

Sensors 2015, 15, 11928-11952; doi:10.3390/s150511928

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Lightweight White-Box Symmetric Encryption Algorithm
against Node Capture for WSNs †

Yang Shi, Wujing Wei and Zongjian He *

School of Software Engineering, Tongji University, No.4800 Cao’An Highway, Shanghai 201804,

China; E-Mails: shiyang@tongji.edu.cn (Y.S.); clrowd@gmail.com (W.W.)

† This paper is an extended version of the paper entitled “A Lightweight White-box Symmetric

Encryption Algorithm against Node Capture for WSNs”, presented at IEEE WCNC 2014, Istanbul,

Turkey, 6–9 April 2014.

* Author to whom correspondence should be addressed; E-Mail: hezongjian@tongji.edu.cn;

Tel./Fax: +86-21-6958-9840.

Academic Editor: Leonhard M. Reindl

Received: 26 February 2015 / Accepted: 8 May 2015 / Published: 21 May 2015

Abstract: Wireless Sensor Networks (WSNs) are often deployed in hostile environments

and, thus, nodes can be potentially captured by an adversary. This is a typical white-box

attack context, i.e., the adversary may have total visibility of the implementation of the

build-in cryptosystem and full control over its execution platform. Handling white-box

attacks in a WSN scenario is a challenging task. Existing encryption algorithms for

white-box attack contexts require large memory footprint and, hence, are not applicable for

wireless sensor networks scenarios. As a countermeasure against the threat in this context,

in this paper, we propose a class of lightweight secure implementations of the symmetric

encryption algorithm SMS4. The basic idea of our approach is to merge several steps of the

round function of SMS4 into table lookups, blended by randomly generated mixing

bijections. Therefore, the size of the implementations are significantly reduced while keeping

the same security efficiency. The security and efficiency of the proposed solutions are

theoretically analyzed. Evaluation shows our solutions satisfy the requirement of sensor nodes

in terms of limited memory size and low computational costs.

Keywords: wireless sensor networks; white-box attack contexts; node capture; symmetric

encryption algorithms

OPEN ACCESS

Sensors 2015, 15 11929

1. Introduction

Wireless Sensor Networks (WSNs) are often deployed in hostile environments such as wide forests

and public parking lots. In addition, data are transmitted using wireless networks over the air. Therefore,

security measures such as how to prevent eavesdropping of private information are critical. Furthermore,

the sensor nodes are also subject to be captured and surreptitiously used by an adversary [1,2]. If a WSN

node is captured by an adversary, the adversary can then easily extract cryptographic primitives and

obtain unlimited access to the information stored in the node’s memory chips, with the potential to cause

substantial damage to the entire system. This process can be achieved by using reverse engineering

followed by probing techniques that require access to the chip level components of the device [3,4].

Symmetric encryption is one of the most important cryptographic primitives. Unfortunately, the

standard design and implementation of symmetric encryption algorithms are not intended to be applied

in environments where their execution could be observed. In fact, standard cryptographic models assume

that endpoints (e.g., hosts or sensor nodes) can be fully trusted. However, if the endpoints are deployed

in potentially hostile environments and are captured, the cryptographic keys may be directly visible to

the attackers. By actively monitoring standard cryptographic functions or memory dumps, attackers are

able to extract the keys. This is a critical security risk for the WSN system. To build a secure system

based on WSNs, we must come up with a countermeasure against the threat of node capture.

From the viewpoint of security research, an outdoor WSN node captured by an attacker is in a typical

white-box attack context (WBAC). As is well known, secure computing in a white-box attack context is

very challenging, because WBAC assumes that fully-privileged attackers share the same host with

cryptographic software, and have complete access to the implementation of the cryptographic algorithms.

What is worse, dynamic execution (with instantiated cryptographic keys) can also be observed; and the

internal details of cryptographic algorithms are completely visible and alterable [5,6].

The objective of this work is to design a novel lightweight symmetric encryption algorithm for

wireless sensor networks against node capture attacks. With the help of our algorithm, even though the

sensor nodes are captured by an adversary, i.e., in a typical white-box context, the cryptographic keys are

still safe and cannot be compromised.

In recent years, researchers have proposed some white-box encryption algorithms that intend to

provide practical protection for software implemented on a non-trustable host. However, they cannot be

directly applied for WSN nodes. This is because existing algorithms have strong requirements in terms

of memory footprint and computation power. Unfortunately, the sensor nodes in WSN are a typical

resource-constrained environment. The limited memory and CPU resource cannot afford to run the

existing algorithms. For example, almost all of existing white-box encryption algorithms,

such as [5–9], require at least 752 KB of memory to store lookup tables, but the size of the internal

memory of a node is usually only 512 KB or even less, which is a crucial restriction of white-box

encryption algorithms. To the best of our knowledge, there is only one published white-box encryption

algorithm with small size of lookup table [10]. It needs only about 148.625 KB to store the static data.

However, this white-box encryption algorithm can still be improved in both security and complexity.

Motivated by the security challenge of node capture on resource limited nodes of sensor networks, we

provide a lightweight white-box encryption algorithm for symmetric cryptography primitives to prevent

Sensors 2015, 15 11930

node capture attacks. The white-box encryption algorithm can maintain a relatively high security level in

white-box attack contexts.

The design objectives of our algorithm are as follows:

● Low memory requirements.

● Low computational costs.

● Node-compromise resilience.

The contribution of this paper can be summarized as follows:

We propose a class of white-box encryption algorithms that obfuscates the block cipher SMS4, which

is immune from various attack methods in the black-box model. Secondly, new obfuscation techniques

are used to enhance the difficulty of attack. Therefore, our algorithms are also immune from the three

known effective attack methods [11–13] against white-box encryption algorithms based on the

substitution permutation network. Finally, intensive security analysis and measurement of the proposed

algorithms are also provided.

The remainder of this paper is organized as follows: First, a brief review of existing white-box

encryption algorithms is presented in Section 2. Then, the design of a new white-box symmetric

encryption algorithm is provided in Section 3. The time complexity, size and security of our algorithm

are then analyzed in Section 4. Two methods for further improvement of the white-box SMS4 are

discussed in Section 5. In Section 6, we compare the proposed algorithms with existing ones to

demonstrate its advantages. In Section 7, we analyze why the proposed algorithms are secure against

white-box attacks and side-channel attacks. Finally, the article concludes with a discussion of the

findings. Note that the terms “white-box encryption algorithm” and “white-box implementation of an

encryption algorithm” are used interchangeably throughout the paper.

Note that this paper is an extended version of [14]. A summary of differences of this paper and the

previous version is as follows.

(1) The (conference version of the) white-box SMS4 algorithm is slightly revised to improve

the performance.

(2) Two new methods on further improve the white-box SMS4 are provided in Section 5. One is

about security-efficiency trade-off and an aggressive implementation for performance sensitive

scenarios, the other is about a strong implementation using non-standard S-Boxes for security

sensitive scenarios. The strong white-box SMS4 is immune from all known attacks and

possible adaptations.

(3) A new section “7. Security against white-box attacks and side-channel attacks” is added.

Analyses on security against known white-box attacks are extended, especially on an attack that

is published after the conference paper is accepted. Analyses on security against side-channel

attacks are included in this version.

(4) To further explain existing research on design and implementation of white-box encryption

algorithms, we added a new section “2. Review on White-box Encryption Algorithms”. Results

of corresponding cryptanalysis are also presented in this section.

(5) In Section 3, we fleshed out the description of the white-box SMS4 algorithm. Some figures

(Figures 1–4) are provided to make the description more clear than the conference version.

(6) Comparisons with other methods are extended and refined.

Sensors 2015, 15 11931

2. Review of White-Box Encryption Algorithms

Existing research on white-box cryptography has focused on white-box implementations of classical

symmetric encryption algorithms, such as DES and AES.

Chow et al. [5] proposed a white-box implementation of DES by interleaving affine transformations

and using de-linearization techniques. Chow et al. implemented white-box AES [6] by representing it

with a set of key-dependent look-up tables. They suggested the use of these two white-box encryption

algorithms in DRM applications to protect digital information content and the associated usage rights

from unauthorized access, use, and dissemination. These two works form the foundation of almost all

white-box encryption papers. Many attacks have occurred against the white-box encryption algorithms

proposed in [5,6], and these two algorithms are insecure now. The next two paragraphs discuss the

attacks on [5,6].

Jacob et al. [15] proposed a fault injection based attack, where an attacker injects errors into the

environment during program execution, to defeat some obfuscation methods. They presented a

cryptanalysis of the naked variant of the Chow et al.’s white-box DES, that is, a variant without external

encodings. Similar to Chow et al.’s white-box DES, Link et al. [7] implemented white-box DES and

white-box triple-DES algorithms with alterations that improved the security of the key. Their algorithms

are secure against the previously published attacks on Chow et al.’s white-box DES implementation and

their own adaptation of a statistical bucketing attack. In 2007, Wyseur et al. [16] and Goubin et al. [17],

independently of each other, broke all existing obfuscation methods of DES. These attacks were based in

a truncated differential cryptanalysis. Goubin et al. presented an attack that analyzed the first round of

the white-box DES implementations, while Wyseur et al. presented an attack that works on the internal

information. Hence, none of proposed white-box DES implementations are secure.

Billet et al. [11] presented an efficient practical attack against the obfuscated AES implementation

proposed by Chow et al., with negligible memory and worst work factor of 230. In 2009, Michiels et al. [12]

generalized the attack that could be deployed on a generic class of white-box implementations. One of

the most important design purposes of the proposed algorithms is to protect the white-box cipher against

attacks in [11,12]. The most time-consuming part of Billet et al.’s attack [11] is finding the used byte

permutation up to an affine mapping, which takes a work factor of 224 in the worst situation. In 2012,

Tolhuizen [18] provided a variation on this part of the attack, reducing the work factor to at most 214.

With this improvement, the overall worst work factor of breaking Chow et al.’s white-box AES in [6] is

reduced from 230 to 220.

The two key factors of a white-box encryption algorithm are size and security. Unfortunately, in

many cases, the two key factors are a tradeoff and cannot be achieved simultaneously. Therefore, some

recent implementations only focus on one different key factor. For size consideration, Shi et al. [19]

proposed a white-box encryption algorithm for computing using a mobile agent protected with

time-limited black box security [20]. The size of this implementation is small and suitable for migrating

from one host to another as a part of a mobile agent. For secure consideration, Xiao et al. [8] proposed a

white-box AES after a detailed analysis of attack techniques in [11]. The size of this implementation is

considerably large to achieve a higher security level. In Xiao et al.’s scheme, the obfuscation works on at

least two cells of an AES state; moreover, the attacker cannot divide it into smaller units (e.g., one cell of

an AES state) and remove it using the attack techniques proposed in [11]. The time complexity of the

Sensors 2015, 15 11932

Xiao-Lai white-box AES implementation is O(224), which is slower than the Chow et al.’s

implementation in [6] (O(220)), and the size is 20,502 KB.

De Mulder et al. (2012) presented a practical cryptanalysis of Xiao et al.’s white-box AES in [13]:

they applied the linear equivalence algorithm presented by Biryukov et al. [21] as a building block in their

key-extraction algorithm. The cryptanalysis efficiently extracts the AES key with a work factor of about 232.

Another white-box implementation of AES was proposed by Karroumi in 2011 [9]. This implementation

makes InvSubBytes and InvMixColumns operations variable by using additional sets of coefficients

taken from dual representations of AES. Karroumi claimed that the expected security level is raised from

230 − 291. However, an algebraic analysis [22] was proposed in 2013 and Karroumi’s implementation

can be easily broken.

A white-box SMS4 algorithm is proposed by Xiao et al. in [10]. However, in 2013, Lin et al. [23]

proposed an efficient attack that can extract the round key embedded in Xiao et al.’s white box SMS4

implementation, with worst work factor 247. In this paper, we follow the thread of Xiao et al.’s white-box

SMS4 to a certain extent, and some obfuscation transformations similar to transformations in [10] are

also used. Differently, we use isomorphic transformations and even special substitution components

to achieve a higher security level. Further, in the strong version, randomly generated non-standard

S-Boxes are used to enhance the security.

With the recent development of attack techniques, the security of the white-box encryption

algorithms, such as [5–10] has been challenged. Furthermore, most of them require a rather large

memory to store lookup tables, but the size of internal memory of a node is usually only 512 KB or even

less, which is also a crucial restriction of white-box encryption algorithms. Hence, different from

existing solutions, we propose a white-box encryption algorithm that obfuscates the block cipher SMS4.

The proposed algorithm tries to maximize the security level with the constraint of small data size.

3. A New White-Box SMS4 Encryption Algorithm

3.1. The SMS4 Block Cipher

SMS4 [24] is a Chinese national standard for block cipher, mandated for use in protecting wireless

networks, and issued in January 2006. SMS4 is a 32 rounds unbalanced Feistel network (UFN); both the

block and the key size are 128 bits. Encryption and decryption have the same structure except that the

round key schedule for decryption is the reverse of the round key schedule for encryption.

The nonlinear part τ of a round transformation is defined as follow:

Let

() ()8
0 1 2 3, , , 2A a a a a GF= ∈ (1)

() ()8
0 1 2 3, , , 2B b b b b GF= ∈ (2)

() () () () () ()()0 1 2 3 0 1 2 3, , , , , ,b b b b A Sbox a Sbox a Sbox a Sbox a= =τ (3)

The linear part 32 32: (2) (2)L GF GF→ of a round transformation is a linear mapping as follow:

() () () () ()2 10 18 24C L B B B B B B= = ⊕ <<< ⊕ <<< ⊕ <<< ⊕ <<< (4)

Sensors 2015, 15 11933

Let iK be the round key of the i-th round. The round function R is defined as follow:

()() () () ()
532 32

1 2 3 1 2 3: 2 2 ; , , , , i i i i i i i i i iR GF GF R X X X X K X T X X X K+ + + + + +→ = ⊕ ⊕ ⊕ ⊕ (5)

where T L= τ .

The flow and structure of SMS4 encryption are illustrated in Figure 1.

Figure 1. The flow and structure of SMS4.

3.2. Components of the White-Box Encryption Algorithm

To hide the encryption key, we merge several steps of each round function of SMS4 into table

lookups blended by randomly generated mixing bijections. In this section, we investigate how to design

such tables and how randomly generated mixing bijections can be counteracted. We use techniques

from [10] and [9] to obtain the obfuscated implementation. To enhance the security level, following design

strategies are used.

(1) Distinct representations of the cipher, especially the S-Box, are used in every T-Box table. Hence,

we get more than 132 times work factor than when only using the standard representation.

(2) External encodings are used to protect the first round and the last round. Otherwise these two rounds

were ‘naked’ and cast effect would help an attacker to break the white-box implementation more easily.

(3) We transform the output mixing mappings of T-Box tables from linear mappings into affine

mappings. This transformation would offer 82 times work factor with the cost of 32 times 32-bit

exclusive or (XOR).

Sensors 2015, 15 11934

Furthermore, we reduce the number of matrix multiplications used in the encryption process. This

would clearly increase the speed of encryption.

Our design is partially based on Liu et al.’s analysis of the SMS4 block cipher [25]. They have shown
that the S-Box of SMS4 is of the form () ()1 1 2 2 S x I x A C A C= ⋅ + ⋅ + with ()1 2, 8, 2A A GL∈ and

()8

1 2, 2C C GF∈ . Their experiments finally found that the irreducible polynomial is

() 8 7 6 5 4 2 1f x x x x x x x= + + + + + + . The values of 1 2,C C and 1 2,A A are shown in

Equations (6) and (7).

1 2

1 1 1 0 0 1 0 1

1 1 1 1 0 0 1 0

0 1 1 1 1 0 0 1

1 0 1 1 1 1 0 0

0 1 0 1 1 1 1 0

0 0 1 0 1 1 1 1

1 0 0 1 0 1 1 1

1 1 0 0 1 0 1 1

A A

 
 
 
 
 
 = =  
 
 
 
  
 

 (6)

1 2 (1, 1, 0, 0, 1, 0, 1, 1)C C= = (7)

Hence, SMS4 is an 8(2)EGF cipher [26]. For each irreducible polynomial, we can define its 8

square dual ciphers. Since there are 30 irreducible polynomials, we get that there are 240 dual ciphers for a
SMS4 cipher. Furthermore, Raddum presented 9120 other representations of 8(2)GF [27] to construct

more duals of AES. Similarly, more dual SMS4 ciphers can also be obtained by these representations.
Let { }0 1 9359, , ,R r r r=  be the set of all these 9360 representations. For each 0,1, ,31i =  , iΛ is a

mapping which transforms the SMS4 cipher in representation 0r to a dual SMS4 cipher in

representation
ij

r where []$ 1,2, ,9359ij ←⎯⎯  .

Let , 0,1, 2,3iF i = , , 0,1, ,35i iΔ =  and , 0,1, 2,3iG i = be randomly generated 32 × 32 nonsingular

matrixes over (2)GF . For 0,1,2,3i = , i iFΔ = .

Let M be the matrix representation of the linear transformation L and suppose

[]0 1 2 3, , ,M M M M M= where 0 1 2 3, , ,M M M M are four 8 × 32 binary matrixes.

The substitution transformation iS is given by Equation (8).

() () ()()()8 8 1: 2 2 ,i i iS GF GF x Sbox x−→ Λ Λ (8)

Let () ()8 32
2 , 2x GF y GF∈ ∈ , the T-Box lookup table with index <i,j> , i.e., ,i jTBox , is defined by

Equation (9).

() () ()()()()1

, , , , , 4|| || ||i j i i i i i i j i j i j i j iy TBox x S K x E M
−

+= = Λ Λ Λ Λ + ⋅ + ⋅ ⋅ Δα (9)

where || || ||i i i iΛ Λ Λ Λ refers to four iΛ operating in parallel.

Components in Equation (9) are defined as follows.

,i jα is a randomly generated element of ()8
2GF .

,i jE is a randomly generated 8 × 8 nonsingular matrix over (2)GF .

Sensors 2015, 15 11935

()(), 4,i j i j iK I K= Λ , where iK is the i-th round key.

,i jM is a 8 × 32 matrix corresponds to the linear transformation ,i jτ that is defined in Equation (10).

() () () ()()()8 32 1
, : 2 2 ; || || ||i j i i i i i jGF GF x x M−→ Λ Λ Λ Λ Λ ⋅τ (10)

For each i , iTBox is a bijection from ()32
2GF to ()32

2GF . Let ()8
2 , 0,1, 2,3jx GF j∈ = ,

iTBox is defined in Equation (11).

()3

,0i i j jj
TBox TBox x

=
= (11)

The structure that is shown in Figure 2 depicts the usage of T-Boxes in a round.

Figure 2. The structure of T-Boxes in a round.

Furthermore, in each round, iα , ,i nL and iQ are defined as in Equations (12)–(14).

() ()()3 1

, , 40
|| || ||i i i i i i j i j ij

M
−

+=
= − Λ Λ Λ Λ ⋅ ⋅Δα α (12)

()1
4i i iQ −

+= Δ ⋅ Δ (13)

() () ()1 1
, || || || , 1, 2,3i n i i i i i i nL E n− −

+= ⋅ Λ Λ Λ Λ ⋅Δ =  (14)

where 1
iE − is given by Equation (15).

{ }1 1 1 1 1
,0 ,1 ,2 ,3, , ,i i i i iE diag E E E E− − − − −= (15)

This ends the description of components.

The round function of our white-box implementation is:

()() ()

() ()()()
432 32

3 3

1 2 3 , 4, ,0 1

: 2 2 ;

, , ,

i

i i i i i i i i i j j i n i nj n

R GF GF

R X X X X X Q TBox I L X+ + + += =

→

= + ⋅ + α
 (16)

Sensors 2015, 15 11936

Figures 3 and 4 show the structure of the first two rounds and an intermediate round, respectively.

Figure 3. The structure of round 0 and round 1.

Figure 4. The structure of an intermediate round.

Sensors 2015, 15 11937

3.3. The Complete White-Box Encryption Algorithm

Now, using the components provided in the previous subsection, the white-box encryption algorithm

is described as follows (Algorithm 1):

Algorithm 1 4 [] ()WSMS K on input X :

()

()

() ()

()

0 1 2 3

,

1 2 3

4

32 33 34 35

(1) , , ,

(2) 0

(3) 1

(4)

(5) 1

(6) (3) (4); (7)

(7)

(8)

(9) 1;

(10) (32) (3) (11)

(11) , , ,

(12)

n i n i n

i i i i i

X X X X X

i

n

Z L X

n n

if n goto else goto

Z Z Z Z

X TBox Z X Q

i i

if i goto else goto

Y X X X X

output Y

+

+

←
←

←
←

← +
<=

← ⊕ ⊕
← ⊕ ⊕ ⋅

← +
<

←

α

Let

() () () ()
0

4 4 132 32
0 1 2 3

2

3

: (2) (2) ; , , ,

F

F
F GF GF F X X X X X

F

F

 
 
 → = ⋅
 
 
 

 (17)

and

() () () ()

1

3

4 4 232 32
0 1 2 3

1

0

: (2) (2) ; , , ,

G

G
G GF GF G X X X X X

G

G

−
 
 
 → = ⋅
 
 
 

 (18)

where ()0 1 2 3, , ,X X X X X= and 1
32 , 0,1, 2,3k kG k−

+= Δ = .

Now, instead of 4[]SMS K , 1 14 [] 4[]WSMS K G SMS K F− −=   is implemented, where F and G

are external input and output encodings. When ciphertext encrypted by 4 []WSMS K needs to be

decrypted, one should only apply 1 14 [] 4 []WSMS K F SMS K G− −=   .

The following proposition shows the correctness of our algorithm.

Proposition 1. The encryption algorithm 4 []WSMS K is such that

4 [] 4[]WG SMS K F SMS K=  (19)

Sensors 2015, 15 11938

Proof.

Let () ()8

0 1 2 3, , , , 2 , 0,1, 2,3iX X X X X X GF i= ∈ = be the input of the first round of

4 []WSMS K F . Then

()
()()
() ()()()
()

()
()

() ()()()

0

0 0 1 2 3

3 3

0 0 0 0 0, 4, 0,0 1

0 0 0 03 3 1
0 0 0 0 0, 4, 010 1

0

1
0 0 0 0 0, 4, 0 0 0 0 0

, , ,

|| || ||

 || || ||

j j n n nj n

j jj n
n n n

j j n

R F X

R F X X X X

X F Q TBox I L X F

X F Q TBox I E
X F

X F Q TBox I X E

= =

−
−= =

+

−

=

= + ⋅ ⋅ + ⋅

  Λ Λ Λ Λ 
   = + ⋅ ⋅ + ⋅

   ⋅ ⋅Δ   

= + ⋅ ⋅ + Λ Λ Λ Λ ⋅

 

 



α

α

α ()()
()

() ()()
() ()()()()

()

() ()()
()()

3 3

0 1

1

0 0 0 0 0, 0, 43

0 0 0 0 0 1

0 0 , 0 4, 1 2 3 0, 4

1

0 0 0 0 0, 0, 4

1 11
0 0 0 0 0 0 0 , 0 4,

2 3

|| || ||

|| || ||

j n

j j

j

i j j j

j j

i j j

M
X F Q

S K I X X X M

M

X
X F Q Sbox K I

X X

= =

−

= −

−

− −

 Λ Λ Λ Λ ⋅ ⋅Δ +
 = + ⋅ ⋅ +  

Λ + Λ + + ⋅ ⋅Δ 
 

Λ Λ Λ Λ ⋅ ⋅Δ +

   + 
= + ⋅ ⋅ + Λ Λ Λ + Λ    +   

 


α

α

α

α

()

() ()()
()() ()()

()()

()

3

0

0, 4

1

0 0 0 0 0, 0, 4

4, 03 1 1
0 0 0 0 0 0 00

0 4, 1 2 3

0, 4

0 0

0 0 0 0

|| || ||

|| |

j

j

j j

j i

j
j

j

M

M

I K
X F Q Sbox

I X X X

M

X F Q

=

−

− −
=

 
 
         
 ⋅ ⋅Δ 
 
 Λ Λ Λ Λ ⋅ ⋅Δ +
 
    Λ +    = + ⋅ ⋅ + Λ Λ Λ    Λ + +    
 
⋅ ⋅Δ 
 

Λ Λ
= + ⋅ ⋅ +





α

α

α
() ()()

()()()
() () ()

() ()()
()()()

1

0 0 0, 0, 43

0

4, 1 2 3 4

3 1

0 0 0 0 0 0 0 0, 0, 40

1

0 0 0 0 0, 0, 43

0

4, 1 2 3 4

0 0 0 4, 1

| ||

 - || || ||

|| || ||

j j

j

j i j

j jj

j j

j

j i j

j i

M

Sbox I K X X X M

X F Q M

M

Sbox I K X X X M

X F Q Sbox I K X

−

=

−

=

−

=

 Λ Λ ⋅ ⋅Δ +
 
  + + + ⋅ ⋅Δ 

= ⋅ ⋅ Λ Λ Λ Λ ⋅ ⋅Δ

 Λ Λ Λ Λ ⋅ ⋅Δ +
 +   + + + ⋅ ⋅Δ 

= ⋅ ⋅ + +







α

α

α

()()()
()()()

()()
()()

3

2 3 40

3

0 4 4, 1 2 3 40

0 4 1 2 3 4

0 1 2 3 0 4

 || || ||

 , , , ,

jj

j i jj

i

X X M

X Sbox I K X X X M

X Sbox Sbox Sbox Sbox K X X X M

R X X X X K

=

=

+ + ⋅ ⋅Δ

= ⋅Δ + + + + ⋅ ⋅Δ

= ⋅Δ + + + + ⋅ ⋅Δ

= ⋅Δ




Sensors 2015, 15 11939

where the round transformation R is defined in (5). We arrive at the last round by similar deductions on

the previous rounds.
The last round of 4 []WG SMS K F  works on the output of the previous round as follows:

()()

()

()

()

32 32 33 33 34 34 31 31 31 32 32 33 33 34 34

1

3

2
32 32 33 33 34 34 35 35

1

0

1
32 3

1
33 2

32 33 34 35 1
34 1

1
35 0

35 34 33 32

, , , , , ,

, , ,

, , ,

, , ,

G X X X R X X X X

G

G
X X X X

G

G

G

G
X X X X

G

G

X X X X

−

−

−

−

−

⋅Δ ⋅Δ ⋅Δ ⋅Δ ⋅Δ ⋅Δ ⋅Δ

 
 
 = ⋅Δ ⋅Δ ⋅Δ ⋅Δ ⋅
 
 
 

 Δ ⋅
 Δ ⋅ = ⋅
 Δ ⋅
 
Δ ⋅  

=

Hence

4 [] 4[]WG SMS K F SMS K=  .

This ends the proof.

4. Analysis of the Algorithm

4.1. Security Measurement in White-Box Attack Context

White-box diversity and white-box ambiguity are used by Chow et al. [5,6] to measure security

strength of white-box encryption algorithms. These measurements are widely used in other related

works such as [19] and [8]. In this section, the white-box diversity and white-box ambiguity of our

algorithm will be analyzed, respectively.

The white-box diversity of a given component type is calculated by counting the number of distinct

constructions that exist in a component of the same type, which measures variability among

implementations and is useful in foiling pre-packaged attacks. For each T-Box table, the number of

possible values of each round key is 82 . Since the possible number of nonsingular matrices of order n is

()
1

11

2 1 2 1
jn

n n

kj

j

k

−

==

  
− × − −  

  
∏ , the possible number of ,i jE is 622 and the possible number of a strip of

4i+Δ is 62 4 2482 2× = . The possible number of ,i jα is 82 . Hence, the white-box diversity of a T-Box table

is 8 8 62 248 3262 2 2 2 2× × × = . Similarly, the white-box diversity of a matrix-type component can be

calculated. Due to the cask effect, only the lowest white-box diversity of all these components should be

calculated. According to the description of the proposed algorithm, this value is
992 992 10052 9360 2 2× = × >ω .

The white-box ambiguity of a component is obtained by counting the number of distinct constructions

that produce exactly the same type of component. It measures the number of alternative interpretations

or meanings of a specific component where an attacker must disambiguate in cracking one of the

Sensors 2015, 15 11940

obfuscated cipher’s instances. The white-box ambiguity of a T-Box table is 8 8 62 782 2 2 2× × = . The

lowest white-box diversity of all matrix-type components is 9360=ω .

4.2. Size and Efficiency

There are three kinds of components that are used in the proposed algorithm: T-Box tables, 32 bit

vectors and 32 × 32 binary matrixes.

The size of each T-Box table is 82 32× bits = 102 bytes = 1 KB. Every round needs four T-Boxes.

Thus, the size of all 128 T-Box tables is 128 KB.
The size of a 32 × 32 binary matrix is 732 4 2× = bytes. For each { }0,1, ,31i ∈  , round i needs

four 32 × 32 binary matrixes. The size of all these binary matrixes is 16 KB.

Furthermore, in every round there is a 32 bit value; all these values cost 128 bytes = 0.125 KB.

Therefore, the size of all the static data is 144.125 KB. It is smaller than that of all previously

published white-box encryption algorithms. An extensive comparison is presented in the next section.

As to efficiency, 128 T-Box table lookups, 32 × 7 = 224 4-byte additions (exclusive or) and 128

matrix multiplications are needed in general. Look up a value in a T-Box table and 32 bit exclusive or is

faster, but 32 × 32 binary matrix multiplication is time consuming. Compared to Xiao et al.’s

implementation that needs 160 matrix multiplications, our implementation is much faster.

We can speed up the algorithm by trading memory for it. A multiplication table can map two input
bytes (0 7, ,a a and 0 7, ,b b) into a single bit () () ()0 0 1 1 7 7a b a b a b× ⊕ × ⊕ ⊕ × . With the help of

such a multiplication table, we can optimize the efficiency of matrix multiplications and obtain a faster

software implementation. The extra cost of memory is only 8 KB. This implementation requires

four kinds of operations: multiplication table lookups, byte additions, (single) bit additions and T-Box

table lookups.

Table 1. Number of operations in the fast software implementation of white-box SMS4.

Operation Number of Operations Formula

Multiplication table lookup 214 128 × 32 × 4
Byte addition 0.875 × 210 128 × 7

(single) Bit addition 3 × 212 128 × 32 × 3
T-Box Table lookup ≈3 × 25 32 × 3

In fact, the proposed algorithm running in the composite mode suggested by [28] is much faster than

running in ECB mode.

To evaluate the size and computational efficiency of the proposed solution in real hardware, we have

tested the performance of our algorithm on Intel iMote [29], a widely used sensor node in wireless

sensor networks. We are planning to test the performance of our algorithm on more types of sensor

nodes in the future.

5. Improvements of the Algorithm

In this section, we discuss two methods to further improve the white-box SMS4 that are introduced

in Section 3. One is about security-efficiency trade-off and an aggressive implementation for

Sensors 2015, 15 11941

performance sensitive scenarios, the other is a strong implementation using non-standard S-Boxes for

security sensitive scenarios.

5.1. Security-Efficiency Trade-Off

The security of SMS4 in black-box attack contexts is rather satisfactory. Well-known results about

black-box attacks against SMS4 are the linear and differential attacks against 22 rounds [30–32]. These

attacks require 1172 known plaintexts and 1182 chosen plaintexts, respectively. In 2011, Su et al.

proposed a differential cryptanalysis of 23-round SMS4 [33] with 1182 chosen plaintexts and 126.72

encryptions. To the best of our knowledge, this is the best result. Rectangle and impossible differential

attacks were studied in [34]. Algebraic and XLS attacks against reduced-round SMS4 have been studied

in [35] and [36], respectively. None of these attacks can break the full round SMS4 cipher. We may

aggressively estimate that a 24 round SMS4 encryption is sufficiently secure when being used in

white-box attack contexts. For conservative users, they can choose the number of rounds between 25

and 32. Hence, when the white-box implementation is running in a resource-constrained device, such

as a sensor node, we can make a security-efficiency trade-off by reducing the number of rounds. The

24 rounds white-box implementation is called “aggressive white-box SMS4 algorithm” in the rest of

this paper. It is clear that the reduction of the rounds will not seriously influence the security level of

our algorithm in white-box attack contexts.

The size of all T-Box lookup tables, matrixes and α values with respect to the number of rounds

are illustrated in Figure 5. There are some frequently used operations in the encryption algorithm, such

as T-Box table lookup, multiplication table lookup, (single) bit addition and byte addition. The overall

numbers of these operations with respect to the number of rounds are illustrated in Figure 6. The

performance of the encryption algorithm on Intel iMote with respect to the number of rounds is shown

in Figure 7.

Figure 5. The size of static data.

Sensors 2015, 15 11942

Figure 6. (a) The number of multi-table lookups; (b) The number of byte additions;

(c) The number of bit additions; (d) The number of TBox lookups.

Figure 7. Experimental results of the performance test on Intel iMote.

Sensors 2015, 15 11943

5.2. A Strong Version Using Non-Standard S-Boxes

In this sub-section, we discuss how to further improve the security of white-box SMS4. The basic

idea is to use non-standard S-Boxes in the white-box implementation.
Instead of using Equation (8), we provide a new definition of substitution transformation ,i jS

as follows.

() () ()()()8 8 1
, ,: 2 2 ,i j i i j iS GF GF x x−→ Λ Θ Λ (20)

where ,i jΘ is a randomly generated 8-bit to 8-bit permutation.

Consequently, let () ()8 32
2 , 2x GF y GF∈ ∈ , the new T-Box lookup table with index <i,j>, i.e.,

,i jTBox , is defined by Equation (23).

() () ()()()()1

, , , , , , 4|| || ||i j i i i i i j i j i j i j i j iy TBox x S K x E M
−

+= = Λ Λ Λ Λ + ⋅ + ⋅ ⋅ Δα (21)

The advantage of this improvement is that there are 82 ! possible constructions for ,i jΘ . Hence,

the implementation can achieve a higher security level. Because these S-Boxes are encapsulated in

T-Boxes lookup tables, they do not involve extra costs in the process of encryption. However, in the

process of decryption, the cost of using these random S-Boxes is that we have to store 128 S-Boxes instead

of one in the original version. The decryption algorithm would need nearly 8 182 8 128 2× × = bits (32 KB)

extra static data. Note that introducing random S-Boxes may interfere with the black-box security

properties of the resulting implementation of SMS4. Hence, we should use the standard number of

rounds or even a few more rounds in this version of implementation. Furthermore, these S-Boxes are

unknown to attackers. This would probably bring about significant difficulty to black-box cryptanalysis

because widely used black-box analysis techniques, such as differential analysis and linear analysis,

usually suppose that the only unknown factor of an encryption algorithm is the cryptographic key.

6. Comparisons with Other Methods

We first compare our white-box SMS4 with another white-box SMS4 proposed by Xiao et al.

in [10]. A round of the white-box SMS4 in [10] consists of three parts. We merge these parts together

and connect them in sequence according to the encryption process to illustrate the structure of a round

of Xiao et al.’s white-box SMS4 in Figure 8. Outside of T-Boxes, there are five affine 32-bit to 32-bit
components in each round, i.e., 1 1 1 1 1 1 1 1

i i+4 i+1 i i+2 i i+3 i i i+4P P' , P E , P E , P E , Q P''− − − − − − − −     . Compared

with our white-box SMS4, there are four 32-bit to 32-bit linear components in each round plus a 32-bit

binary string outside of T-Boxes. Furthermore, in this paper, the diffusion transformations and the

substitution transformations which are encapsulated in T-Boxes use a non-standard form after the

“dual cipher” transformation. In the strong version, randomly generated S-Boxes are used to construct

corresponding T-Boxes.

Sensors 2015, 15 11944

Figure 8. The structure of a round of Xiao et al.’s white-box SMS4.

Moreover, in Table 2, we list the total size of the lookup tables of various white-box ciphers

implementations in the second column, the efficiency in the third column, and the security in the fourth

column. “Unknown” means that it is unknown whether there exists an effective attack.

Table 2. A comparison of white-box encryption algorithms.

Algorithm
Total Size of the
Lookup Tables

Efficiency

Attack Table Lookup
and XOR

Matrix
Multiplication

White-box DES [1] 4.5 MB 192 0 in [2–4]
White-box DES [5] 2.3 MB 384 0 in [3,4]
White-box AES [6] 752 KB 3104 0 in [7,8]
White-box AES [9] 20502 KB 120 11 (256 × 256) in [10]
White-box AES [11] 752 KB 3104 0 in [12]
White-box SMS4 [13] 148.625 KB 96 160 (32 × 32) in [15]
The proposed white-box SMS4
algorithm

144.125 KB 372 128 (32 × 32) Unknown

The proposed aggressive
white-box SMS4 algorithm

108.1 KB 264 96 (32 × 32) Unknown

The proposed strong white-box
SMS4 algorithm

144.125 KB 372 128 (32 × 32) Unknown

As previously mentioned, while running a white-box encryption algorithm on a large block of data,

the encryption speed can be reduced by using techniques introduced in [28]. Hence, distinctions in speed

among various algorithms are not obvious when they are applied to a rather large data block.

7. Security against White-Box Attacks and Side-Channel Attacks

7.1. Threat Models and the Crux of Secure Implementations

Before the discussion on security of the proposed white-box encryption algorithms, we briefly review

three main attack/threat models capturing the capabilities of an adversary to attack cryptosystems [37].

The first one is the black-box model. It is a traditional attack model in which an adversary has only

access to the functionality of a crypto system. The second one is the grey-box model, which refers to

a model in which a leakage function is present. In such an attack context, the adversary can deploy

side-channel cryptanalysis techniques. Due to the large variety of leakage functions, several grey-box

models can be defined. The third one is the white-box model in which the adversary has total visibility of

Sensors 2015, 15 11945

the software implementation of the cryptosystem and has full control over its execution platform. One

could refer to the white-box model as the worst-case model. In contrast to grey-box models, it is

impossible for an adversary not to comply with the model. The white-box model is used to analyze

algorithms that are running in a non-trustable environment, in which applications are subject to attacks

from the execution platform. Threats and cryptanalysis techniques in the three models are illustrated in

Figure 9.

Figure 9. Attack models.

The main purpose of the proposed algorithms is to enable (implementations of) encryption algorithms

securely running in WBACs, i.e., in the white-box model. As by-products, they are also secure against

side-channel attacks.

Next, we introduce the crux of how the proposed algorithms could resist against various white-box

attacks and side-channel attacks in general. The main purpose of white-box attacks and side-channel

attacks is to extract the cipher key from an implementation of an encryption algorithm. So, we focus on

the components that contain information related to the round keys, i.e., lookup tables corresponding to

T-Boxes.

Recall that these lookup tables only provide input/output of the following function:

() () ()()()()1

, , , , , 4|| || ||i j i i i i i i j i j i j i j iy TBox x S K x E M
−

+= = Λ Λ Λ Λ + ⋅ + ⋅ ⋅ Δα (22)

The secret mixing transformations iΛ and 4i+Δ are randomly selected from large sets, respectively.

Furthermore, the linear transformation ,i nL is implemented by multiplying a composition of a series of

matrices given by (23).

() () ()1 1
, || || ||i n i i i i i i nL E − −

+= ⋅ Λ Λ Λ Λ ⋅Δ  (23)

Thus, it is hard for an attacker to deduce the concrete matrix corresponding to either Λ or Δ .
Furthermore, in the strong version, the functionality of each S-Box iS is randomly generated. This

would bring significant difficulty to attackers since the linear equivalence (LE) algorithm and the affine

equivalence (AE) algorithm are not applicable, where LE and AE are powerful cryptanalysis tools [21]

which have been directly used or modified to break several white-box encryption algorithms

successfully such as in [11–13].

Sensors 2015, 15 11946

Besides security matrices which are given in Section 4.1, security of a symmetric white-box

encryption algorithm is verified by checking whether it is secure against related known attacks. This is

similar to the case in the community of classical (black-box) symmetric cryptography. In the next

subsection, the security of proposed algorithms against known attacks is investigated.

In terms of side-channel cryptanalysis, they are not as powerful as the attacks in WBACs since

leakage functions are restricted. Strictly, possible side-channel attacks consist of a subset of all possible

attacks in the white-box model. Even though, how the proposed algorithms defeat side-channel attacks

against (normal implementations of) SMS4 are briefly discussed at the end of section.

Admittedly, a practical symmetric encryption algorithm, especially in the white-box model, usually

could not find a strict security proof that reduces the breaking of an encryption algorithm into solving a

computational infeasible mathematical problem. This would enable the authors to explore white-box

encryption algorithms with a more complete theoretical foundation in future.

7.2. Against known White-Box Attacks

Several attacks against white-box cryptography have been proposed. We briefly analyze these attacks

in Table 3. In this table, “Direct Applicability” means that the attack technique can be used in attacking

this algorithm without modification and “Potential Threat” means that the attack technique can probably

be used to break this algorithm after slight modification. Moreover, <1>, <2> and <3> denote the

algorithms proposed in Section 3, Section 5.1 (the aggressive white-box SMS4 algorithm) and

Section 5.2 (the strong white-box SMS4 algorithm), respectively.

Table 3. Attacks against white-box cryptography.

Attack Target
Base

Algorithm

Direct Applicability
Potential

Threat

<1> <2> <3> <1> <2> <3>

[2] [1] DES No No No No No No

[3] [5] DES No No No No No No

[4] [5] DES No No No No No No

[7] [6] AES No No No No No No

[16] white-box implementation for any SLT

network cipher (using the design

approach in [6])

SLT network

cipher

No No No No No No

[10] [9] AES No No No Yes Yes No

[15] [13] SMS4 No No No Yes Yes No

As we have listed in the above table, two attack techniques, i.e., [13,23], are potentially threats to

the first two proposed white-box encryption algorithms. So, we estimate the security of the first two

proposed algorithms by analyzing how to break them based on techniques that are used in [13] or [23].

A toolbox presented in [21] is used by De Mulder et al. [13] to break [8] with a work factor of about

232. The toolbox is presented by Biryukov et al. based on invariant properties of permutations (S-boxes)

under the action of groups of linear or affine mappings. The toolbox provides efficient algorithms for

solving the linear equivalence problem and the affine equivalence problem for arbitrary permutations

(S-boxes). For a pair of n n× -bit permutations, the complexity of the affine equivalence algorithm is

Sensors 2015, 15 11947

O(3 2nn 2). The affine equivalence algorithm is efficient and allows studying affine equivalences for

bijective S-boxes of all popular sizes (it is efficient up to n less than 32).

Based on [13] and [21], we design an attack that can be a potential threat against the first two

white-box implementations as follows:

(1) Obtain leaked information about the linear input encoding.

(2) Find the desired linear equivalence and obtain the full linear input encoding.

(3) Extract a 32-bit round key.

(4) Extract four consecutive rounds and obtain the cryptographic key.

(5) Extract the external input and output encodings.

A conservative estimation of the work factor of getting a 32-bit round key is in Equation (24).

2log 93603 2 8 2 9 16 13 8 484 2 2 2 2 2nn + + + +× × × × > = (24)

Hence, the work factor of extracting four consecutive rounds and obtaining the cryptographic key is

greater than 48 502 4 2× = . In practice, the work factor of breaking our first two algorithms by using this

process may be much higher.

Moreover, Lin et al. proposed an efficient attack and explained in detail how to extract the round key

embedded in the white box SMS4 implementation in [23]. We summarize the attack process as follows.

(1) Combine parts 2 and 3 of a round with part 1 of the next round and eliminating tabulating

encodings between these two consecutive rounds.

(2) Recover the linear part of each affine transformation.

(3) Apply differential analysis to S-Boxes.

(4) Recover the constant part of each affine transformation by solving equations.

(5) Extract the round key from the implementation by solving matrix equations.

Lin and Lai claimed that their approach can extract the cryptographic key from a white-box SMS4

implementation with worst time complexity 472 .

The Λ transformation we use in this paper can provide a higher work factor. The overall work factor

of applying Lin et al.’s attack against our white-box implementation is the product of the following three

factors:

(1) 472 to perform the basic attack process that is introduced above,
(2) 132 (9230)≈ to guess all the dual components in a round,

(3) 52 for the total 32 rounds.

Thus, the security level of the proposed white-box SMS4 against a modified version of [23]

may achieve

47 13 5 652 2+ + = (25)

Based on Equations (24) and (25), the security level of the proposed white-box SMS4 algorithm is

assessed at about 502 .

The aim of our design is to make the size of implementation as small as possible in order to satisfy

the restriction of computing in sensor nodes while protecting sensor nodes with time-limited

security [20]. To achieve higher security and a longer protection time, we recommend that the strong

Sensors 2015, 15 11948

version of white-box SMS4 in Section 5.2 should be used. Because there are there are 82 ! possible

constructions for each S-Box, the work factor of a attack follows the idea of [23] would be about 82 !

times higher break than the normal white-box SMS4 in Section 3. Therefore, the strong version can be

deployed in security sensitive scenarios because it is immune from attack techniques in [13] and [23]

by using randomly generated secret S-Boxes.

7.3. Against known Side-Channel Attacks

Side-channel attack was first introduced by Kocher in 1996, using the information from the timing

behavior. Since then, many other side-channels have been investigated, for example, power,

electromagnetic emanation, fault injection and acoustic, etc. The context of side-channel attacks falls

in the grey-box attack model, in which attackers are enhanced with the possibility to exploit physical

leakages. Similar to white-box cryptanalysis, side-channel cryptanalysis utilizes exploitable

vulnerability of a cryptosystem, not from a theoretical point of view, but from the implementation itself.

Suppose we execute a standard implementation of SMS4, the leakage of a small data fragment or a

small set of information can already suffice to extract the cipher key. This remains true if we store the

complete set of round keys instead of the main cipher key because an adversary can easily derive the

cipher key from any round key. Otherwise, suppose that we implement SMS4 through a proposed

white-box implementation instead of using a standard black-box implementation, such an implementation

(i.e., a white-box encryption algorithm) is much larger and more complex than the black-box one.

Furthermore, if an adversary has only part of the implementation, he or she will typically have difficulty

deriving an implementation with the same functionality as the white-box implementation. To satisfy this

condition, it must be difficult for an adversary to extract the key hidden in a white-box implementation

from only part of this implementation. Therefore, in general, if we use a white-box implementation

(instead of a standard implementation), an attacker typically has to derive much more data to obtain the

implemented cryptographic functionality.

Concretely, why the proposed algorithms can defeat proposed side-channel attacks against (normal

implementations of) SMS4 is briefly introduced as follows.

Li, Gu and Wang [38] studied the security of the contracting unbalanced Feistel networks structure

against differential fault analysis (DFA) and showed that the 128-bit cipher key of a standard

implementation of SMS4 can be recovered by 20 and four faulty ciphertexts. However, in a white-box

implementation, the mathematical relationship between the inner states is secret. Moreover, the whole

encryption process is also protected by secret external encodings. Hence, these attacks do not work on

white-box implementations.

It was demonstrated in [39] that multi-process sharing cache space feature and SMS4 lookup table

structure determine that SMS4 is vulnerable to cache timing attack, and about 80 samples are enough to

recover the full 128-bit SMS4 key during both the first four rounds attack and last four round of an

attack. A power analysis method for SMS4 to reduce the diffusion by chosen plaintext was proposed

in [40]. The method can, in an orderly manner, acquire the first four rounds of key, and determine the

master key of a 128-bit algorithm according to the key expansion algorithm. In the proposed algorithms,

each key-dependent operation combined with the consequently S-Box lookup operation is embedded in

a T-Box with randomly generated input/output masks. Therefore, in running the algorithms, the time and

Sensors 2015, 15 11949

energy are mainly decided by the input (suppose x), rather than the T-Box lookup table because the

output of a T-Box is obtained by fetching the x-th item in an array corresponding to the T-Box. Besides,

as shown in Figure 10, when running a white-box SMS4 algorithm, the input and output of a component

do not equal “standard states” in the corresponding normal implementation of SMS4 because they are

multiplied by secret random matrices. Note that in Figure 10, mathematical descriptions of inner states

are provided in ellipses where the symbol iX denotes the value of a “standard state” in the normal

implementation corresponds to the value of “non-standard state” iX in a white-box implementation.

() 1

4i i iQ
−

+⋅ = ⋅ Δ ⋅ Δ

iTBox

Round i

4iX +3iX +2iX +
1iX +

2iX +1iX +

iX

3iX +() ()()3 1

, , 40
|| || ||i i i i i i j i j ij

Mα α−
+=

= − Λ Λ Λ Λ ⋅ ⋅ Δ

(),1iL 

(),2iL 

(),3iL 

1
1 1i iX −

+ += ⋅ Δ()()() 1
1|| || ||i i i i i iX E −

+= Λ Λ Λ Λ ⋅

1
2 2i iX −

+ += ⋅ Δ

1
3 3i iX −

+ += ⋅ Δ

()()() 1
2|| || ||i i i i i iX E −

+= Λ Λ Λ Λ ⋅

()()() 1
3|| || ||i i i i i iX E −

+= Λ Λ Λ Λ ⋅

4i iX += ⋅ Δ

1
i iX −= ⋅ Δ

1
3 3i iX −

+ += ⋅ Δ

Figure 10. Non-standard states in the process of a white-box SMS4.

8. Conclusions and Future Work

A class of lightweight white-box symmetric encryption algorithms against node captures for

protecting sensor networks has been proposed in this paper. The first algorithm, which was proposed in

IEEE WCNC 2014, is a slightly improved white-box SMS4. The second and the third ones are further

improved based on the first one. Specifically, the second one is an aggressive white-box encryption

algorithm that intends to acquire higher efficiency by reducing the number of rounds to at least 24. The

third one is a strong white-box encryption algorithm that intends to acquire higher security against

white-box cryptanalysis by using distinct randomly-generated S-Boxes rather than the fixed standard

S-Box. The first two white-box encryption algorithms are capable of providing time-limited security

for sensor nodes. The strong white-box SMS4 encryption algorithm is immune from all known attacks

and their potential modifications against SMS4. Hence, it is expected to provide a much longer

protection time. The proposed algorithms can serve as countermeasures against the threat of key

exposure in the event of node capture. Moreover, they can also serve as countermeasures against a

variety of side-channel attacks such as fault analysis, electromagnetic analysis and power analysis.

Sensors 2015, 15 11950

In terms of future work, we will explore novel approaches for designing white-box encryption

algorithms with higher speed, smaller size, and a more complete theoretical foundation.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61202382) and

the Youth Science and Technology Foundation of Shanghai (No. 15YF1412600).

Author Contributions

All of the authors have significantly contributed to the research. Yang Shi contributed to the design

of the algorithm. Wujing Wei implemented the algorithm. Zongjian He revised and improved the

manuscript. He is also responsible for the experiments on Intel Mote.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Laurent, E.; Virgil, D.G. A key-management scheme for distributed sensor networks. 2002,

doi:10.1145/586110.586117.

2. Patrick, T.; Li, M.; Radha, P. Mitigation of Control Channel Jamming under Node Capture Attacks.

IEEE Trans. Mob. Comput. 2009, 8, 1221–1234.

3. Tanya, R.; Shiuhpyng, S.; Shankar, S. Taxonomy of Security Attacks in Sensor Networks and

Countermeasures. In Proceedings of the first IEEE International Conference on System Integration

and Reliability Improvements, Hanoi, Vietnam, 13–15 December 2006; p. 94.

4. Yum, D.H.; Lee, P.J. Exact Formulae for Resilience in Random Key Predistribution Schemes.

IEEE Trans. Wirel. Commun. 2012, 11, 1638–1642.

5. Stanley, C.; Philip, A.E.; Harold, J.; Paul, C.V.O. A White-Box DES Implementation for DRM

Applications; Carleton University: Ottawa, ON, Canada, 2002; pp. 1–15.

6. Stanley, C.; Philip, A.E.; Harold, J.; Paul, C.V.O. White-Box Cryptography and an AES

Implementation; Springer: Berlin/Heidelberg, Germany, 2002; pp. 250–270.

7. Hamilton, E.L.; William, D.N. Clarifying Obfuscation: Improving the Security of White-Box DES.

IEEE Comput. Soc. 2005, 679–684.

8. Xiao, Y.; Lai, X. A Secure Implementation of White-Box AES. In Proceedings of the 2nd

International Conference on Computer Science and its Applications, 2009 (CSA’09), Jeju, Korea,

10–12 December 2009; pp. 1–6.

9. Karroumi, M. Protecting White-Box AES with Dual Ciphers. In Information Security and

Cryptology—ICISC 2010; Rhee, K.-H., Nyang, D., Eds.; Springer: Berlin/Heidelberg, Germany,

2011; Volume 6829, pp. 278–291.

10. Xiao, Y.; Lai, X. White-Box Cryptography and a White-Box Implementation of the SMS4

Algorithm; Shanghai Jiaotong University: Shanghai, China, 2009; pp. 24–34.

Sensors 2015, 15 11951

11. Billet, O.; Gilbert, H.; Ech-Chatbi, C. Cryptanalysis of a White Box AES Implementation. In

Selected Areas in Cryptography; Handschuh, H., Hasan, M.A., Eds.; Springer: Berlin/Heidelberg,

Germany, 2005; Volume 3357, pp. 227–240.

12. Michiels, W.; Gorissen, P.; Hollmann, H.D.L. Cryptanalysis of a Generic Class of White-Box

Implementations; Springer: Berlin/Heidelberg, Germany, 2008; pp. 414–428.

13. De Mulder, Y.; Roelse, P.; Preneel, B. Cryptanalysis of the Xiao–Lai White-Box AES

Implementation. In Selected Areas in Cryptography; Knudsen, L., Wu, H., Eds.; Springer:

Berlin/Heidelberg, Germany, 2013; Volume 7707, pp. 34–49.

14. Shi, Y.; He, Z. A lightweight white-box symmetric encryption algorithm against node capture for

WSNs. In Proceedings of 2014 IEEE Wireless Communications and Networking Conference

(WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 3058–3063.

15. Matthias, J.; Dan, B.; Edward, W.F. Attacking an Obfuscated Cipher by Injecting Faults; Springer:

Berlin/Heidelberg, Germany, 2002; pp. 16–31.

16. Brecht, W.; Wil, M.; Paul, G.; Bart, P. Cryptanalysis of White-Box DES Implementations with

Arbitrary External Encodings; Springer: Berlin/Heidelberg, Germany, 2007; pp. 264–277.

17. Goubin, L.; Masereel, J.-M.; Quisquater, M. Cryptanalysis of White Box DES Implementations;

Springer: Berlin/Heidelberg, Germany, 2007; pp. 278–295.

18. Tolhuizen, L. Improved cryptanalysis of an AES implementation. In Proceedings of the 33rd WIC

Symposium on Information Theory in the Benelux, Boekelo, The Netherlands, 24–25 May 2012.

19. Shi, Y.; Lin, J.; Zhang, C. A White-Box Encryption Algorithm for Computing with Mobile Agents.

J. Internet Technol. 2011, 12, 981–994.

20. Hohl, F. Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts. In

Mobile Agents and Security; Vigna, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1998;

Volume 1419, pp. 92–113.

21. Biryukov, A.; Cannière, C.D.; Braeken, A.; Preneel, B. A Toolbox for Cryptanalysis: Linear and

Affine Equivalence Algorithms; Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–50.

22. Lepoint, T.; Rivain, M.; de Mulder, Y.; Roelse, P.; Preneel, B. Two Attacks on a White-Box AES

Implementation. In Selected Areas in Cryptography—SAC 2013; Lange, T., Lauter, K.,

Lisoněk, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 265–285.

23. Lin, T.; Lai, X. Efficient attack to white-box SMS4 implementation. J. Softw. 2013, 24, 2238–2249.

(In Chinese)

24. Diffie, W.; Ledin, G. SMS4 Encryption Algorithm for Wireless Networks. IACR Cryptol. ePrint Arch.

2008, 2008, 329.

25. Liu, F.; Ji, W.; Hu, L.; Ding, J.; Lv, S.; Pyshkin, A.; Weinmann, R.-P. Analysis of the SMS4 Block

Cipher. In Information Security and Privacy; Pieprzyk, J., Ghodosi, H., Dawson, E., Eds.; Springer:

Berlin/Heidelberg, Germany, 2007; Volume 4586, pp. 158–170.

26. Barkan, E.; Biham, E. In How Many Ways Can You Write Rijndael? In Advances in

Cryptology—ASIACRYPT 2002; Zheng, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2002;

Volume 2501, pp. 160–175.

27. Raddum, H. More Dual Rijndaels. In Advanced Encryption Standard—AES; Dobbertin, H.,

Rijmen, V., Sowa, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3373,

pp. 142–147.

Sensors 2015, 15 11952

28. Park, J.-Y.; Yi, O.; Choi, J.-S. Methods for practical whitebox cryptography. In Proceedings of the

2010 International Conference on Information and Communication Technology Convergence

(ICTC), Jeju, Korea, 17–19 November 2010; pp. 474–479.

29. Adler, R.; Flanigan, M.; Huang, J.; Kling, R.; Kushalnagar, N.; Nachman, L.; Wan, C.-Y.;

Yarvis, M. Intel Mote 2: An advanced platform for demanding sensor network applications. In

Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems,

San Diego, CA, USA, 2–4 November 2005; ACM: New York, NY, USA, 2005; pp. 298–298.

30. Kim, T.; Kim, J.; Hong, S.; Sung, J. Linear and Difierential Cryptanalysis of Reduced SMS4 Block

Cipher. IACR Cryptol. ePrint Arch. 2008, 281.

31. Etrog, J.; Robshaw, M.B. The Cryptanalysis of Reduced-Round SMS4. In Selected Areas in

Cryptography; Avanzi, R., Keliher, L., Sica, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;

Volume 5381, pp. 51–65.

32. Zhang, W.; Wu, W.; Feng, D.; Su, B. Some New Observations on the SMS4 Block Cipher in the

Chinese WAPI Standard. In Information Security Practice and Experience; Bao, F., Li, H.,

Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5451, pp. 324–335.

33. Su, B.-Z.; Wu, W.-L.; Zhang, W.-T. Security of the SMS4 Block Cipher against Differential

Cryptanalysis. J. Comput. Sci. Technol. 2011, 26, 130–138.

34. Toz, D.; Dunkelman, O. Analysis of Two Attacks on Reduced-Round Versions of the SMS4. In

Information and Communications Security; Chen, L., Ryan, M., Wang, G., Eds.; Springer:

Berlin/Heidelberg, Germany, 2008; Volume 5308, pp. 141–156.

35. Choy, J.; Yap, H.; Khoo, K. An Analysis of the Compact XSL Attack on BES and Embedded

SMS4. In Cryptology and Network Security; Garay, J., Miyaji, A., Otsuka, A., Eds.; Springer:

Berlin/Heidelberg, Germany, 2009; Volume 5888, pp. 103–118.

36. Erickson, J.; Ding, J.; Christensen, C. Algebraic Cryptanalysis of SMS4: Gröbner Basis Attack and

SAT Attack Compared. In Information, Security and Cryptology—ICISC 2009; Lee, D., Hong, S.,

Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 5984, pp. 73–86.

37. Wyseur, B. White-Box Cryptography. Available online: http://summerschool08.iaik.tugraz.at/

slides/Brecht_wbc1_crete_final.pdf (accessed on 12 May 2015).

38. Li, W.; Gu, D.; Wang, Y. Differential fault analysis on the contracting UFN structure, with

application to SMS4 and MacGuffin. J. Syst. Softw. 2009, 82, 346–354.

39. Zhao, X.-J.; Wang, T.; Zheng, Y.-Y. Cache timing attack on SMS4. J. Commun. 2010, 6, 016.

40. Wang, S.; Gu, D.; Liu, J.; Guo, Z.; Wang, W.; Bao, S. A Power Analysis on SMS4 Using the Chosen

Plaintext Method. In Proceedings of the 2013 9th International Conference on Computational

Intelligence and Security (CIS), Leshan, China, 14–15 December 2013; pp. 748–752.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

