0ˆ bif  are the main reasons. However, the random errors of 0ˆ bif  are determined by the measurement 

of accelerometers in the carrier coordinates, so improvements are considered below which aim to solve 

the problems discussed previously. 

3. Improved Methods 

According to the analysis in Section 2, the self-alignment for SINS based on three different vectors 

of gravitational apparent motion in the inertial frame cannot be realized mainly because of the influence 

of the random measurement noise from the accelerometers. In order to reduce the influence of the 

random noise in IMU we introduce a Kalman filter which is more suitable for estimating the useful 

signal based on the knowledge about the system which reflects the behavior of the real world. The system 

behavior is described by the state-space representation where the uncertainties in the system could be 

considered as the measurement noise and process noise [26–29]. Inspired by these two ideals, a method 

based on an online parameters-adjusted Kalman filter is proposed to denoise the random noise of the 

IMU and a new reconstruction of the gravitational apparent motion vectors is also proposed. 

3.1. A Dynamical IMU Data Denoising Technology Based on Kalman Filter 

The Kalman filter which is used to estimate the states errors by the structure of the state space and a 

priori information of the process noise and the measurement noise is widely used in modern navigation 

systems. It can be used to effectively deal with the signals which are only disturbed by random noise or 

the disturbance can be treated as an independent variable of the system state variables [29]. The 

equivalent discrete system is as follows: 

1 1 1 1= + , = +k k k k k k k      X Φ X B u + G w Z H X v
 (11) 

where, 
kX  denotes the state vector at the time k; 

kZ  denotes the system output (measured signal) at time 

k; 
kw  denotes the process noise at the time k; 

kv  denotes the measurement noise at the time k. F  is the 

one step state transformation matrix; B  is the input matrix (   )n n . H  is the measurement matrix 

(1  )n . 
kw  and 

1kv  are the white noises with the expected value equal to zero. 

( ) , ( ) ( ) , ( )T T

k k k k k k k kE E w E E v     w 0 w Q v 0 v R
 (12) 

where, 
kQ  is the covariance matrix of the process noise 

kw , 
kR  is the covariance matrix of the 

measurement noise 
kv . 
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In the Kalman filter, we ignore the control signal and consider the uncertainty part as the process 

noise and the measurement noise, then, the recursive equations of the Kalman filter are as follows: 

1, ,k k k k  X Φ X
 (13) 

1, ,

T T

k k k k k      P Φ P Φ G Q G
 (14) 

1

1 1, 1, 1( )T T

k k k k k k



        K P H H P H R
 (15) 

1, 1 1, 1 1 1,( )k k k k k k k k         X X K Z H X
 (16) 

1 1 1,( )k k k k     P I K H P
 (17) 

where, 
,k kX  is the state estimate at time k, 

1,k kX  is the one step predicted state, 
,k kP  is the error 

covariance matrix at time k; 
1,k kP  is the predicted error covariance matrix; 

1kK  is the gain vector at 

time k + 1. 

The first step in the design of the Kalman filter for this application is to build the state space models 

of the gyros and the accelerometers which can describe the different system behaviors in the real 

environment. Then, the measurements of the gyros and the accelerometers reflect the motion of the 

carriers, the detailed information of the disturbance and the control signal are difficult to determine, so 

the control signal is ignored and the disturbance is considered as the process noise and the measurement 

noise. In a low dynamic environment, little acceleration change is observed and it can be considered as 

a constant value within one sampling period. Then the state space model and the measurement model of 

the acceleration are [29]: 

0 1 1 0
( ) ( ) ( ) ( ) ( )

0 0 0 1
A

Vd
t t t F t B t

Vdt

     
           

     
X = X w X w

  

( ) [0 1] ( ) ( ) ( ) ( ), ( )A

V
t t t C t t t

a

 
        

 
Z X v X v X

 (18) 

where, V  denotes the linear velocity of the carrier, a  is the acceleration, ( )tZ  denotes the measurement 

of the acceleration at time t. ( )tv  denotes the measurement noise of the acceleration which is considered 

as white noise. 

Similarly, it is assumed that the angular rate changes insignificantly and it could be regarded as a 

constant value within one sampling period as well. Then the state space model and the measurement 

model of the gyros are [29]: 

0 1 1 0
( ) ( ) ( ) ( ) ( )

0 0 0 1
G

d
t t t F t B t

dt





     
           

     
X = X w X w

  

( ) [1 0] ( ) ( ) ( ) ( ), ( )Gt t t C t t t




 
        

 
Z X v X v X

 (19) 

where,   denotes the angular rate of the carrier,   is the angular acceleration, ( )tZ  denotes the 

measurement of the gyros at time t. ( )tv  denotes the measurement noise of the gyros which is considered 

as white noise. 
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Equations (18) and (19) are the continuous system equations. Discretization processing is needed 

before the filtering iterative calculation according to the equations from Equations (13)–(17). The 

detailed approximate discretization steps are as follows: 

, ,T T    Φ I + F G B H C
 (20) 

where T denotes the filter update cycle. 

Although the state space model and measurement equation of the Kalman filter for one single input 

and one single output system is successfully built by Equations (18) and (19), whether the filter can work 

normally greatly depends on the initial parameters of the Kalman filter such as the variance matrix of 

the measurement noise 
kR (1  1) , the variance matrix of the process noise 

kQ (2  2)  and the one step 

prediction variance matrix 
0P (2  2) . In [29] the author has analyzed the influence of different Qk,  

kR , 
0P  on the Kalman filter in detail and an optimization approach for selecting the parameters of 

Kalman filter has been proposed, but these selected parameters do not work in a dynamic environment. 

In [30,31] the authors have proposed the adaptive moving average dual mode Kalman filter, which can 

adjust the filtering gain matrix K online. 

According to the above analysis, the residual 2  detection method is introduced in this paper to 

monitor the motion state of the carrier. When the value of the detection function is larger than the 

threshold 
DT , it can be concluded that the carrier is in a rapidly changing state of motion. Then we should 

decrease the value of the matrix 
kR  and increase the value of the matrix K to maintain the performance 

of the fast tracking to the carrier motion of the filter. When the value of the detection function is smaller 

than the threshold 
DT , it can be concluded that the motion changes slowly or the carrier is in static 

conditions or in uniform motion in a straight line. At this time, we should enhance the denoising 

performance of the system by increasing the value of 
kR  and reducing the value of K. The detail 

instructions are described below: 

The residual of the Kalman filter can be obtained from Equation (21): 

, 1k k k k k r Z H X
 (21) 

Then, the variance matrix of the residual is:  

, 1

T

k k k k k k A H P H R
 (22) 

After that, the detection function is: 

1T

k k k k  r A r
 (23) 

In order to test the online parameters-adjusted Kalman filter, one set of accelerometer data and gyro 

data are used and the filtering results of the online parameters-adjusted Kalman filter, finite impulse 

response filter (FIR) and wavelet filter are compared. Because the wavelet denoising technique is out of 

time-delay, here, the results of the wavelet filter just works as a reference point. 

First, we should choose an optimal set of parameters for the FIR filter. In this paper, the 

MATLAB/Filter Design & Analysis Tool is used to design the FIR filter. The sampling frequency (Fs) 

equals 200 Hz. Figure 7 shows the results of FIR filters with different parameters when an accelerometer 

is in static. For the FIR filters, the transition-band cut-off frequency (Fpass) are set as 20 Hz and 40 Hz, 

respectively. The stop-band cut-off frequency (Fstop) is set to 80Hz, the filter order (N) are set to 15, 30 
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and 300, respectively. Both the transition-band weight value (Wpass) and the stop-band weight value 

(Wstop) are set to 1. 
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Figure 7. Filtering results with different filter parameters. 

From Figure 7, it can be concluded that: (1) by maintaining the Fpass and Fstop constant, the high 

order of the filter results in a bigger time delay, but the filter results become better; (2) a low Fpass will 

result in better filtering results. Considering the time delay and the filter results, we choose an equiripple 

lowpass FIR filter whose Fpass equals 20 Hz, Fstop equals 80 Hz, and N equals 30. Figures 8 and 9 are 

the results of the outputs of the gyros and accelerations before and after filtering. The abscissas of the 

figures denote the sampling point sequence. 
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(b) 

Figure 8. IMU dates in static (a) gyro dates (b) accelerometer dates. 

In Figure 8, the IMU is kept static firstly. Then, the IMU rotates around axis z by 10 s . Lastly, we 

keep the IMU static again. The blue dotted line denotes the output of the accelerometers and the gyros 

before filtering. The red solid line denotes the output of the accelerometers and the gyros after filtering 

by the online parameters-adjusted Kalman filter. The green dot dash line denotes the output of the 

accelerometers and the gyros after filtering by the wavelet filter. The wavelet function is the MATLAB 

wavelet function, db5, and the level of decomposition is 5. The black dashed line denotes the output of 

the accelerometers and the gyros after filtering by the FIR Filter. Comparing the results before and after 

filtering, it can be concluded that the measurement noise in the IMU can be effectively eliminated by the 

Kalman filter proposed in this paper and the wavelet. The filtering result of FIR is worse than the results 

of the other two filters, and there is an obvious time-delay when the IMU rotates. 

In order to test the performance of the online parameters the adjusted Kalman filter proposed in this 

paper in a dynamic environment, the IMU outputs in a swinging case are used. Figure 9 shows the results 

before and after filtering the IMU outputs in the swinging case. From Figure 9, we can conclude that the 

filtering result of the wavelet filter is smoother than the other two filtering results. The filtering result of 

the online parameters-adjusted Kalman filter is better than the result of the FIR filter. From Figure 9 we 

can also conclude that the filtering results of the wavelet filter and the online parameters- adjusted 

Kalman filter can trace the motion of the carrier, while the filtering result has an obvious time-delay 

caused by the FIR filter in the swinging case. Although the delayed time of the FIR filter can be 

compensated accurately, the high order and the time-delay compensation would result in a great 

computational burden. 
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Figure 9. IMU data in swinging (a) gyro dates (b) accelerometer dates. 

Because the parameters of the FIR are optimal when the IMU is in the static case, the filtering result 

of the FIR filter in the static case is better than that in the swinging case. Moreover, the measurement 

noise in the real environment is more complex, i.e., when the ship is sailing on the sea, and the filtering 

result of the FIR filter would become worse because the filter parameters are set for a special situation, 

so comprehensively considering the filtering results in Figures 8 and 9, we can conclude that the online 

parameters-adjusted Kalman filter is more suitable for a real-time system. 

The introduction of online parameters-adjusted Kalman filter to the self-alignment of the SINS based 

on the three different vectors of gravitational apparent motion in the inertial frame and the projections 

of the gravity vectors measured by accelerometers are shown in Figure 10. From Figure 10, the 

projections of the gravity in the inertial frame, which are measured by accelerometers, are smoother and 

most of the random noise disturbance is eliminated. Compared with the theoretical gravity in the inertial 

frame without any IMU measurement errors, constant values exist because of the constant errors of  

the accelerometers. 
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Figure 10. Projections of gravitational apparent motion in the inertial frame. 

3.2. Reconstruction for Apparent Motion 

3.2.1. Theoretical Expression of the Gravitational Apparent Motion in the Inertial Frame 

In the inertial frame, the gravitational apparent motion is an ideal cone, and the cone parameters only 

depend on the latitude where the vehicle is located, but the specific expression of apparent motion should 

be studied in a fixed inertial frame, which means that the parameters and rules describing the theoretical 

apparent motion can be determined if and only if the inertial frame is selected. 

According to Equation (4), the projection of theoretical apparent motion in inertial frame can be 

expressed as follows: 

0 0 0 0 0

0 0
( ) ( ) ( ) ( )b b bi i i n en e n

n n e e nt t t t f C f C C C C f
 (24) 

where, 0

0

bi

n
C , 0

0

n

e
C  are constant matrices, and ( )e

n tC  is also a constant value when there is no linear motion 

with the vehicle:  

0
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3.2.2. Reconstruction for Apparent Motion 

From Equation (24), 0 0 0 0 0

0 0
( ) ( ) ( ) ( )b b bi i i n en e n

n n e e nt t t t f C f C C C C f . If: 

0 0 0

0
( ) ( )

n n e e n

e e nt tf = C C C f
 (28) 

then: 

0 0 0

0
( ) ( )b bi i n

nt tf C f
 (29) 

where, 0 ( )
n

tf  can be obtained from Equations (25)–(28). 

If 0 ( )bi tf  is accurate enough, we can freely record 0 ( )bi tf  at two different moments, such as 0 ( )bi

Atf

and 0 ( )bi

Btf . Then the attitude matrix between the inertial frame and the initial navigation frame can be 

obtained by Equation (30): 

0 0

0 0 0

0

0 0 0 0

1
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f f
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(30) 

So the other projection of the gravity vector in the inertial frame at any time can be reconstructed by 

Equation (31): 

0 0 0 0

0 0
( ) ( ) ( )b bi i n e e n

n e e nt t tf C C C C f
 (31) 

Compared with the reconstruction method proposed in [9,22], the advantage of our proposed method 

is that it can be used in the alignment with the line motion carrier if the velocity of the vehicle is supported 

by other equipment. 

3.3. Simulation 

3.3.1. Simulation Settings 

In order to verify the correctness of the alignment scheme, simulations are conducted in two cases. 

The real environment of a ship, even under mooring conditions, is still a swinging condition, so the 

alignment conditions are set up in two ways as shown in Table 4. The constant errors and the random 

errors of IMU are shown in Table 5. In case 2, the ship is assumed to be in bad-moderate sea conditions 

and swings with the function 
0 0*sin(2 )A ft    , where A  and f  are the amplitude and frequency 

of swinging, while 
0  and 

0  are the initial phase and swinging center. The swinging parameters are 

shown in Table 6. To facilitate the following analysis, 
0  and 

0  are set as zeros. The latitude and 

longitude of the ship are set to 32°N and 118°E. The initial pith, roll and yaw errors are set to 0.4°, 0.4° 

and 5°, respectively. 
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Table 4. Alignment environment. 

Case 1 Without swinging movement and with sensor errors 

Case 2 With swinging movement and sensor errors 

Table 5. Sensor errors. 

 Gyro (°/h) Accelerometer (µg) 

Constant Random (White Noise) Constant Random (White Noise) 

x-axis 0.04 0.04 50 50 

y-axis 0.04 0.04 50 50 

z-axis 0.04 0.04 50 50 

Table 6. Swing parameters. 

 Pitch Roll Yaw 

Amplitude (°) 6 8 4 

Frequence (Hz) 0.12 0.15 0.1 

Initial Phase (°) 0 0 0 

Swinging center (°) 0 0 0 

The initial Kalman filter parameters are set as follows: 

    8 8

0 00 0 0 , 10 10 10 , 0.00001, [3 10 3 10 ]
T

g g g gdiag diag       X P R Q
 

 

    4 4

0 00 0 0 , 10 10 10 , 0.00001, [5 10 5 10 ]
T

a a a adiag diag       X P R Q
 

 

When the value of the detection function is bigger than the threshold, 
DT , the current filtering gain 

matrix Ka, Kg in the Kalman filter are multiplied by the coefficient which is equal to 2.1, 1.41, 

respectively, in this test. When the value of the detection function is smaller than the threshold 
DT , then 

the current Rg is multiplied by a coefficient which equals 1000 and the current 
aR  is multiplied by a 

coefficient which equals 10,000. 

3.3.2. Simulation Results 

Figure 11 shows the alignment errors in case 1 which makes use of the improved self-alignment 

method proposed in this paper, the alignment method based on dual vectors and the method based on  

vector-operation. During the alignment process, the projection of the gravity at time stamps of 10 s, 50 s 

and 100 s are recorded in the alignment based on gravitational apparent motion and alignment based on 

vector-operation. The final alignment is at the 100 s time point. Because the alignment accuracy based 

on dual vectors cannot meet one full cycle of alignment requests within 100 s, two alignments based on 

dual vectors are needed. The first alignment completes at 50 s and the second alignment completes at 

100 s. Figure 11 shows that all three alignment methods can meet the accuracy demands of the SINS 

initial alignment. The alignment time and alignment accuracy in horizontal mode in all three methods 

are nearly the same, but the alignment errors by the method based on three vectors proposed in this paper 

are more close to the theoretical values. In azimuth, the method based on three vectors is optimal. As a 
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result the method based on vector-operation is suboptimal and the method based on dual vectors needs 

more time. Furthermore, Table 7 shows the alignment errors of the pitch, roll and yaw at 100 s obtained 

by these three methods. 

0 50 100 150 200 250 300

0

0.2

0.4

E
rr

o
r/


0 50 100 150 200 250 300

0

0.2

0.4

E
rr

o
r/


0 50 100 150 200 250 300

-40

-20

0

E
rr

o
r/


t/s(c) Yaw

(a) Pitch

(b) Roll

100 110 120 130 140

-2

0

2

4x 10
-3

100 110 120 130 140
-3

-2.5

-2

-1.5x 10
-3

Alignment method 

propose in this method

Alignment method based 

on vector-operation

Alignment method 

based on dual vector

0 100 200 300
-2

0

2

 

Figure 11. Alignment errors in case 1. 

Table 7. The alignment errors in case 1. 

 The Theoretical Value 
Method Based on 

Three Vectors 

Method Based on 

Vector-Operation 

Method Based 

on Dual Vectors 

Pitch error (°) 0.0029 0.00288 0.00284 0.00265 

Roll error (°) −0.0029 −0.00285 −0.00293 −0.00177 

Yaw error (°) 0.1802 0.1678 −0.00348 −1.552 

Figure 12 shows the alignment errors in case 2 by the improved self-alignment method proposed in 

this paper, the alignment method based on dual vectors and the method based on vector-operation. 

During the alignment process, the projection of the gravity at the time stamps of 10 s, 300 s and 600 s 

are recorded in the alignment based on gravitational apparent motion and alignment based on the  

vector-operation. The alignment is finished at the time 600 s and at that point the pitch, roll and yaw 

alignment errors obtained by these three methods are shown in Table 8. 

Table 8. The alignment errors in case 1. 

 The Theoretical Value 
Method Based on 

Three Vectors 

Method Based on 

Vector-Operation 

Method Based on 

Dual Vectors 

Pitch error (°) 0.0029 0.00285 0.00652 0.00289 

Roll error (°) −0.0029 −0.00289 0.00751 −0.00313 

Yaw error (°) 0.1802 0.099 0.1765 0.318 
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Figure 12. Alignment errors in case 2. 

4. Turntable Test and Vehicle Test 

4.1. Test Configuration 

4.1.1. Turntable Test Configuration 

In the turntable test, the attitude angle information of the turntable can be used as the attitude reference 

which can be transferred by the serial communication port and synchronized with the external clock 

signal. Then the inner, intermediate and outer frames can be used to simulate the roll, pitch and yaw of 

the ship, respectively. The motion state of the turntable is shown in Tables 9 and 10. A prototype 

strapdown inertial navigation system whose sensors are three fiber optic gyroscopes and three quartz 

accelerometers is used in this experiment. The precision of the sensors is shown in Table 11. 

Table 9. Case 1 motion state of the turntable. 

 Inner Intermediate Outer 

Position (°) 21 30 39 

Table 10. Case 2 motion state of the turntable. 

 Pitch Roll Yaw 

Amplitude (°) 8 10 6 

Frequence (Hz) 0.12 0.15 0.1 

Swing center (°) 0 0 0 
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Table 11. The sensors precision of the strapdown inertial navigation system. 

Gyro Bias  Accelerometer Bias  

Constant Random (white noise) Constant Random (white noise) 

＜0.01 ○/h ＜0.01 ○/h ±5 × 10−5 g ＜5 × 10−5 g 

The IMU is installed in the turntable as shown in Figure 13 with the axes of the x, y and z coinciding 

with the axes of intermediate, inner and outer frames, respectively. The sensors zeros bias, scale 

coefficients, coupling coefficients and installation errors can be determined and compensated following 

the method described in [32]. Furthermore, the data from IMU and turntable are updated at a rate of 200 Hz. 

The strapdown inertial navigation system and experimental environment are shown in Figure 14. 

 

Figure 13. The turntable and the IMU. 
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Figure 14. Construction of the navigation system. 

4.1.2. Vehicle Test Configuration 

The vehicle test was conducted in a car which was used to simulate the maneuvers of an underwater 

vehicle. The parameters of gyros and the accelerometers are shown in Table 11. The reference navigation 

data come from the loose couple of PHINS developed by the French firm IXBLUE and the FlexPark6 

GNSS receiver developed by the firm NovAtel (Calgary, Alberta, Canada). The performance of the 

PHINS in GPS aided mode is as follows: both pitch and roll errors are less than 0.01°, heading error is 
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less than 0.01°secL (L is the location latitude) [33]. PHINS and inertial measurement unit are fixed on 

the same mounting plate shown in Figure 15. Figure 16 is the navigation experimental car with a red 

circle to mark the GNSS receiver antenna. The car is kept static but the engine operates normally during 

the alignment process. The personnel is allowed to move in the car. 

 

Figure 15. Installation diagram.  

 

Figure 16. Experimental car. 

4.2. Alignment Results 

4.2.1. Turntable Test Result 

In order to verify the performance of the alignment scheme in an arbitrary position, the turntable is 

set as in Table 9. Because the measurement noise is more complicated, in order to reduce the influence 

of the complicated measurement noise and to obtain a more accurate 0

0b

n
iC , the alignment time is set to 

300 s. The system recorded the projection of the gravity at the time stamps of 10 s, 150 s and 300 s, 

where 300 s is set as a final alignment measurement. Figure 17 shows the alignment results by using the 

improved self-alignment for SINS based on the three vectors of gravitational apparent motion in the 

inertial frame proposed in this paper. The alignment errors are shown in Table 12. 
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Figure 17. Curves of alignment for the turntable test in static. 

In order to verify the performance of the alignment scheme in swinging state, the turntable is set as 

described in Table 10. Due to the swinging case, the coupling between the IMU is enhanced. In order to 

reduce the influence of the complicated measurement noise and to obtain a more accurate 0

0b

n
iC , the 

alignment time is extended and set at 600 s. The system recorded the projection of the gravity at 10 s,  

300 s and 600 s. Meanwhile, the alignment is finished at the time 600 s. Figure 18 shows the alignment 

results by using the improved self-alignment for SINS based on the three vectors of gravitational 

apparent motion in the inertial frame proposed in this paper. The alignment errors are shown in Table 12. 
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Figure 18. Curves of alignment for the turntable test in swing. 
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Table 12. The alignment errors in turntable test. 

 Case 1 Case 2 

Pitch error (°) 0.0395 0.04 

Roll error (°) 0.0211 −0.033 

Yaw error (°) 0.14 −0.045 

4.2.2. Vehicle Test Result 

The alignment errors of the vehicle test, which take the PHINS attitude as the reference, are shown is 

Figure 19. When the coarse alignment completes at 300 s, the pitch, roll and yaw errors are 0.00305°, 

0.000872° and 0.1957°, respectively. 
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Figure 19. Curves of alignment errors for the vehicle test. 

5. Conclusions 

In this paper, an improved self-alignment for SINS based on tracing the apparent motion in an inertial 

frame is designed. In this proposed method, the gravitational apparent motion vectors at three different 

moments are selected to construct the attitude matrix between the inertial body frame and the current 

navigation frame with vector-operations. Taking advantage of the gyro outputs, the attitude matrix 

between the current body frame and inertial body frame can be acquired. Thus, attitude between current 

body frame and navigation frame can be solved through the multiplication of the above shown matrices. 

Simulation and analysis indicate that the proposed method easily suffers from random noise contained 

in the accelerometer measurements which are used to construct the apparent motion directly from the 

acceleration input. To solve this problem, a sensor data denoising method by an online  

parameters-adjusted Kalman filter is designed and described in detail in this paper and a new 

reconstruction algorithm for apparent motion is devised. 
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Simulation, turntable tests and vehicle tests show that the alignment method can meet the initial 

alignment needs for SINS in static and swinging conditions. The accuracy can reach or approach the 

theoretical values determined by sensor precision under static or swinging conditions. 
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