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Abstract: Inspired by the boosting technique for detecting objects, this paper proposes
a cascade structure with a resurrection mechanism to establish keypoint mappings on
multispectral images. The cascade structure is composed of four steps by utilizing best
bin first (BBF), color and intensity distribution of segment (CIDS), global information and
the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings
are built with the descriptors associated with keypoints; then, at each step, only a small
number of keypoint mappings of a high confidence are classified to be incorrect. The
unclassified keypoint mappings will be passed on to subsequent steps for determining
whether they are correct. Due to the drawback of a classification rule, some correct
keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a
resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized
in subsequent steps. Experimental results show that the proposed cascade structure combined
with the resurrection mechanism can effectively build more reliable keypoint mappings on
multispectral images than existing methods.
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1. Introduction

Multispectral imaging techniques have been applied in a variety of fields, including civilian
surveillance, intelligent navigation, automatic target recognition, etc. For example, researchers wish
to analyze with images geographic and geological change before and after a devastating earthquake, to
help conduct a better reconstruction. These images are often taken at different times, from different
views and/or with different spectral light. They provide complementary information to the visible
spectrum [1] and make image analysis more reliable. To effectively utilize them, an accurate registration
is necessitated to account for the misalignment between images, so that all images of a scene can be
aligned to a common coordinate. Then, a fine-fused image can be generated as if it were taken by
one camera.

During the last few decades, many methods have been proposed to align multispectral images. A
category of commonly-used methods addresses the image registration by building keypoint mappings.
These methods generally include three steps: detecting keypoints, calculating descriptors and building
keypoint mappings with the descriptors associated with the detected keypoints. Typical keypoints and
descriptors include the Harris corner [2], SURF [3], SIFT [4], MSER [5], WLD [6], etc. These
descriptors are often devised to be invariant to small scaling, rotation and even affine transformation
on single-mode images. Morel and Yu [7] propose ASIFT, which is fully affine invariant. It simulates
all image views obtainable by varying the two camera axis parameters and covers the other four
parameters using SIFT. Cai et al. [8] then further proposed a perspective scale invariant feature transform
(PSIFT) using homographic transformation to simulate perspective distortion. To increase the number
of keypoints, Park et al. [9] proposed using higher-order scale space derivatives, ∂2L(x, y,σ)/∂σ2,
∂3L(x, y,σ)/∂σ3, ∂4L(x, y,σ)/∂σ4, and then extracted the extrema in the high-order scale space.

However, if the two images to be registered are taken by different spectral light, e.g., thermal
infrared and visible light, the ratio of correct keypoint mappings established with SURF and SIFT
will dramatically decrease, resulting in a significant decrease of registration performance. To adapt the
descriptors designed for single-mode images (e.g., SIFT) to multispectral images, many techniques
have been proposed, including NG_SIFT (NG, normalized gradient) [10], SAR_SIFT [11] and
MIND [12]. NG_SIFT utilizes the normalized gradients around keypoints for describing the local
pattern to achieve the invariance against non-linear intensity changes between multispectral images. It
outperforms the original SIFT on the multispectral images of a structured scene. SAR_SIFT proposes a
new local gradient pattern around keypoints, in which the orientation and magnitude are robust against
the speckle noise. SAR_SIFT gives a higher ratio of correct keypoint mappings than the original SIFT
on multispectral images. Mainali et al. [13] proposed the D-SIFER scale-invariant feature detection
algorithm using the 10th order scale-space optimal Gaussian derivative filter. D-SIFER was validated on
hyperspectral images and was shown to perform better than SIFT and SURF.

Aguilera et al. [1] proposed EOH (edge of histogram) by borrowing the idea from MPEG-7
descriptors [14]. EOH considers only the edge pixels for computing descriptors (also, see [15] ) and
does not utilize the gradient magnitude of a pixel weighing its contribution. Unlike other descriptors,
EOH generates 4× 4× 5 descriptors, with 4× 4 blocks for the neighboring window around keypoints,
five orientation bins in each block, including 0◦, 45◦, 90◦ and 135◦, and a non-direction bin. Similar to
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EOH, Bingjian et al. [16] computed descriptors with edge points only, but the local window around a
keypoint is partitioned into 17 bins in a log-polar coordinate.

Existing descriptors for multispectral images perform well when the spectral distance is small.
Spectral distance here refers to the distance/difference of two imaging wavebands. For example, the
spectral distance between Band 1 Visible (0.43–0.45 µm) and Band 10 TIRS 1 (10.6–11.19 µm)
in Landsat 8 is approximately 10.6 − 0.45 = 10.15 µm. Since the common information between
multispectral images decreases with the increase of spectral distance, the keypoint mappings built
solely with the matching ability of the associated descriptors often contain a high ratio of incorrect
mappings. Effectively representing common information between multispectral images is not an easy
task. Among commonly-used information is the gradient pattern (e.g., SIFT), edge points, etc. Some
similarity metrics can be treated as a variant of common information, e.g., linear correlation and mutual
information (MI) [17]. Correlation assumes the linear relationship between image intensities, which
often does not hold for multispectral images [18]. In fact, gradient computation is a linear operation
of image intensities, so the linear relationship is the foundation of SIFT descriptors. MI utilizes the
statistical dependence between intensities. However, it is sensitive to keypoint positions and excels at
finer registration, e.g., [19].

Given the matching ability of descriptors, an essential problem is now to remove the incorrect
keypoint mappings. Techniques, such as RANSAC [20] and CIDS (color and intensity distribution
of segment) [21], have been proposed to identify the correct mappings from the initial set built with the
associated descriptors. Gong et al. [19] proposed a coarse-to-fine registration scheme on multispectral
images by combining SIFT with RANSAC and the mutual information (MI) [17]. However, most of
the existing approaches to removing incorrect keypoint mappings apply only a one-pass process, e.g.,
RANSAC [20], CIDS [21], BBF (best bin first) [22] and FSC (fast sample consensus) [23]. The problem
with these approaches is that when the ratio of correct keypoint mappings is low, the rate of correct
mappings being misidentified as incorrect (and the reverse) will be very high. Consequently, the set of
the keypoint mappings preserved by these methods still contains a large percent of incorrect mappings,
and also, some correct mappings are removed by mistake.

Observing this and motivated by the boosting technique [24] in the field of object detection, we
abandon the idea of deciding on keypoint mappings in only a one-pass process and propose a cascade
structure with a resurrection mechanism. The cascade structure is composed of multiple steps (different
approaches) to construct keypoint matchings. The resurrection mechanism will evaluate the quality of
each keypoint matching and assign a score to it. The score is to be updated in the next step according to
its matching quality at that step.

Each step of the cascade structure employs a “loose” rule, so that only the keypoint mappings
that score very low for this rule will be removed, and the other mappings remain to be undetermined
or temporarily considered as correct mappings. The remaining mappings are to be evaluated in the
following steps of the cascade structure by the resurrection mechanism. Since it is almost certain that
some correct keypoint mappings are mistakenly removed at every step, the resurrection mechanism
allows for a fraction of wrongly-removed keypoint mappings to be reconsidered and evaluated in the
subsequent steps. Alternatively, the resurrection mechanism can be thought of as a compensation for the
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drawback of the rules utilized in the cascade structure, as this “gets back” some of correct mappings that
are removed according to the rules.

The rest of this paper is organized as follows. Section 2 discusses the proposed resurrection
mechanism. Section 3 discusses the proposed cascade structure that is comprised of four steps. Section 4
presents the experimental results, and Section 5 concludes this paper.

2. The Resurrection Mechanism

The repeatability of keypoints under modality change is low, and to obtain more correct keypoint
mappings, we propose a resurrection mechanism for reducing the number of mis-removed correct
mappings due to repeatability insufficiency. This idea arises from the observation that some correct
keypoint mappings are often misjudged by any keypoint matching method. In the resurrection
mechanism, a score is assigned to every keypoint mapping based on the matching quality assessed
with the method applied in one step of the cascade structure. The score is to be updated in the next
step according to the matching quality assessed with the method applied at that step. Through the
resurrection mechanism, each keypoint mapping will be evaluated by different matching criteria. This
gives the chance for the misjudged correct keypoint mappings to be reconsidered and evaluated in
subsequent steps; otherwise, they would have been removed permanently. To understand the resurrection
mechanism, a confidence grade cg is defined to indicate the matching quality of each keypoint mapping at
one step in the cascade structure. According to the matching quality, cg is set to 0, 1, 2 and 3, respectively.

cg = 0 means that a keypoint mapping is of the worst quality, and it will be removed and never be
considered. cg = 1 means that the quality of a keypoint mapping is not high enough at the current step,
but may possibly be high enough at the next step. If cg = 2 or 3, the keypoint mapping will successfully
go through the current step to the next step. At the next step, cg is updated for each keypoint mapping,
and the keypoint mappings with cg = 0 will be removed. The keypoint mappings with cg = 1, 2 or 3
will be passed to the next step. In the last step, the keypoint mappings with cg = 2 or 3 are defined to be
the matched keypoints from the proposed cascade structure.

Let cgp denote the cg value of a keypoint mapping at the previous step. Let cgt denote the cg value
determined only by the method applied at the current step. Then, the score cgc at the current step can be
assigned (updated) as follows,

cgc =

cgt cgp > 1

cgt − 1 cgp = 1
(1)

Note that the keypoint mappings with cgp = 0 have already been removed at the previous step.
Figure 1 gives an example showing the functionality of the resurrection mechanism. We utilize the

BBF in Step 1 and the CIDS in Step 2 in the proposed cascade structure. In Step 1, keypoint mappings are
divided into three levels according to their scores. Figure 1a shows 350 keypoint mappings whose cg is
three, including 270 correct mappings with a correct ratio of 71%. Figure 1b shows 166 mappings whose
cg is two, including 68 correct mappings with a correct ratio of 41%. Figure 1c shows 119 mappings
whose cg is one, including 22 correct mappings with a correct ratio of 19%. This shows that a higher cg
stands for a greater probability that a keypoint mapping is correct. However, there are correct mappings
in the pending keypoint mappings, as shown in Figure 1c, which would have been determined to be
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incorrect if only one step were utilized. In Step 2, 18 mappings are resurrected from those pending
mappings, as shown in Figure 1d, and there are 13 pairs of correct keypoint mappings “recovered” with
the resurrection mechanism.

(c)

(a) (b)

(d)

Figure 1. The example of resurrection. (a) The mappings whose cg is three in Step 1;
(b) the mappings whose cg is two in Step 1; (c) the mappings whose cg is one in Step 1;
(d) the mappings resurrected from (c) in Step 2.

3. The Proposed Cascade Structure with the Resurrection Mechanism

To apply the proposed resurrection mechanism to build more accurate keypoint mappings on
multispectral images, we designed a cascade structure including four steps to remove outlier keypoint
mappings. Firstly, the SURF keypoints and descriptors are extracted from both the reference and the
sensed image. Note, other techniques, such as SIFT, can be applied here. The keypoints and descriptors
have a great impact on the final registration accuracy, but this paper is focused on the cascade structure.
Then, the cascade is applied to remove incorrect mappings; its workflow is shown in Figure 2.

3.1. Initial Keypoint Mapping (Step 1)

This step aims to establish an initial set of keypoint mappings with BBF. For every keypoint
P i
r , i = 1, . . . , Nr, in the reference image Ir(x, y), the keypoint P j

t in the sensed image It(x, y) is
defined to be the matched point of P i

r if the descriptor f j
t of P j

t has the smallest distance to the descriptor
f i
r of P i

r , namely,
‖f i

r − f j
t ‖ < ‖f i

r − fk
t ‖, k 6= j (2)

Let A denote the set of the keypoint mappings built with Equation (2). A contains matches that are
based on reference keypoints, i.e., for every reference keypoint P i

r , search the best matched test keypoint
P j
t with Equation (2). Traditional BBF defines P i

r and P j
t to be matched if the following and Equation (2)

hold simultaneously,
‖f j

t − f i
r‖ < ‖f

j
t − f l

r‖, l 6= i (3)

Equations (2) and (3) say that P j
t has the smallest descriptor distance to P i

r and vice versa.
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Figure 2. The proposed cascade structure with the resurrection mechanism.

However, the matches satisfying Equations (2) and (3) may be incorrect. To understand this,
suppose f i

r is the truly matched keypoint to f j
t . Due to the matching ability decrease of descriptors on

multispectral images, f l
r may be just marginally more close to f j

t than f i
r. This discards correct matches

and probably preserves incorrect matches. To cope with this issue, we wish to loosen Equation (3).
For every sensed keypoint P j

t , we keep n ≥ 1 mapping reference keypoint according to the descriptor
distance. Specifically, we sort ‖f j

t − f i
r‖ in an ascending order and then keep the first n reference

keypoint f i
r as the mapping keypoint for f j

t , resulting in a matching set B. The intersection A ∩ B is the
initial set of keypoint mappings to which Step 2 is applied. The value of n is typically set to three, to
ensure that only the keypoint mappings meeting the BBF rule will be preserved for consideration in the
following steps.

The mappings in A ∩ B are divided into three levels. Let Pr = {P i
r} and Pt = {P j

t } denote the set
of reference and test keypoints. For a mapping P i0

r ∼ P j0
t , P i0

r ∈ Pr, P
j0
t ∈ Pt, by the rule of Step 1,

P j0
t is the closest keypoint for P i0

r , and P i0
r is one of the n ≥ 1 closest keypoints for P j0

t . The score for
the mapping P i0

r ∼ P j0
t is determined as follows. If P i0

r is the first closest keypoint for P j0
t , then cg is set

to three; if P i0
r is the second closest keypoint for P j0

t , cg is set to two; if P i0
r is the third closest keypoint

for P j0
t , cg is set to one.

3.2. Color and Intensity Distribution of Segment (Step 2)

This step follows the idea of CIDS (color and intensity distribution of segment) [21]. The correlation
of pixel color/gray values on two segments characterizes the quality of the two pairs of keypoint
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mappings (A1 ∼ B1) and (A5 ∼ B5) in Figure 3. To compute the correlation, a sampling process
is conducted along the segment A1A5 and B1B5, giving two arrays of the same number of entries. The
color values of the sampled points are generated with a bilinear interpolation.

Figure 3. Illustration of sampling the two segments A1A5 and B1B5.

Next, the two arrays of sampled points (A1, A2, A3, A4, A5) and (B1, B2, B3, B4, B5) are normalized
to obtain x = {x1, x2, x3, x4, x5} and y = {y1, y2, y3, y4, y5}, such that ‖x‖ = ‖y‖ = 1.

Then, a L2-norm d is computed in Equation (4) to measure the similarity between the segment A1A5

and B1B5. Formally,

d = ‖x− y‖ =

√√√√ n∑
i=1

(xi − yi)2 (4)

where x and y represent the two normalized arrays and n represents the number of the sampled points.
Ideally, d = 0 when the keypoint mappings (A1 ∼ B1) and (A5 ∼ B5) are infinitely accurate and
Ir(x, y) and It(x, y) are completely identical under a certain transformation.

Since ‖x‖ = ‖y‖ = 1, by triangle inequality ‖x − y‖ ≤ ‖x‖ + ‖y‖ = 2. If d is greater than
a predetermined threshold t, the two keypoint mappings will be classified as incorrect. A loose (i.e.,
big) threshold t is set here, so that only the keypoint mappings between which the two segments differ
significantly will be removed.

The detailed implementation applies a voting scheme as follows.

(1) Choose two mappings randomly;
(2) Calculate d with Equation (4) for the two mappings. If d is smaller than a preset threshold t, vote

for both mappings, otherwise vote against them;
(3) Repeat 1 and 2 until all such two keypoint mappings are considered;
(4) Count the votes for every keypoint mapping N , and score it with:

cgt =


3 N ≥ 0.6 · (Nm − 1)

2 0.5 · (Nm − 1) ≤ N < 0.6 · (Nm − 1)

1 0.4 · (Nm − 1) ≤ N < 0.5 · (Nm − 1)

0 N < 0.4 · (Nm − 1)

(5)
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where Nm is the number of all keypoint mappings input to Step 2.
Utilize Equations (1) and (5); the value of cgc is updated by Equation (6),

cgc =



3 N ≥ 0.6 · (Nm − 1), cgp > 1

2 0.5 · (Nm − 1) ≤ N < 0.6 · (Nm − 1), cgp > 1

2 N ≥ 0.6 · (Nm − 1), cgp = 1

1 0.4 · (Nm − 1) ≤ N < 0.5 · (Nm − 1), cgp > 1

1 0.5 · (Nm − 1) ≤ N < 0.6 · (Nm − 1), cgp = 1

0 others

(6)

In our experiments, t is set to 0.6, since the difference of x and y can be large on multispectral images.
After this step, we obtain a set of keypoint mappings C.

3.3. Evaluate Keypoint Mappings with Global Information (Step 3)

In this step, we utilize global information to search “good” mappings in C. Consider three keypoint
mappings in C, (Ki1

t , K
j1
r ), (Ki2

t , K
j2
r ) and (Ki3

t , K
j3
r ). They determine an affine transformation T . If

all three mappings are correct, T is close to the ground truth, so the similarity metric between reference
Ir(x, y) and the transformed test ITt (x, y) is high. This work employs the number of overlapped edge
pixels (NOEP) [25] as the similarity metric.

S(Ir(x, y), I
T
t (x, y)) =

∑
Er(x, y) · ET

t (x, y) (7)

where Er(x, y) and ET
t (x, y) are the binary edge maps of Ir(x, y) and ITt (x, y).

Figure 4 illustrates an example of utilizing the global information. Three keypoint mappings
determine a transformation T shown in Figure 4a,b. If T is close to the ground truth, the similarity metric
between Ir(x, y) and ITt (x, y) is high, i.e., the number of overlapped edge pixels shown in Figure 4c is
large. Consequently, the quality of three keypoint mappings can be evaluated with their determined T

through the similarity S(Ir(x, y), I
T
t (x, y)). Note, this step can be easily adapted to four or more keypoint

mappings to account for projective or polynomial transformations. Additionally, the similarity metric in
Equation (7) can be substituted for other metrics, such as mutual information (MI) [17]. In practice,
Equation (7) performs as well as or slightly better than MI and requires less computational cost.

There are multiple combinations of three keypoint mappings, and a keypoint mapping appears in
multiple triplets, which yield different similarity metrics. Therefore, an iterative process is utilized to find
the maximum similarity metric for every keypoint mapping. The iterative process outputs the maximum
similarity for a keypoint mapping over all triplets in which it appears. Formally, the maximum similarity
metric by (Ki1

t , K
j1
r ) is defined as:

Smax(K
i1
t , K

j1
r ) = max

(K
i2
t ,K

j2
r ),(K

i3
t ,K

j3
r )

S
(
Ir(x, y), I

T
t (x, y)

)
(8)

where T is determined by (Ki1
t , K

j1
r ), (Ki2

t , K
j2
r ), (Ki3

t , K
j3
r ).

The iterative process outputs the maximum similarity metric for each keypoint mapping.
Smax(K

i1
t , K

j1
r ) measures the quantity of image content that can be brought into alignment by (Ki1

t , K
j1
r ).
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A larger Smax represents that the mapping (Ki1
t , K

j1
r ) is better from the view of the entire image content.

We preserve the top mappings of C ranked according to the Smax, resulting in a set of mappings D to be
processed in the next step. The detailed scoring rules are shown in Equation (9), where MAXS is the
maximum value in all Smax. D can also serve as the keypoint mapping of good quality for fast sample
consensus [23].

cgt =


3 Smax ≥ 0.95 ·MAXS

2 0.90 ·MAXS ≤ Smax < 0.95 ·MAXS

1 0.85 ·MAXS ≤ Smax < 0.90 ·MAXS

0 Smax < 0.90 ·MAXS

(9)

Utilize Equations (1) and (9); the value of cgc is updated by Equation (10),

cgc =



3 Smax ≥ 0.95 ·MAXS, cgp > 1

2 0.90 ·MAXS ≤ Smax < 0.95 ·MAXS, cgp > 1

2 Smax ≥ 0.95 ·MAXS, cgp = 1

1 0.85 ·MAXS ≤ Smax < 0.90 ·MAXS, cgp > 1

1 0.90 ·MAXS ≤ Smax < 0.95 ·MAXS, cgp = 1

0 others

(10)

(a) (b) (c)

Figure 4. (a) Ir(x, y); (b) ITt (x, y), illustrating three keypoint mappings that are to be
assessed. The three mappings determine an affine transformation T , and then, we compute
the similarity metric between Ir(x, y) and ITt (x, y) with Equation (7); (c) Overlapped edge
maps, showing the overlapped edge maps where green pixels are from visible image Ir(x, y)
and red pixels are from IR image ITt (x, y). When T is close to the ground truth, a majority
of edge pixels is expected to be overlapped, resulting in a high similarity metric.

3.4. RANSAC (Step 4)

At the last step, we apply the RANSAC algorithm, because there are still some outlier keypoint
mappings after Step 3, although most of the incorrect keypoint mappings are expected to have been
removed. Random sample consensus (RANSAC) is an iterative approach to estimating the parameters
of a mathematical model from a set of observed data containing outliers. RANSAC performs well
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in removing outliers of keypoint mappings if the correct ratio is high. However, the performance of
RANSAC decreases dramatically especially when the correct ratio is low, e.g., 20% or less. Due to this,
not all of the keypoint mappings built with the first three steps are used as the input of Step 4; rather,
only the keypoint matches whose cg are two or three after Step 3 are fed into Step 4, since these keypoint
matches have a greater probability of being correct.

Affine or projective transformations are utilized with RANSAC to remove outliers. When the distance
of real scene content to the camera is the same, an affine transformation would be enough to account
for the misalignment. When the distance varies from point to point, a projective transformation or
polynomial transformation is necessitated. Polynomial transformations require at least six keypoint
mappings, which significantly increases the possibility that a sample composed of six mappings contains
incorrect ones. Consequently, projective transformations are utilized to address images of scene depth,
and the proposed method can build correct mappings (see Figure 8 and its associated text).

Table 1 gives the experimental results. The datasets ‘Country’ to ‘Water’ are multispectral images,
but the spectral distance is small (about 300 nm). On these datasets, the SIFT descriptor yields a high
correct ratio of keypoint mappings, and therefore, RANSAC can further effectively remove incorrect
keypoint mappings. The dataset ‘EOIR’ has more multimodality, and the correct ratio of initial keypoint
mappings on it is markedly lower. Consequently, it becomes a challenging problem for RANSAC to
preserve the correct mappings. See Section 4 for a detailed analysis.

4. Experimental Results

To investigate the performance of the proposed method, many experiments were conducted. Images
include the data from the reference [26], ‘EOIR’ data and the dataset ‘VS_LWIR’from [1]. The
dataset [26] includes 477 image pairs in nine categories taken with RGB and NIR (near-infrared).
Dataset ‘EOIR’ includes 87 image pairs captured by ourselves, 12 Landsat image pairs from NASA,
four remote sensing image pairs of the 2008 Sichuan earthquake and two image pairs from the OSUColor
and Thermal Database. The 87 image pairs include indoor scenes and outdoor scenes, with one image
taken with visible light and the other taken with middle-wave infrared (MWIR) light. In addition to the
spectral distance, they are taken at different times, so the content of one image may be slightly different
from that of the other. The 12 Landsat image pairs are downloaded from [27] with one taken with the
visible band, e.g., Landsat 8 Band 3 Visible (0.53–0.59 µm), and the other taken with middle-wave light
or the Thermal Infrared Sensor (TIRS), e.g., Landsat 8 Band 10 TIRS 1 (10.6–11.19 µm). The four
remote sensing image pairs were taken over Wenchuan county (Sichuan Province, China) during the
2008 Sichuan earthquake. They were acquired by the Formosat-2 satellite. One image is a multispectral
image (1960× 1683) before the earthquake, and the other is a panchromatic image (1968× 1705) after
the earthquake of the same area. In order to further verify the performance of the proposed method for
multispectral images taken at different times, we take two image pairs from the OSU Color and Thermal
Database (Data 03, [28]). The two image pairs are captured by a thermal sensor (Raytheon PalmIR 250D,
25-mm lens) and a color sensor (Sony TRV87 Handycam). Dataset ‘VS_LWIR’ [1] contains 100 image
pairs, one image taken with the visible bandwidth (0.4–0.7 µm) and the other taken with the long-wave
infrared bandwidth (LWIR, 8–14 µm).
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Table 1. The error distribution histogram.

Country Field Forest Indoor

ERROR [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5

CASCADE
898 99 9 2540 145 51 4749 18 0 5641 96 2
0.89 0.10 0.01 0.93 0.05 0.02 0.99 0.01 0.00 0.98 0.02 0.00

SIFT + RANSAC
847 182 195 2431 274 164 3635 561 31 5470 614 29
0.69 0.15 0.16 0.85 0.10 0.05 0.86 0.13 0.08 0.89 0.10 0.01

SIFT
379 87 285 691 106 226 1244 276 140 464 23 128
0.50 0.12 0.38 0.68 0.10 0.22 0.75 0.17 0.08 0.75 0.04 0.21

GS_SIFT
381 88 290 694 121 227 1254 299 144 466 24 127
0.50 0.12 0.38 0.67 0.12 0.22 0.74 0.18 0.08 0.76 0.04 0.21

ISS
213 54 884 246 73 794 639 167 1000 299 26 178
0.19 0.05 0.77 0.22 0.07 0.71 0.35 0.09 0.55 0.59 0.05 0.35

ORB
195 95 6860 295 168 2919 481 165 869 399 57 634
0.03 0.01 0.96 0.09 0.05 0.86 0.32 0.11 0.57 0.37 0.05 0.58

FREAK
12 10 9567 11 9 3982 84 34 14,647 69 34 5490

0.00 0.00 1.00 0.00 0.00 1.00 0.01 0.00 0.99 0.01 0.01 0.98

Mountain Oldbuilding Street Urban

ERROR [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5

CASCADE
5641 96 2 6987 75 0 3502 124 0 12,717 19 0
0.98 0.02 0.00 0.99 0.01 0.00 0.97 0.03 0.00 0.998 0.002 0.00

SIFT + RANSAC
6474 600 106 8004 590 3 4055 527 16 14,412 825 1
0.90 0.08 0.02 0.93 0.07 0.00 0.88 0.11 0.01 0.95 0.05 0.00

SIFT
742 258 110 696 81 28 356 94 43 735 8 23
0.67 0.23 0.10 0.86 0.10 0.03 0.72 0.19 0.09 0.96 0.01 0.03

GS_SIFT
753 258 111 700 81 32 362 99 43 746 8 23
0.67 0.23 0.10 0.86 0.10 0.04 0.72 0.20 0.09 0.96 0.01 0.03

ISS
179 98 200 281 32 58 179 54 300 389 14 74
0.38 0.21 0.42 0.76 0.09 0.16 0.34 0.10 0.56 0.82 0.03 0.16

ORB
269 186 379 304 103 58 209 144 790 366 17 18
0.32 0.22 0.45 0.65 0.22 0.12 0.18 0.13 0.69 0.91 0.04 0.04

FREAK
97 13 5798 43 24 6864 37 6 6295 111 34 9779

0.02 0.00 0.98 0.01 0.00 0.99 0.01 0.00 0.99 0.01 0.00 0.99

Water EOIR VS-LWIR

ERROR [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5 [0, 2] [2, 5] > 5

CASCADE
1777 84 17 162 130 257 78 117 320
0.95 0.04 0.01 0.30 0.23 0.47 0.15 0.23 0.62

SIFT + RANSAC
1971 230 170 75 54 700 15 29 744
0.83 0.10 0.07 0.09 0.07 0.84 0.02 0.04 0.94

SIFT
425 44 129 22 7 202 2 11 3948
0.71 0.07 0.22 0.10 0.03 0.87 0.00 0.01 0.99

GS_SIFT
431 46 132 22 7 203 2 10 4939
0.71 0.08 0.22 0.09 0.03 0.88 0.00 0.01 0.99

ISS
263 35 542 25 14 313 2 16 4578
0.31 0.04 0.65 0.07 0.04 0.89 0.00 0.01 0.99

ORB
300 122 2501 328 87 4765 2 14 10,249
0.10 0.04 0.86 0.06 0.02 0.92 0.00 0.00 1.00

FREAK
32 20 6932 11 11 371 1 3 575

0.00 0.00 0.99 0.03 0.03 0.94 0.00 0.01 0.99

Dataset ‘EOIR’ is much more challenging than the dataset from [26], since a visible image has less
common information with a middle-wave infrared image than a near-infrared image. Dataset ‘VS-LWIR’
is even more challenging due to a larger spectral difference. Note that not all visible and TIRS (MWIR)
Landsat image pairs available at [27] are so hard as ‘EOIR’ to be registered. Some such image pairs
are very close to single-spectrum pairs in terms of intensity/gradient pattern, although they are taken by
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different spectral light. This work aims to investigate the performance of different methods for which the
multimodality is relatively strong, i.e., the local gradient pattern does not match well, and the 12 Landsat
image pairs have this property.

4.1. The Effectiveness of the Resurrection Mechanism

Firstly, we conduct experiments to evaluate the performance of the resurrection mechanism. The
number of pending keypoint mappings and the number of resurrected mappings are counted. As above,
the keypoint mappings are divided into three levels based on the calculated cgc. At the beginning (first)
step, pending keypoint mappings are not available, and so, the resurrection mechanism is not used. At
the end (fourth) step, it is not used either, as only the keypoint mappings with cg = 2 and cg = 3 are
input, while the keypoint mappings with cg = 1 are completely discarded. Consequently, we consider
the number of pending keypoint mappings in Steps 1 and 2 and the number of resurrected keypoint
mappings in Steps 2 and 3.

Figure 5 shows the performance of the resurrection mechanism. From left to right are the total number
of pending mappings in Steps 1 and 2 (blue bar), the total number of resurrected mappings in Steps 2
and 3 (red bar) and the number of resurrected correct mappings (green bar). From Figure 5, it can be
seen that the resurrection mechanism successfully recovers some wrongly-discarded correct mappings
(green bar) on all datasets. In particular, the dataset ‘EOIR’ is more challenging than other datasets, as
the image pairs contain much fewer correct mappings, and hence, the number of recovered correct ones
by the resurrection mechanism is much smaller, as well.

Figure 5. On each dataset, from left to right: the number of pending mappings, the number
of resurrected mappings and the number of resurrected correct mappings.

4.2. Visual Results

Figure 6 gives the visual result of keypoint mappings built with the proposed method and
SIFT + RANSAC on an image pair from ‘EOIR’. Visually, the proposed method builds six correct
keypoint matches, while SIFT + RANSAC gives two correct mappings. The incorrect mappings by
SIFT + RANSAC are difficult to remove, since they are caused by the repeating structure and the
distinctiveness decrease of descriptors on multispectral images.
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(a) (b)

Figure 6. Matching result on an image pair from ‘EOIR’ taken by ourselves. The infrared
image is transformed to investigate the matching performance under rotation. (a) The
proposed method performs well under rotation; and (b) SIFT + RANSAC yields some
incorrect matches due to the repeating windows of buildings. Such incorrect mappings are
very difficult to remove, since the local gradient patterns (descriptors) of the windows lying
in different position are similar to each other.

Figure 7 gives another visual result of keypoint mappings on an image pair taken during the 2008
Sichuan earthquake from the dataset ‘EOIR’, with all five mappings built with SIFT + RANSAC
incorrect in Figure 7b. In the proposed method, more than one mapping reference keypoint is assigned
to a test keypoint in the first step, which helps preserve more keypoint mappings. Furthermore, clouds
appear in the IR image, which cause occlusion and mismatches. The proposed method utilizes the
descriptors, as well as complementary information, providing six correct keypoint matches in this image
pair in Figure 7a.

(a) (b)

Figure 7. Matching result on a remote sensing image pair taken during the 2008 Sichuan
earthquake (on a scale of 1:10,000) from the dataset ‘EOIR’. (a) The proposed method;
(b) SIFT + RANSAC. The clouds appearing in the IR image do not generate incorrect
matches for the proposed method, since they have been removed step by step in the cascade
structure. SIFT + RANSAC barely generates a keypoint mapping due to the lack of texture
in the cloud area (hence, fewer keypoints). The repeating structure of image content causes
mismatches for SIFT + RANSAC.

Figure 8 shows the matching results on image pairs from the OSU Color and Thermal Database.
One image pair is taken at the same time, while the other is taken at different times. The proposed
method established six correct mappings on Figure 8a,c, indicating that the effect of imaging time on the
accuracy of keypoint mapping is small. It is interesting to see that SIFT + RANSAC performs better in
Figure 8d, taken at different times than in Figure 8b. The reason may be that although the image pairs
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shown in Figure 8d,c are taken at different times, their scene does not change much, and they are still of
the same resolution. Again, these mappings are difficult to remove, since the local gradients encoded by
descriptors are very similar to each other.

(a) (b)

(c) (d)

Figure 8. Matching results on two image pairs from the OSUColor and Thermal Database.
(a) Proposed method; and (c) proposed method results; (b) SIFT + RANSAC; and
(d) SIFT + RANSAC results. The top two images were taken at the same time; the bottom
were taken at different times. Although this image pair is multispectral, its property in some
local area is close to being single-spectrum. For example, the house ceiling is brighter than
other areas on both visible and IR images, which means the similarity of the local pattern.
SIFT + RANSAC contain some correct matches.

The proposed method also outperforms SIFT [4] GS_SIFT [29], ISS [30], ORB[31] and FREAK [32];
however, the visual results are not listed here, and only the results of the proposed and SIFT + RANSAC
are given. See the following quantitative analysis in Table 1.

4.3. Quantitative Results

This section presents the quantitative results. We compare the proposed method with the descriptors
SIFT, GS_SIFT, ISS, ORB, FREAK and SIFT + RANSAC. The distances between keypoints are
calculated for every keypoint mapping, and we count the number of keypoint mappings with distance
falling in a range. Then, the histogram of the calculated distances is generated for every dataset with
three bins [0, 2], [2, 5] and > 5. Table 1 gives the number histograms for which each bin counts the
number of keypoint mappings with the distance falling in the bin. For example, on the dataset ‘Country’,
898 keypoint mappings built with the proposed method have a distance less than two; 99 keypoint
mappings have a distance lying in [2, 5]; and nine keypoint mappings have a distance greater than five.
On ‘Country’, SIFT + RANSAC gives 847 mappings of a distance less than two, 182 mappings of a
distance less than 0.15 and 195 mappings of a distance larger than 0.16.
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ISS is not only an approach to extracting descriptors, but one to building keypoint mappings by finding
the rough orientation difference between two images. SIFT, GS_SIFT, ORB and FREAK are mapped
with BBF in our experiment. These keypoints and descriptors are detected with the source code in
OpenCV, and the mapping keypoints are implemented with OpenCV. For all of these methods, OpenCV
basically follows the parameter setups of the original papers.

The total number of keypoint mappings built by different methods varies from one to another, so we
assess the performance in terms of the percent of correct and incorrect mappings. Table 1 also gives
the percent histogram of the distance between mapped keypoints. For example, on dataset ‘Country’,
the proposed method has 89% (0.89) of keypoint mappings with a distance falling in [0, 2] and 10%
(0.10) falling in [2, 5], while SIFT + RANSAC has 69% (0.69) in [0, 2] and 15% (0.15) in [2, 5] and
ISS has 19% and 5% falling in [0, 2] and [2, 5]. The datasets ‘Country’ to ‘Water’ include multispectral
image pairs, but the spectral distance is small (300 nm–400 nm); therefore, their characteristics are
very close to monomodal image pairs. SIFT or SURF can build keypoint mappings of a sufficiently high
correct ratio, and accordingly, SIFT + RANSAC performs relatively well. On datasets ‘Country’, ‘Field’,
‘Forest’, ‘Indoor’, ‘Mountain’, ‘Oldbuilding’, ‘Street’, ‘Urban’ and ‘Water’, SIFT provides correct ratios
of 50% (0.50), 68% (0.68), 75% (0.75), 75% (0.75), 67% (0.67), 86% (0.86), 72% (0.72), 96% (0.96)
and 71% (0.71).

Dataset ‘EOIR’ includes image pairs taken by visible light and middle/long-wave infrared light and
is much more challenging, since the spectral distance is larger. On this dataset, the presented method
has 30% (0.30) and 53% (0.53) keypoint mappings with a distance falling in [0, 2] and [0, 5], while
SIFT + RANSAC has 9% (0.09) and 16% (0.16) in [0, 2] and [0, 5], SIFT has 10% (0.10) and 13% (0.13),
GS_SIFT has 9% (0.09) and 12% (0.12), ISS has 7% (0.07) and 11% (0.11), ORB has 6% (0.06) and
8% (0.02) and FREAK has 3% (0.03) and 6% (0.06). Dataset ‘VS-LWIR’ is even more challenging than
‘EOIR’, as it can be seen that the correct rates for all methods are lower than on ‘EOIR’. For example,
the presented method has 15% (0.15) and 48% (0.48) on ‘VS-LWIR’, and SIFT + RANSAC has only
2% (0.02) and 6% (0.06).

RANSAC does not improve much over the original SIFT, since the keypoint mappings built with the
original SIFT contain too many incorrect ones, which makes RANSAC fail to identify correct mappings.
Compared with other methods, the presented method increases the correct ratio. Since the dataset is
relatively large, this result shows that the proposed method is more suitable for multispectral images
than other methods.

5. Conclusions

With the insight of the boosting technique, we proposed a cascade structure of four steps with a
resurrection mechanism for registering multispectral images. The cascade structure classifies keypoint
mappings at a step to be correct, incorrect and pending. Unlike the traditional approaches that typically
determine keypoint mappings to be correct or not with a one-pass process, the “pending” keypoint
mappings will be determined by the rules at subsequent steps. This effectively overcomes the drawback
of applying a single algorithm for registering images. Furthermore, the resurrection mechanism gets
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back some of the correct mappings that were misclassified at previous steps. The experimental results
demonstrate that the cascade structure can provide more robust registration than the state-of-the-art.

Several directions are possible in the future. Improving the keypoint repeatability and the repeatability
and distinctiveness of descriptors are the building blocks for keypoint mappings on multispectral images.
At each step, different approaches can be applied to investigate the performance of the cascade, and the
number of steps can be adjusted for applications. Last, but not least, other image information, such as
CIDS, can be adapted to multispectral images to supplement the matching ability of the descriptors.
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