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Abstract: Objective data on swimming performance is needed to meet the demands of the 

swimming coach and athlete. The purpose of this study is to use a multiple inertial 

measurement units to calculate Lap Time, Velocity, Stroke Count, Stroke Duration, Stroke 

Rate and Phases of the Stroke (Entry, Pull, Push, Recovery) in front crawl swimming. 

Using multiple units on the body, an algorithm was developed to calculate the phases of 

the stroke based on the relative position of the body roll. Twelve swimmers, equipped with 

these devices on the body, performed fatiguing trials. The calculated factors were 

compared to the same data derived to video data showing strong positive results for all 

factors. Four swimmers required individual adaptation to the stroke phase calculation 

method. The developed algorithm was developed using a search window relative to the 

body roll (peak/trough). This customization requirement demonstrates that single based 

devices will not be able to determine these phases of the stroke with sufficient accuracy.  

Keywords: biomechanics; swimming; accelerometers; performance analysis; coaching; 

sports science  

 

1. Introduction 

Most swimming research tends to focus on descriptive stroke characteristics, such as stroke rate, 

because they are more ‘readily observable’ [1]. This is equally true when coaching swimming, where 

coaches will provide extrinsic feedback, involving demonstrations and verbal instructions/descriptions, 

based on the premise of what the coach could see [2,3]. Previous research has shown this to be bias 
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when considering gross movements [4,5], so when considering detailed biomechanical factors, there 

will inevitably be a greater degree of inaccuracy.  

To overcome this bias, coaches can work with sports science practitioners to employ scientific 

methods to enhance the level of detail they can use in their coaching practice. Ideally, there will be a 

coaching team around the coach and athlete/team, which is often only seen at the higher levels of sport. 

This will allow the practitioner to discuss data with the coach and create extrinsic feedback to help the 

athlete. The flow of data for this can be seen in Figure 1, developed from Hughes [6]. This shows that 

the coach will have access to the data from each of the science disciplines to be able to make a 

decision based on the periodic cycle of the athlete/team, but also, that each scientist has some 

understanding of their counterparts’ data in order to create a ‘fuller’ picture before making 

recommendations to the coach. The use of technology in sport can help facilitate this.  

 

Figure 1. The digital systems data interactions with various other team members.  

Based on [6].  

Scientific analysis in swimming typically involves either 2D or 3D camera systems [7]. Particularly 

for coaches, 3D camera systems present with limitations of considerable setup time and cost, which 

limits their general accessibility [8]. Standard (2D) video technology has become easily accessible due 

to a general reduction in price, leading to regular use within coaching.  

However, there are limitations to the use of 2D methods within swimming, for example, the 

camera(s) are generally fixed to the pool capturing a limited number of strokes. This can lead to 

misleading conclusions being drawn on a small sample. Similarly, there is an increasing use of  

mobile-based technology (e.g., iPad®), filming from the side of the pool, above the water limiting the 

view of underwater actions. An underwater camera can be added to a trolley to move with the 

swimmer along the pool which would capture a larger dataset of the underwater stroke [9].  



Sensors 2015, 15 11365 
 

 

Table 1. Summary of previous works, with the addition of the contribution from this work. A = Accelerometer, G = Gyroscope, B = Both.  

◊ = validity and reliability conducted; * = visually compared to video data.  
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There is a plethora of software available (e.g., Kinovea®, Quintic® and Dartfish®) to aid in the 

analysis of these videos, some of which are adapted to mobile devices. Whilst these provide substantial 

functionality for analysis, using them requires a considerable investment of time, especially for a coach 

or researcher analyzing a swimmer over multiple lengths [23,28].  

There are alternatives to video cameras as a means of data capture [29] and with the advances and 

miniaturization of sensors, these can now often be unobtrusively attached to the body [30] which 

record data directly and can be processed in ‘real time’ to present information to the coach. Wearable 

sensor technologies hold the key to unlocking novel performance assessment [31] and there is interest 

in the development of sports technology [32]. Over the last few decades there has been an increase in 

the use and development of on-body data logger based systems, which use accelerometers and 

gyroscopes. These tend to offer greater flexibility in data processing methods, in comparison to video 

based methods, requiring less personnel and technical resources [15]. Generally within swimming 

however, there is a need for the development of biomechanical testing systems where the timeliness 

and accuracy of feedback is of ‘paramount importance’ [33] (p. 1). With a gradual reduction in sensor 

size, improved processing power and communication between mobile devices, systems are starting to 

appear, both in society (e.g., activity monitors) and various sports. However, this does show that 

biomechanics based equipment is starting to focus on servicing, as opposed to pure research, for which 

there is a need [34].  

Accelerometer based data loggers have been used in swimming to record some factors, which are 

important to the coach and scientist (see the summary in Table 1). However, these still fall under 

Glazier’s comment of ‘readily observable’ factors. Developing a system, which can identify more 

detailed factors, such as the phases of the stroke, would allow for additional factors to be calculated 

such as Index of Coordination [35].  

The phases of the stroke have only been observed in the data using accelerometers on the  

wrists [10,36,37], not fully quantified. Lee et al. [38] used a wrist worn sensor with accelerometer and 

gyroscope on a swimmer on a swim bench, in comparison to video to derive times for the Entry to 

Entry time (r = 0.97), Exit to Exit time (r = 0.98) and Entry to Exit time (r = 0.85) on a swim bench 

which lacks some ecological validity, but a great place to start. According to Daukantas, Marozas and 

Lukosevicius [16], identification of the phases of the stroke using inertial technology is considered 

feasible, but is a “long term goal”.  

Furthermore, the potential of the processing ability of the accelerometer based methods have not 

been extended to measure the individual variations within factors, which could indicate fatigue or 

technique development over time which could aid both scientists and coaches alike. Rather than 

coaches ‘seeing’ to make recommendations, we need objective solution to aid their decision-making 

processes. Burkett and Mellifont [39] (p. 110) agree with this view stating that to meet the: 

“...demands of the swimming coach and athlete, objective data on the swim performance  

is required” 

The purpose of this study is to collect that objective data by demonstrating the validity and 

reliability of commercially available accelerometers in their ability to identify the swimmers lap time, 

velocity, stroke duration, stroke rate and identifying the phases of the stroke. The hypothesis is that a 
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multiple sensor system will be capable of recording all the identified variables in a valid and  

reliable manner.  

2. Method  

2.1. Participants 

With institutional ethical approval, testing was conducted over multiple sessions. Swimmers were 

recruited from a local swimming club, and volunteered for the testing. The coach of the team withdrew 

any unfit swimmers prior to testing. Consent forms were completed for the individuals and were 

supervised by the swimmers’ coaches. The sessions were conducted in a temperature controlled indoor 

25 m swimming pool. Data for the system was generated by twelve national level swimmers, 

comprising of six males (19 ± 2 year, 179.8 ± 13.23 cm, 70.75 ± 15.5 kg) and six female swimmers  

(17 ± 0.8 year, 165.5 ± 7.04 cm, 54.4 ± 7.9 kg), all injury free, completed the testing protocol after 

completing informed consent and counter signed by the coach, as their guardian. The swimmers swam 

4 × 25 m (100 m) with devices attached at maximal effort, a 8 × 25 m (200 m) maximal effort to 

induce fatigue (to generate variation within the data) which was not measured, and a final 4 × 25 m 

(100 m) with devices attached at maximal effort, following a similar procedure to Alberty, Sidney, 

Pelayo and Toussaint [40].  

2.2. Experimental Setup 

Video analysis was used as a validation method with frame rates range from 25 Hz to  

72 Hz [9,41–52]. An underwater camera (Kodak PlaySport Z × 5, 60 fps) filmed the side view of the 

swimmer from a trolley [9,51]. A global camera was setup to view the whole experiment and was used 

as a global time stamp (30 fps). The setup can be seen in Figure 2.  

 

Figure 2. Experimental setup. 
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2.3. Devices 

The waterproof X6-2mini (Gulf Coast Data Concepts, Waveland, MA, USA) is a hermetically 

sealed, compact tri-axial accelerometer data logger weighing 38 g and measuring 2.95 × 1.6 × 5.9 cm. 

Each device was set to record at 320 Hz with 16-bit resolution with a full-scale range of ±6 g. Six 

devices were all were synchronized using the procedures outlined by Callaway and Cobb [53].  

Sensors in previous works were placed on “the wrist” [11,12,36,37] and “between the  

shoulders” [20] and on the “lower back” [24,25]. These do not offer precise, repeatable, anatomical 

locations for the placement of the sensors. The visual locations shown in these previous  

works [10,12,20,24,25,36,54] were used as a reference to identify the locations of the sensors in line 

with ISAK guidelines and using terminology supported by the Australian Sports Commission [55]. 

The upper arm sensor was placed at the distal end to mirror the placement at the distal end of the 

forearm for the wrist sensor. This was used to evaluate whether the addition of this device could help 

with the detection of the phases within the stroke.  

Wrist sensors (LW and RW) are placed at the distal end of the Ulna and Radius, with the -Y axis 

end of the device proximal to the Styloid Process. Arm accelerometers (LA and RA) were placed close 

to the Olecranon Fossa (elbow). Lower back (LB) sensor was placed at vertebrae L4, in line with the 

Illiac process. Upper back (UB) was placed on the vertebra T5. These are shown in Figure 3.  

 

Figure 3. Device placement and attachment method and orientation. 
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The Z axis along the Sagittal Plane, +Z frontal facing. The Y axis along the Coronal Plane, +Z 

frontal facing and the X axis along the transverse plane, +X frontal facing. 

2.4. Calculation Methods of Factors Recorded 

This section presents the variables derived from the accelerometer system (Table 2). Statistical 

methods are presented to assess the validity and reliability of the system presented in comparison to 

video derived data.  

Table 2. Variables and calculation method. 

Equation Variable Calculation Method 
1 Lap Time Wall push off from lower back y axis 

2 Velocity ̅ =  

3 Stroke Count Peak Detection Wrist x axis 

4 Stroke Duration = ∑ 	5  

5 Stroke Rate = 60/ ∑ 	5  

6 Phases of the Stroke Wrist Sensors in relation to Body Roll 

2.4.1. Lap Time  

Verification of the lap times was achieved by taking the lap times viewed from the global 

positioned camera for 95 laps. Lap times were taken from the videos on two separate occasions, one by 

the researcher, one by a coach, to ensure inter-rater reliability, which was analyzed using Pearson’s r 

correlation [56]. Results showed a very strong positive correlation between the two video derived lap 

times (r = 0.977, n = 95, p = 0.00), confirming their relative reliability of large effect [57]. Absolute 

reliability was assessed using the method of mean %error presented by [56]. Maximum and minimum 

values for the calculation were set to the maximum and minimum values within the data set. The 

results showed a mean %error of 2.15% (±1.93). The mean of the two inter-rater video derived lap 

times were then used as a comparison to the lap times from the sensors.  

Normality was tested using Kolmogorov-Smirnov test. The lap time data were found to be normally 

distributed (Video Time from researcher = 0.72, Video Time from coach = 0.524, Mean  

Video = 0.470, Sensor = 0.711). The mean video lap times were then used to compare to the 

accelerometer-derived times. 

Sensor lap time was calculated using the wall push off seen as a large trough in the data on the y 

axis of the lower back. For each set of 4 laps the swimmer completed, the first wall push off and last 

wall touch were determined manually clicking on the trough. Between these points, the software 

automatically determined the push off. 

Paired-sample t-Test were used for differences between the video times and accelerometer lap 

times. Average velocity was not assessed using statistics as it is a by-product of a constant (d = 25 m) 

divided by the lap time.  
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2.4.2. Stroke Count 

The number of strokes per lap (each hand entry) for each swimmer were observed from the video 

and compared to the accelerometer output from the system to check the count. Stroke count was 

assessed using Pearson’s r correlation according the recommendations of O’Donoghue [56].  

2.4.3. Stroke Rate and Duration  

The stroke rate and duration were recorded from the video and compared to the accelerometer 

output from the system. Using SPSS v.19, the data was tested using a t-Test to check for  

significant differences.  

2.4.4. Stroke Phases 

To develop an algorithm capable of detecting all the phases of the stroke automatically development 

started with identifying the Hand Entry. This was previously defined as a LWX/RWX minima by  

Ohgi [36,37] which was reconfirmed in the present system using video timings. The algorithm was 

then developed to find subsequent local minima and maxima using peak detection. These locations 

were initially identified by taking the time from hand entry, on the underwater camera, and using 

frame-by-frame analysis method to determine the start point of each phase with a researcher and coach. 

The time from hand entry of each point could then be plotted against the sensor data to identify the 

correct minima and maxima of each axis. It was observed that the phases of the stroke coincided with 

body roll movements allowing further verification of the phases. With the correct maxima and minima 

detected manually, the algorithm was then designed to automatically find these within 100 sample search 

windows relative to either a body roll zero crossing (when body level) or peak body roll. Although 

body roll angle has not been used, the angle can be determined using methods outlined by Bächlin, 

Förster and Tröster [18]. This method confirms that the zero crossing seen in Figure 4 is when the 

body is level.  

Reliability of the algorithm was analyzed for 78 full strokes of five swimmers. The recovery phase 

used 71 samples, as on occasion there was no following hand entry to finish that phase for seven of the 

swimmers viewable on the video camera. The number of swimmers and strokes was selected based on 

quality of video footage with the best videos of the swimmers chosen offering clear viewing of the 

swimmer and without the side camera breaching the surface of the water impeding viewing.  

Reliability was analyzed using Mean Error (±SD), Mean Absolute Error (MAE), 95th Percentile for 

MAE, Root Mean Square Error (RMSE), Standard Error from Mean (SEM) for each phase against the 

durations of the phase from the video [58,59]. Systematic and random bias are also reported for each 

axis and presented in Bland-Altman plots.  
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Figure 4. Identification process of the phases in the stroke (Swimmer R). Entry (Cyan dot), 

Start of Pull (Yellow dot), Start of Push (Magenta dot), Start of Recovery (Black dot). Zero 

Crossing Body Roll (Orange), Peak Body Roll (Purple). 

3. Results and Discussion 

3.1. Lap Times 

Lap times (n = 95) were derived from video as the wall push off at either end of the pool from the 

global camera. Correlations between the times from the video and accelerometer show a significant 

strong positive correlation (r = 0.978, p = 0.00). Paired samples t-Tests also show that there was no 

significant difference between the video times (M = 17.24, SD = 1.50) and sensor times (M = 17.28,  

SD = 1.51) overall; t(94) = −1.59, p = 0.115.  
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Each swimmer swam four lengths, pre- and post-fatigue. Of these, the start and end of the first and 

last length was manually selected, not automatically as with previous works [15]. This was due to the 

nature of the non-wireless devices meaning there was excessive data at the start of a lap, which would 

not allow for an automatic retrieval of the lap start. It could be that previous works had not full 

reported that data was trimmed before analysis to allow for the wall push off to be automatically 

detected. The 2nd and 3rd lap times, from the sensor were automatically detected. Figure 5 shows the 

frequency of time difference from video the accelerometer in seconds. It shows that generally lap times 

tend to be recorded as longer using the accelerometer over the video timings. Further analysis was 

conducted to explore whether there were greater errors in the manual selection method in the sensor 

data, or automatic detection in the sensor data.  

 

Figure 5. Error in seconds between video and accelerometer for all lap times. 

With the manual selection of laps there was no significant difference between the video times  

(M = 16.99, SD = 1.55) and manually selected sensor times (M = 17.06, SD = 1.57) overall;  

t(47) = −1.558, p = 0.126. Figure 6 shows the frequency of time difference between video the 

accelerometer, in seconds, for the manual selection of laps.  
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Figure 6. Error in seconds between video and accelerometer manually selected lap times. 

It was found that there was some variation in the precision of marker placement placing a marker 

for the start and end of laps manually. This was due to swimmers having slightly different wall push 

off techniques. Some dipped under the water and pushed off, others completed a twisting motion 

where they started almost facing out of the pool and then pushed off facing sideways, gradually 

rotating before the first stroke. Previous work, such as Davey, Anderson and James [15], used an 

algorithm to detect the wall push off. Whilst they also found a larger error with the first lap than with 

the subsequent lap identification, they may have instructed swimmers to all use the same wall push off 

strategy for this work as there is little identification of any issues to this nature being found. Overall, 

Davey, Anderson and James [15] did find that the error rates for their accelerometers to videos ranging 

±2 s, but more within ±0.5 s. Those results are similar to the present system, however Davey, 

Anderson and James [15] show a larger range. Davey, Anderson and James [15] identified that lap 

time variation was due to swimmers finishing the laps in a weak manner, with a soft touch, rather than 

a competition hard finish. This was also observed with the swimmers in this study, so it would seem 

that a manual selection method produces a better discrimination of those minor finish peaks, rather 

than a computational method.  

There was also no significant difference between the video times (M = 17.62, SD = 1.44) and 

automatic lap times from the sensor data (M = 17.65, SD = 1.39) overall; t(46) = −0.719, p = 0.476 

(Figure 7). The results for the middle sections of the laps, the automatic detection, show a higher 

number within ±0.2 s than with the automatic detection. However, there is one result showing a −1 s 

result, which appears to be an anomaly. The differences automatic lap time detection could be due to 

camera position not allowing for a clear observation of the wall push off. This could be developed to 
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include underwater pressure pads as shown by Le Sage, Bindel, Conway, Justham, Slawson and  

West [23], which could allow for a more exacting lap time to be generated, rather than observations 

from cameras.  

 

Figure 7. Error in seconds between video and accelerometer automatically selected lap times. 

3.2. Validation of Stroke Count 

Results showed a strong positive correlation (r = 0.948, p = 0.00). Davey, Anderson and James [15], 

using the lower back, are the only authors to validate their stroke count method which was conducted 

using a difference count. This method was implemented here with results, Figure 8, showing that the 

majority have no difference, with three results showing up to three strokes difference. Davey, 

Anderson and James [15] showed limits within ±1 count. This could be because they are using the 

lower body, compared to upper body in this work. The upper body is filtered to remove any double 

peaks which can sometimes be seen at the peak, however, on occasion there might be a double peak is 

found, and records an extra stroke.  
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Figure 8. Error in stroke count between video and accelerometer. 

3.3. Validation of Stroke Rate and Stroke Duration 

Validation of stroke rate in previous systems has tended to focus on error reported as a  

frequency [15,23]. However, considering the type of data, O’Donoghue [56] and Sato et al. [60] 

recommend the use of Correlations. Results show a very strong positive correlation, r = 0.92, p = 0.00,  

(n = 80).  
A Bland-Altman plot (Figure 9) shows that there is a mean error of −0.25%, where Le Sage, Bindel, 

Conway, Justham, Slawson and West [23] showed a similar error of −0.1%. Davey, Anderson and 

James [15] used six swimmers to generate lap data, which was also recorded manually and on video. 

They found that the manually calculated stroke rates had a higher error rate than the accelerometer, 

when compared to those derived by the accelerometer. Using a lower back sensor, the stroke rate error 

was shown to be between −1 and 2 cycles.  

To extend on these previous works, a Bland Altman plot was used to identify any errors in the 

system. Figure 9 demonstrates the error between video and accelerometer derived stroke rates. The 

blue line shows the systematic bias −0.25% and a majority of results are within the 95% limits or 

agreement. Using a regression analysis, some of these errors can be further reduced [61].  
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Figure 9. Bland Altman plot showing error in stroke rate (red lines, upper and lower 95% 

confidence, blue line, systematic bias). 

Linear Regression analysis produced Equation (1) to allow a correction of the stroke rate:  = 1.274 + 0.968  (1)

Equation (1) corrected the systematic bias from −0.25% to −0.1% (Figure 10), in line with previous 

research [23].  

 

Figure 10. Bland Altman plot showing error in stroke rate after Regression correction. 

Green before correction, Orange after correction. 
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Stroke duration was defined as the time between consecutive hand entries. The accelerometer found 

the hand entry as the local LWY and RWY minima near the body being level. This identification of 

hand entry matched previous the findings [36,38], and was verified as the time from the initial 

synchronization ‘bumps’ to the hand entry on the video.  

Stroke duration calculation between the video and accelerometers (n = 1028) shows a strong 

significant positive correlation, r = 0.637, p = 0.00. Whilst the results show a strong correlation,  

Figure 11 shows that there are a large number of outliers (outside 95% limits). Whilst hand entry time 

is visually definable by the ‘splash’; as the hand enters the water; and with these results being defined 

on a frame by frame basis, it can still be hard to define the precise point of entry. This is particularly 

true from the video angle of the global camera used. The video angle occasionally limited the accuracy 

of the hand entry by the kick splashes obscuring the view. This however, does demonstrate the strength 

of the sensors in their ability to correctly and consistently identify the hand entry points using the 

minima LWY and RWY axes.  

 

Figure 11. Stroke Duration Calculation. Black line shows correlation, red lines show 95% interval.  

Costill, Kovaleski, Porter, Kirwan, Fielding and King [62] and Chollet, Pelayo, Delaplace, Tourny 

and Sidney [63] have expressed that stroke length is the best indicator of performance. With the results 

presented here, the stroke length (distance per stroke) can be calculated. Bächlin and Tröster [20] 

developed from the stroke duration (SD) by incorporating ῡ to calculate the Stroke Length (Distance 

per Stroke—DPS) using Equation (2). Equation (2) Stroke Length Calculation (Method 1): 
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= ̅ ∙  (2)

Typically [64–66], stroke length is calculated as: (Equation (3) Stroke Length Calculation  

(Method 2)): = ̅
 (3)

Whilst this method has been shown to overestimate distance per stroke by 4%–5% [67], it has been 

accepted as a systematic overestimation, which does not generally affect subsequent comparisons [65].  

Outputs from both methods were compared (Equations (2) and (3)) and results showed that the 

method used by Bächlin and Tröster [20] produced stroke distances, on average, an additional 1.5% 

greater than that of the method used by Craig, Skehan, Pawelczyk and Boomer [64]. Perhaps Bächlin 

and Tröster [20] did not use this method, as their system did not calculate stroke rate. Because of this 

additional overestimation, the method utilized by Craig, Skehan, Pawelczyk and Boomer [64] was 

implemented in this system. As with Hawley, Williams, Vickovic and Handcock [65], no attempt was 

made to derive a correction factor for stroke distance.  

3.4. Reliability of Phase Durations Detection 

The algorithm developed was tested for reliability against the durations of the phases derived from 

the video. The video camera used for the underwater phases use a frame rate of 60 Hz, resulting in an 

image being taken every 0.0166 s. Results show (Table 3) that each phase has a relatively lower error. 

The Mean Absolute Error (MAE) of 0.06, 0.07, 0.06 and 0.08 s (respectively) also shows low error 

rates. There is little difference between the mean and MAE, which shows there is no major positive or 

negative difference, no positive or negative bias.  

Table 3. Reliability statistics for Phase durations. All results presented in Seconds.  

 

Mean Error 

(±SD) 

Mean Absolute 

Error (±SD) 

95th Percentile for 

Absolute Error 

Root Mean 

Squared Error 
SEM 

Systematic 

Bias 

Random 

Error 

Entry 

(n = 78) 

0.00 

(±0.08) 

0.06 

(±0.06) 
0.15 0.08 0.06 0.00 0.16 

Pull 

(n = 78) 

0.04 

(±0.10) 

0.07 

(±0.08) 
0.20 0.10 0.07 −0.04 0.19 

Push 

(n = 78) 

0.03 

(±0.07) 

0.06 

(±0.05) 
0.15 0.08 0.05 0.03 0.15 

Recovery 

(n = 71) 

0.05 

(±0.12) 

0.08 

(±0.1) 
0.33 0.13 0.08 0.05 0.23 

This error, in terms of an equivalent to video analysis, would relate to a difference between correct 

identification of a frame to within 3.6 frames (hand entry and push) to 4.8 frames (for recovery), which 

could easily be a disagreement between an analyst recording the phases from video.  

It was found that although every effort was taken using frame-by-frame analysis to determine each 

phase, and using cooperation from the coach to aid in this at the start, there is still error in the analysis. 

This is shown with random error in the reliability ranging from 0.15 s to 0.23 s. Yeadon and King [68] 
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note that in the synchronization of two video sources, there can be in induced error of 0.02 s. This error 

does not then include any disagreement between any observers made therein.  

In terms of 2D video analysis the phases of the strokes were also found to be fairly subjective, with 

the swimmer making subtle movements during the pull and push which were at times directly towards 

the cameras and so were difficult to quantify the exact timings of each phase. There was also occlusion 

of the arms during the entry and exit of the arm from the water at times, meaning the error in the 

recovery phase was doubly penalized by the air-water interface. An error in the identification of the 

entry time also led to an additional error in the previous recovery phase.  

Bland-Altman plots (Figures 12–15) showing the relative error in percentage terms shows that for 

each phase there are only four entry phases which were outside of the 95% limits, two for the pull 

phase, three for push and five for the recovery. This shows some promising results.  

 

Figure 12. Bland-Altman plot of Entry Duration Error. 

 

Figure 13. Bland-Altman plot of Pull Duration Error. 
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Figure 14. Bland-Altman plot of Push Duration Error. 

 

Figure 15. Bland-Altman plot of Recovery Duration Error. 

3.5. Strengths 

This study has extended on previous works by creating an algorithm using multiple sensors to 

determine the phases of the stroke. Whilst positive results have been shown for the phase detection and 

this algorithm worked well, there was some need for some personalization for some swimmers in this 

study. One method of over-coming this could be to use a percentage of the stroke time as a window to 

search through rather than hard-defined samples, a second would be visual confirmation of phases with 

a user input required. This could be built into a learning algorithm to reduce the need for human 

interaction in the future. This study has also determined that the arm sensor was of no use in refining 

the accuracy algorithm.  
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The swimming protocol used, with devices attached and removed, does demonstrate the test-retest 

ability of the placement of the devices on the body, in addition to the reliability of the systems  

processing capabilities.  

3.6. Limitations 

Due to the fatiguing set used (4 × 25 m with devices attached, 8 × 25 m (200 m) not measured, and  

4 × 25 m (100 m) with devices attached), there were four laps, which required manual lap trimming, 

and four which were automatically trimmed. This increases the amount of human interaction required, 

however, a change in the protocol to increase the laps in the pre- and post-fatigue could reduce this.  

3.7. Weakness  

The customization process in the algorithm entailed extending the ‘search window’ when 

identifying maxima and minima on the wrist sensor, relative to the body roll peak or zero crossing. 

Whilst this works, it does not offer a 100% full proof system for all swimmers.  

3.8. Practical Applications for the Athlete and Coach 

The fact that some customization was required highlights how each individual swimmer 

compensated in the technique in order to maintain as fast a lap time as possible. This agrees with the 

proposal by Davids, Glazier, Araújo and Bartlett [69] that individuals will adapt to perform the task to 

the best of their ability. This highlighted the importance of systems such as this, where multiple 

coordination changes are unlikely to be accurately diagnosed by the coach visually, reiterating Burkett 

and Mellifont [39] (p. 110) comment that, 

“...the demands of the swimming coach and athlete, objective data on the swim 

performance is required”. 

Performance-related feedback is one of the major factors, which contributes to an athlete’s 

development during the course of the motor skill acquisition process [70]. Most coaches will convey 

skill-based information to athletes through demonstrations and verbal instruction based on their, 

potentially, biased viewpoints. There is some concern that some coaches may tend to produce “one 

size fits all” assumptions [3]. Using a system such as this would allow coaches to develop tactical and 

technical training drills to help their swimmers, rather than them being based on pure supposition. 

Most coaches will convey skill-based information to athletes through demonstrations and verbal 

instruction. During a sporting action, an athlete will gather intrinsic information using proprioceptive and 

exteroception sensory mechanisms, allowing them to rapidly adapt to the demands of the given task [2]. 

This is typically supplemented through augmented feedback (AF) [71], sometimes referred to as 

artificial feedback [2]. Extrinsic in nature and usually presented by a coach, AF can contain knowledge 

of results (KR) and/or knowledge of performance (KP). AF can be presented concurrently or 

terminally to the action. Where, KR will focus on information related to the outcome of a movement, 

KP will focus on the quality or pattern of the movement [71]. Performance-related feedback is one of 

the major factors, which contributes to an athlete’s development during the course of the motor skill 

acquisition process [70]. Systems that collect data, such as the one presented here, allow visualization 
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of the data, which is an important part of the learning process [72]. Recording factors, such as the 

phases of the stroke, can allow the coach to identify what is going on under the water and make 

appropriate recommendations. An example of an output from the present system is shown in Figure 16 

and can be used as extrinsic feedback. This is not to say that the complexities of swimming can be 

easily summarized in any one single image, but there needs to be some way of succinctly 

demonstrating to the coach what is happening to make coaching decisions. Future work should focus 

on developing visualization techniques for coaches, and testing these as also suggested by Rowlands, 

James and Lee [72].  

 

Figure 16. Example output of the system for coaches.  

4. Conclusions 

This system demonstrates the capabilities of multiple sensor systems in processing multiple 

variables simultaneously on a swimmer. There are complex coordination structures in swimming, and 

with systems such as this, there is a strong possibility of finding, recording and developing 

visualization methods to demonstrate them. The developed algorithm uses a search window relative to 

the body roll (peak/trough) but required some customization. Four swimmers required individual 

adaptation to the stroke phase calculation method. This need to adapt some parts of the algorithm 

demonstrates that single sensor systems (such as sacrum mounted) will not be able to determine or 

infer the phases of the stroke with sufficient accuracy. Multiple sensor systems will be the future of 

monitoring in sport and require further development in terms of usability, visualization of output data 

and ease of synchronization.  

Acknowledgments 

Thank you to the swimmers and coaches who participated in this work.  

Conflicts of Interest 

The author declares no conflict of interest. 



Sensors 2015, 15 11383 
 

 

References 

1. Glazier, P.S.; Wheat, J.S.; Pease, D.L.; Bartlett, R.M. Dynamic systems theory and the functional 

role of movement variability. In Movement System Variability; Davids, K., Bennett, S., Newell, K., 

Eds.; Human Kinetics: Champaign, IL, USA, 2006; pp. 49–72. 

2. Pérez, P.; Llana, S.; Brizuela, G.; Encarnación, A. Effects of three feedback conditions on aerobic 

swim speeds. J. Sports Sci. Med. 2009, 8, 30–36. 

3. Williams, A.M.; Ford, P.R. Promoting a skills-based agenda in olympic sports: The role of  

skill-acquisition specialists. J. Sports Sci. 2009, 27, 1381–1392. 

4. Franks, I.M.; Miller, G. Training coaches to observe and remember. J. Sports Sci. 1991, 9, 285–297. 

5. Laird, P.; Waters, L. Eyewitness recollection of sport coaches. Int. J. Perform. Anal. Sport 2008, 

8, 76–84. 

6. Hughes, M. Performance analysis—A 2004 perspective. Int. J. Perform. Anal. Sport 2004, 4, 

103–109. 

7. Psycharakis, S.G.; Sanders, R.H. Body roll in swimming: A review. J. Sports Sci. 2010, 28, 229–236. 

8. Hay, J.G. The Biomechanics of Sports Techniques, 4th ed.; Prentice-Hall: IA, USA, 1993. 

9. Osborough, C.D.; Payton, C.J.; Daly, D.J. Influence of swimming speed on inter-arm coordination 

in competitive unilateral arm amputee front crawl swimmers. Hum. Mov. Sci. 2010, 29, 921–931. 

10. Ohgi, Y.; Ichikawa, H.; Miyaji, C. Characteristics of the Forearm Acceleration in Swimming. In 

Proceedings of the Symposium on Biomechanics and Medicine in Swimming VIII, Jyväskylä, 

Finland, 28 June–2 July 1998; Kesikinen, K.L., Komi, P.V., Hollander, A.P., Eds.; pp. 77–82. 

11. Ohgi, Y.; Yasumura, M.; Ichikawa, H.; Miyaji, C. Analysis of stroke technique using acceleration 

sensor ic in freestyle swimming. In The Engineering of Sport: Research, Development and 

Innovation; Subic, A.J., Haake, S.J., Eds.; Blackwell Science: Oxford, UK, 2000. 

12. Ohgi, Y.; Ichikawa, H. Microcomputer-based data logging device for accelerometry in swimming. 

Eng. Sport 2002, 4, 638–644. 

13. Ichikawa, H.; Ohgi, Y.; Miyaji, C.; Nomura, T. Estimation of arm motion in front crawl 

swimming using acclerometer. In Biomechanics and Medicine in Swimming IX, University of 

Saint-Etienne, France; Chatard, J., Ed.; University of Saint-Etienne: Saint-Etienne, France, 2003. 

14. Ichikawa, H.; Ohgi, Y.; Miyaji, C.; Nomura, T. Application of a mathematical model of arm motion in 

front crawl swimming to kinematical analysis using an accelerometer. Eng. Sport 2002, 4, 644–650. 

15. Davey, N.; Anderson, M.; James, D.A. Validation trial of an accelerometer‐based sensor platform 

for swimming. Sports Technol. 2008, 1, 202–207. 

16. Daukantas, S.; Marozas, V.; Lukosevicius, A. Inertial sensor for objective evaluation of swimmer 

performance. In Proceedings of the 11th International Biennial Baltic Electronics Conference 

(BEC 2008), Tallinn, Estonia, 6–8 October 2008; pp. 321–324. 

17. Fulton, S.K.; Pyne, D.B.; Burkett, B. Validity and reliability of kick count and rate in freestyle 

using inertial sensor technology. J. Sports Sci. 2009, 27, 1051–1058. 

18. Bächlin, M.; Förster, K.; Tröster, G. Swimmaster: A wearable assistant for swimmer. In  

Proceedings of the 11th International Conference on Ubiquitous Computing, Orlando, FL, USA,  

30 September–3 October 2009; pp. 215–224. 



Sensors 2015, 15 11384 
 

 

19. Bächlin, M.; Tröster, G. Pervasive computing in swimming: A model describing acceleration data 

of body worn sensors in crawl swimming. In Proceedings of the 2009 Joint Conferences on 

Pervasive Computing (JCPC), Taipei, Taiwan, 3–5 December 2009; pp. 293–298. 

20. Bächlin, M.; Tröster, G. Swimming performance and technique evaluation with wearable 

acceleration sensors. Pervasive Mob. Comput. 2012, 8, 68–81. 

21. Pansiot, J.; Lo, B.; Yang, G.-Z. Swimming stroke kinematic analysis with bsn. In Proceedings of 

the IEEE 2010 International Conference on Body Sensor Networks (BSN), Singapore, 7–9 June 

2010; pp. 153–158. 

22. Nakashima, M.; Ohgi, Y.; Akiyama, E.; Kazami, N. Development of a swimming motion display 

system for athlete swimmers’ training using a wristwatch-style acceleration and gyroscopic sensor 

device. Procedia Eng. 2010, 2, 3035–3040. 

23. Le Sage, T.; Bindel, A.; Conway, P.P.; Justham, L.; Slawson, S.; West, A. Embedded 

programming and real-time signal processing of swimming strokes. Sports Eng. 2011, 14, 1–14. 

24. Stamm, A.; Thiel, D.V.; Burkett, B.; James, D.A. Towards determining absolute velocity of 

freestyle swimming using 3-axis accelerometers. Procedia Eng. 2011, 13, 120–125. 

25. Stamm, A.; James, D.A.; Hagem, R.M.; Thiel, D.V. Investigating arm symmetry in swimming 

using inertial sensors. In Proceedings of the 2012 IEEE Sensors, Taipei, Tawain, 28–31 October 

2012; pp. 1–4. 

26. Dadashi, F.; Crettenand, F.; Millet, G.P.; Seifert, L.; Komar, J.; Aminian, K. Automatic  

front-crawl temporal phase detection using adaptive filtering of inertial signals. J. Sports Sci. 2013, 

31, 1251–1260. 

27. Dadashi, F.; Crettenand, F.; Millet, G.P.; Aminian, K. Front-crawl instantaneous velocity 

estimation using a wearable inertial measurement unit. Sensors 2012, 12, 12927–12939. 

28. Callaway, A.; Cobb, J.; Jones, I. A comparison of video and accelerometer based approaches 

applied to performance monitoring in swimming. Int. J. Sports Sci. Coach. 2009, 4, 139–153. 

29. Perales, F.J. Human motion analysis & synthesis using computer vision and graphics techniques. 

State of art and applications. In Proceedings of the World Multiconference on Systemics, 

Cybernetics And Informatics (SCI2001), Orlando, FL, USA, 22–25 July 2001. 

30. Bonato, P. Advances in wearable technology and applications in physical medicine and 

rehabilitation. J. NeuroEng. Rehabil. 2005, 2, doi:10.1186/1743-0003-2-2. 

31. Harding, J.W.; James, D.A. Performance assessment innovations for elite snowboarding.  

Procedia Eng. 2010, 2, 2919–2924. 

32. Baca, A.; Dabnichki, P.; Heller, M.; Kornfeind, P. Ubiquitous computing in sports: A review and 

analysis. J. Sports Sci. 2009, 27, 1335–1346. 

33. Mason, B. Biomechanics and Elite Competitive Swimming; International Society of Biomecahnics 

in Sport: Beijing, China, 2005. 

34. Bishop, D. An applied research model for the sport sciences. Sports Med. 2008, 38, 253–263. 

35. Chollet, D.; Chalies, J.; Chatard, C. A new index of coordination for the crawl: Description and 

usefulness. Int. J. Sports 2000, 21, 54–59. 

36. Ohgi, Y. Microcomputer-based acceleration sensor device for sports biomechanics—Stroke 

evaluation by using swimmer’s wrist acceleration. In Proceedings of the 2002 IEEE Sensors, 

Orlando, FL, USA, 12–14 June 2002; pp. 699–704. 



Sensors 2015, 15 11385 
 

 

37. Ohgi, Y.; Ichikawa, H. Fatigue evaluation by using microcomputer-based acceleration data logger for 

swimming research. In Biomechanics and Medicine in Swimming IX, University of Saint-Etienne, 

France; Chatard, J., Ed.; University of Saint-Etienne: Saint-Etienne, France, 2003; p. 463. 

38. Lee, J.B.; Burkett, B.J.; Thiel, D.V.; James, D.A. Inertial sensor, 3d and 2d assessment of stroke 

phases in freestyle swimming. Procedia Eng. 2011, 13, 148–153. 

39. Burkett, B.; Mellifont, R. Sport science and coaching in paralympic swimming. Int. J. Coach. Sci. 

2008, doi:10.1260/174795408784089324. 

40. Alberty, M.; Sidney, M.; Pelayo, P.; Toussaint, H.M. Stroking characteristics during time to 

exhaustion tests. Med. Sci. Sports Exerc. 2009, 41, 637–644. 

41. Berger, M.A.; Hollander, A.P.; de Groot, G. Determining propulsive force in front crawl 

swimming: A comparison of two methods. J. Sports Sci. 1999, 17, 97–105. 

42. Burkett, B.; Mellifont, R.; Mason, B. The influence of swimming start components for selected 

olympic and paralympic swimmers. J. Appl. Biomech. 2010, 26, 134–141. 

43. Cappaert, J.M.; Heest, J.L.V. Angular momentum and swimming economy in the freestyle. In 

Proceedings of the Symposium on Biomechanics and Medicine in Swimming VIII, Jyväskylä, 

Finland, 28 June–2 July 1998; Kesikinen, K.L., Komi, P.V., Hollander, A.P., Eds.; pp 59–63. 

44. Deschodt, V.J.; Rouard, A.H.; Monteil, K.M. Relationships between the three coorinates of the 

upper limb joints with swimming velocity. In Biomechanics and Medicine in Swimming VII; 

Troup, J.P., Hollander, A.P., Trappe, S.W., Cappaert, J.M., Trappe, T.A., Eds.; E & FN Spon: 

London, UK; 1996; pp. 52–58. 

45. Deschodt, V.J.; Rouard, A.H.; Monteil, K.M. Relative displacements of the wrist, elbow and 

shoulder. In Biomechanics and Medicine in Swimming VII; Troup, J.P., Hollander, A.P., Trappe, S.W., 

Cappaert, J.M., Trappe, T.A., Eds.; E & FN Spon: London, UK; 1996; pp. 105–111. 

46. Haffner, M.; Cappaert, J.M. Underwater analysis of the freestyle stroke from three different points 

in the stroke cycle. In Proceedings of the Symposium on Biomechanics and Medicine in 

Swimming VIII, Jyväskylä, Finalnd, 26 November–4 December 1999; Keskinen, K., Komi, P., 

Hollander, A.P., Eds.; University of Jyväskylä: Jyväskylä, Finalnd, 1999; pp. 153–157. 

47. Holmér, I. Analysis of acceleration as a measure of swimming proficiency. In Swimming III; 

Terauds, J., Bedingfield, E.W., Eds.; University Park Press: Baltimore, USA; 1978; pp. 118–124. 

48. Liu, Q.; Hay, J.G.; Andrews, J.G. Body roll and handpath in freestyle swimming: An 

experimental study. J. Appl. Biomech. 1993, 9, 238–253. 

49. Sanders, R.H. Some aspects of buttery technique of new zealand pan pacific squad swimmers.  

In Biomechanics and Medicine in Swimming VII; Troup, J.P., Hollander, A.P., Trappe, S.W., 

Cappaert, J.M., Trappe, T.A., Eds.; E & FN Spon: London, UK; 1996. 

50. Satkunskiene, D.; Schega, L.; Kunze, K.; Birzinyte, K.; Daly, D. Coordination in arm movements 

during crawl stroke in elite swimmers with a loco-motor disability. Hum. Mov. Sci. 2005, 24, 54–65. 

51. Seifert, L.; Toussaint, H.M.; Alberty, M.; Schnitzler, C.; Chollet, D. Arm coordination, power, and 

swim efficiency in national and regional front crawl swimmers. Hum. Mov. Sci. 2010, 29, 426–439. 

52. Toussaint, H.M.; van den Berg, C.; Beek, W.J. Pumped-up propulsion during front crawl 

swimming. Med. Sci. Sports Exerc. 2002, 34, 314–319. 



Sensors 2015, 15 11386 
 

 

53. Callaway, A.J.; Cobb, J.E. Linear acceleration measurement utilizing inter-instrument 

synchronization: A comparison between accelerometers and motion-based tracking approaches. 

Meas. Phys. Educ. Exerc. Sci. 2012, 16, 151–163. 

54. Slawson, S.E.; Justham, L.M.; West, A.; Conway, P.P.; Caine, M.P.; Harrison, R. Accelerometer 

profile recognition of swimming strokes (p. 17). Eng. Sport 7 2008, 1, 81–87. 

55. Norton, K.; Olds, T. Anthropometrica; UNSW Press: New South Wales, Australia, 2002. 

56. O’Donoghue, P. Statistics for Sport and Exercise Studies: An Introduction; Routledge: Abingdon, 

UK, 2013. 

57. Cohen, J. A power primer. Psychol.Bull. 1992, 112, 155. 

58. Hughes, M.; Cooper, S.M.; Nevill, A. Analysis procedures for non-parametric data from 

performance analysis. Int. J. Perform. Anal. Sport 2002, 2, 6–20. 

59. O’Donoghue, P. Research Methods for Sports Performance Analysis; Routledge: Abingdon, 

Oxon, UK, 2010. 

60. Sato, K.; Smith, S.L.; Sands, W.A. Validation of an accelerometer for measuring sport 

performance. J. Strength Cond. Res. 2009, 23, 341–347. 

61. Hopkins, W. Bias in bland-altman but not regression validity analyses. Sportscience 2004, 8, 42–46. 

62. Costill, D.L.; Kovaleski, J.; Porter, D.; Kirwan, J.; Fielding, R.; King, D. Energy expenditure 

during front crawl swimming: Predicting success in middle-distance events. Int. J. Sports Med. 

1985, 6, 266–270. 

63. Chollet, D.; Pelayo, P.; Delaplace, C.; Tourny, C.; Sidney, M. Stroking characteristic variations in 

the 100-m freestyle for male swimmers of differing skill. Percept. Motor Skills 1997, 85, 167–177. 

64. Craig, A.B.; Skehan, P.L.; Pawelczyk, J.A.; Boomer, W.L. Velocity, stroke rate, and distance per 

stroke during elite swimming competition. Med Sci Sports Exerc 1985, 17, 625–634. 

65. Hawley, J.A.; Williams, M.; Vickovic, M.; Handcock, P. Muscle power predicts freestyle 

swimming performance. Brit. J. Sport Med. 1992, 26, 151–155. 

66. Schnitzler, C.; Seifert, L.; Chollet, D. Variability of coordination parameters at 400-m front crawl 

swimming pace. J. Sports Sci. Med. 2008, 8, 203–210. 

67. Thayer, A.; Hay, J. Motivating start and turn improvement. Swim. Tech. 1984, 20, 17–20. 

68. Yeadon, M.R.; King, M.A. A method for synchronising digitised video data. J. Biomech. 1999, 

32, 983–986. 

69. Davids, K.; Glazier, P.; Araújo, D.; Bartlett, R. Movement systems as dynamical systems: The 

functional role of variability and its implications for sports medicine. Sports Med. 2003, 33, 245–260. 

70. Wulf, G.; Chiviacowsky, S.; Schiller, E.; Ávila, L.T.G. Frequent external focus feedback 

enhances motor learning. Mov. Sci. Sport Psychol. 2010, 1, 190. 

71. Lauber, B.; Keller, M. Improving motor performance: Selected aspects of augmented feedback in 

exercise and health. Eur. J. Sport Sci. 2012, 14, 36–43. 

72. Rowlands, D.D.; James, D.A.; Lee, J.B. Visualization of wearable sensor data during swimming 

for performance analysis. Sports Technology 2014, 6, 1–7. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


