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Abstract: Long-term assessment of ambulatory behavior and joint motion are valuable 

tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and 

gait abnormalities. Even though there are several tools available to quantify ambulatory 

behavior in a home environment, reliable measurement of joint motion is still limited to 

laboratory tests. The aim of this study was to develop and evaluate a novel inertial sensor 

system for ambulatory behavior and joint motion measurement in the everyday environment. 

An algorithm for behavior classification, step detection, and knee angle calculation was 

developed. The validation protocol consisted of simulated daily activities in a laboratory 

environment. The tests were performed with ten healthy subjects and eleven patients with 

multiple sclerosis. Activity classification showed comparable performance to commercially 

available activPAL sensors. Step detection with our sensor system was more accurate. The 

calculated flexion-extension angle of the knee joint showed a root mean square error of less 
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than 5° compared with results obtained using an electro-mechanical goniometer. This new 

system combines ambulatory behavior assessment and knee angle measurement for  

long-term measurement periods in a home environment. The wearable sensor system 

demonstrated high validity for behavior classification and knee joint angle measurement in a 

laboratory setting. 

Keywords: physical activity; accelerometer; activity assessment; knee motion; wearable 

sensor system; range of motion measurement 

 

1. Introduction 

Physical activity (PA) has been defined as any “bodily movement produced by skeletal muscles 

which results in energy expenditure” [1]. Over the last three decades, PA has become a widely used 

evaluation criterion for quality of life and general health assessments as well as the effectiveness of 

therapy for different diseases [2–7]. Therefore, a variety of diagnostic tools, including questionnaires, 

self-report diaries, pedometers, heart frequency monitors, accelerometers, and the doubly-labeled 

water method (DLW), have been developed and used, and there have been different claims regarding 

their accuracy, validity, and ease of use [8]. 

Since accelerometer-based sensors have become reasonably small, several smart, portable devices for 

the assessment of ambulatory behavior (AB) as a measure for PA have been introduced [8–10]. Several 

devices with different ranges of functions, outcome measures, and specific patient body-positioning 

requirements, which are available on the market, have been evaluated [8,9,11,12]. 

While AB assessment is already being used for long-term measurements in the home  

environment [13–15], gait analysis (GA), which requires expensive, motion-capturing systems is 

usually performed in a laboratory [16–18]. However, less complex methods that utilize combinations 

of wearable inertial sensors [19–23], wearable ground reaction force sensors [24,25] or other  

sensors [26,27] for the assessment of single joint movements and/or spatiotemporal gait parameters 

outside of specialized gait laboratories have been developed recently. 

Because the long-term assessment of AB in combination with joint kinematics may deliver 

meaningful data about functional outcomes and rehabilitation status in orthopedic and neuromuscular 

research [28], our system integrates gait assessments at the “macro level” [29] (AB) and  

“micro level” [29] (GA) into one wearable device. To our knowledge, it is one the first systems that 

opens up the possibility of continuous kinematic analysis of joint motion in combination with data for the 

ambulatory activities in the participant’s everyday environment, and it might provide more generalizable 

results compared with GA at specific time points in a controlled laboratory environment or  

AB alone [29,30]. 

Therefore, the aim of the present study was to evaluate this newly developed, small, and  

low-power-consuming measurement system in healthy subjects and patients with multiple sclerosis 

(MS) in the home environment. 
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2. Methods 

2.1. Instrumentation 

The measurement system consists of five core components: a microprocessor, inertial sensors, 

memory, a battery, and a charging circuit. We used an 8-bit RISC Microprocessor (Atmega328; Atmel; 

San Jose, CA, USA) to control our system. To measure the inertial data, we chose two 

microelectromechanical systems (MEMS) chips (MPU-6050; InvenSense Inc.; San Jose, CA, USA), 

each of which incorporates a digital triaxial accelerometer and a digital triaxial gyroscope. For timing 

processes, we used a real time clock (RV-8564-C2; Micro Crystal Switzerland; Grenchen, 

Switzerland). The raw data is stored in plain text files on a micro SD card. The microcontroller, the 

two MEMS sensors, and the real time clock are connected with an I2C bus. The SD card is interfaced 

with an SPI bus. The system also contains a USB-UART IC (FT232RL; Future Technology Devices 

International Limited; Glasgow, UK) for a PC connection and configuration of the sensor system. It is 

powered by a small, lithium polymer battery, which can be recharged using a USB connector with a 

small charging controller (MCP73831/2; Microchip Technology Inc.; Chandler, AZ, USA). Battery 

runtime and system functionality were tested in healthy subjects in long-term recordings, which are not 

further described in this study. With a fully charged battery (3.7 Wh), the sensor system can operate 

continuously for about 4–5 days. Prototypes of our system consisting of separate breakout boards are 

fitted into two small casings. The sensors are attached laterally at the thigh and shank, as shown in 

Figure 1, approximately five to ten centimeters from the knee joint line. 

 

Figure 1. Schematic illustration of the sensor and monitoring system integrated into an orthosis. 
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The tibial sensor is separately contained in a 56 × 20 × 12 mm housing. The rest of the system, 

including the battery, is stored inside an 80 × 40 × 15 mm casing. The tibial sensor is connected to the 

femoral system with a thin flexible wire containing leads for the I2C bus and the power supply. The 

overall weight of the sensor system is about 65 g. The system stores the raw movement data at a 

sample rate of 50 Hz. Each data block consists of 12 signals containing both triaxial accelerometer 

values and triaxial gyroscope values at 16-bit resolution. Seven days of recording will generate about  

2 GB of raw data. The memory capacity of the system is defined by the selected micro SD card size. 

Memory cards up to 16 GB have been tested. Recorded movement data is transferred to a personal 

computer after the measurement is finished. Dedicated software is used to categorize and evaluate the 

ambulatory behavior and joint angle data. 

2.2. Software Algorithm 

Currently, all data processing is done off-line on a personal computer. The algorithm was designed 

to be as simple as possible so that at least parts of it can be programmed directly onto the 

microprocessor in the future. In this way, the data could be calculated directly by the sensor system 

itself, which allows only the results to be stored, thereby minimizing the overall data output. Using this 

approach, the post-processing times for long-term measurements can be reduced significantly. The 

proposed algorithm classifies the measured activity into four categories: lying, sitting, standing, and 

walking in a second-by-second scheme. The algorithm detects and counts the steps taken while 

walking. To evaluate the patient’s range of motion, the software calculates the flexion/extension angle 

of the knee joint by combining the accelerometer and gyroscope data. The software algorithm was 

programmed using LabView 2009 (National Instruments; Austin, TX, USA). It consists of the 

following parts: raw data filtering and frequency separation, knee angle calculation, activity 

classification, and step detection. The parts are described in detail below. 

2.2.1. Raw Data Filtering and Frequency Separation 

We used a third-order elliptical infinite impulse response (IIR) low-pass filter shown in Equation (1) 

(cutoff frequency 20 Hz, passband ripple 0.01 dB, stopband −100 dB) to remove higher frequency 

components and noise from all sensor signals (S20Hz, Figure 2b) [31], as all relevant human body 

movements are expected to be below 15 Hz [32]. Gravitational- and movement-based parts of the 

accelerometer signals are separated using a second filtering step. Thereafter, another third-order elliptical 

IIR low-pass filter shown in Equation (1) (cutoff frequency 0.2 Hz, passband ripple 0.01 dB, stopband 

−100 dB) is applied to S20Hz, resulting in an accelerometer signal that only contains gravitation  

(posture)-based components (Sgrav, Figure 2c) [31]. A signal containing just the movement-based parts 

(Smov) is calculated as the linear difference between the original signal and the gravitational signal: 

gravHzmov SSS −= 20  (Figure 2d) [31]. The IIR filter coefficients (b0 … b3, a1 … a3) for all elliptical 

low-pass filters were calculated using MATLAB 2013 (MathWorks; Natick, MA, USA): 

)3()2()1()3()2()1()()( 3213210 −+−+−+−+−+−+= tyatyatyatxbtxbtxbtxbty  (1)
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Figure 2. Signal filtering steps; (a) raw signal; (b) 20 Hz lowpass filtered (S20Hz);  

(c) gravitation based component (Sgrav); 0.2 Hz lowpass filtered; (d) movement based 

component (Smov). 

2.2.2. Knee Angle Calculation 

Our approach approximates the human knee as a hinge joint. For optimal results, the z-axes of both 

sensors and the main axis of knee rotation will need to coincide. As this is not easily achievable in 

human anatomy (Figure 1), the precision of the calculated knee angle will be reduced [22]. Godfrey et al. 

proposed the use of the scalar product for the tilt estimation of a chest-mounted accelerometer  

sensor [33]. Our algorithm uses a comparable approach for the calculation of the knee angle and 

combines that result with the gyroscope data using a complementary filter [34]. The knee flexion-extension 

angle is calculated as the scalar product from both sensors’ accelerometer data vectors (S20Hz), defined in 

Equations (2) and (3) in the sagittal plane. The rotational direction is calculated using the vector product 

shown in Equation (4). This angle is then passed through a third-order elliptical IIR filter, Equation (1) 

(cutoff frequency 2 Hz, passband ripple 0.01 dB, stopband −100 dB) to reduce shock and vibration 

influences. A complementary filter which is described in Equation (6) is used to combine the resulting 

low-pass filtered angle from the accelerometer sensors with the angular velocity from the gyroscope 

sensors (S20Hz) described in Equation (5), which are sensitive to signal drift:  

[ ]zfyfxf accaccacc ,,,=facc  (2)
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The complementary filter coefficients were determined empirically. If the calculated knee angle 

shows a deviation from a known knee angle at a defined posture (i.e., standing upright) due to sensor 

misalignment, it can be calibrated by adding individual offsets for thigh and shank sensor orientations. 

2.2.3. Activity Classification 

The activity classification algorithm is based on a threshold detection method of each sensor’s 

orientation compared to the gravity vector, thereby resulting in low computational complexity. 

Comparable algorithms using single or multiple accelerometer sensors attached to the body have been 

presented by Karantonis et al. [31], Lyons et al. [35], and Culhane et al. [36]. 

The posture based part of the signal (Sgrav) is used to separate the lying, sitting, and upright activity 

classes [31]. The two-dimensional angle between each sensor’s accelerometer output vector and the 

vector representing its upright vertical position in the sagittal plane is calculated. This tilting angle is 

compared to an angular threshold of 45°. If a sensor is tilted more than 45° in the sagittal plane, it is 

defined as being horizontal, otherwise it is defined as being vertical. Additionally, the activity is 

categorized as lying when one or both sensors are tilted sideways by more than 45° in the coronal 

plane. Correction of sensor misalignment is performed using the calibration offsets for the thigh and 

shank orientations as described in Section 2.2.2. The activity is selected using the decision scheme 

shown in Table 1 for each data sample block.  

Table 1. Decision table for activity classification. 

 
Tibial Sensor 

Horizontal Vertical Sideways

Femoral Sensor 
Horizontal lying sitting lying 

Vertical undefined upright activity lying 
Sideways lying lying lying 

A majority voting method is used to reduce the 50 Hz classification rate into a second-by-second 

classification scheme. The actual activity for each second is selected as the activity class with the most 

assigned samples from that second. Upright activity is then further separated into standing and walking 

activity by intensity evaluation of the movement-based signal parts (Smov). The movement intensity is 

calculated as the normalized signal magnitude area (SMA) [31] by summarizing the absolute value of 

all six accelerometer axes from each data sample block, averaging the results for each second, and 

scaling the result to a multiple of the mean gravitational acceleration (g = 9.81 m/s²), which is shown 

in Equation (7). The scaling factor (gain) can be calculated from the digital sensor’s range and 

resolution or measured in a steady sensor position and assumed to be constant. If the SMA value 

exceeds an adaptive threshold, the activity is classified as walking. The adaptive threshold is calculated 

every 30 s of walking activity by averaging the corresponding 30 SMA values from those  

non-overlapping windows. The result is scaled by a factor of 0.5, Equation (8) [37]. The initial 

threshold for detecting the first 30 s of walking is set to a value of 0.5 g which was selected 
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empirically. This variable threshold enables the algorithm to adapt to different intensities of  

patient activity: 
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2.2.4. Step Detection 

We chose the x-axis signal from the tibial accelerometer sensor for our step detection algorithm, as 

it showed the most distinctive peaks in a manual signal evaluation of walking. The step detection 

algorithm is based on a template-matching method described by Ying et al. [38]. This method is 

described in Equation (9) and compares a moving window of continuous signal data to a predefined 

step template by evaluating the normalized cross-correlation between them. The result for an identical 

signal and template is 1. Every time a peak in the continuous calculated correlation coefficient exceeds 

a predefined threshold of 0.4, the maximum peak value in the corresponding window of the sensor data 

is searched for and its position is marked as a step. Every time the detected step shows a correlation 

coefficient below a second threshold of 0.6, a new template is generated by calculating a weighted 

average of the previous template and the new sensor data shown in Equation (10), thereby resulting in 

an algorithm that adapts to changes in gait. The first template is generated by averaging the signal 

windows from ten steps detected using the Pan-Tompkins method for peak detection, which was 

originally developed for the detection of the R Peak in electrocardiography (ECG) signal analysis [39] 

and was successfully used for step detection by Ying et al. [38] and Marschollek et al. [40]: 
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2.3. Algorithm and Sensor Evaluation 

System testing and validation were performed on two groups consisting of 10 healthy volunteers 

(Group A, nine males, one female; age 30.4 ± 7.7 years; weight 74.2 ± 13.8 kg; height 1.79 ± 0.09 m) 

and 11 participants suffering from multiple sclerosis (MS) that were preselected with an Expanded 

Disability Status Scale (EDSS) score between 3 and 6 (Group B, seven males, four females; age  

49.5 ± 7.4 years; weight 77.3 ± 18.6 kg; height 1.7 ± 0.1 m; EDSS 4.6 ± 1.1). The study was conducted 

according to the Declaration of Helsinki and approved by the local ethics committee (Registration No. 

A 2012-0096). Prior to participation, informed written consent was obtained from all subjects. The 

tests were performed in a laboratory, and the subjects were asked to execute different predefined tasks 

simulating daily activities in sequential order. The exercises themselves were not constrained to 

specified sequences, movement patterns, or predefined speeds. Thus, the subjects could perform the 

tasks in an individual and natural manner. Our sensor system was fixed on top of the jaws of an 

electromechanical goniometer (Noraxon; Scottsdale, AZ, USA), which was used for reference angle 
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measurements, and attached laterally to the distal thigh and proximal shank with sticking plaster. 

Correct positioning of the goniometer was verified by active and passive flexion and extension of the 

knee joint. Subjects were asked whether the sensor positioning felt comfortable to ensure minimal 

influence on normal knee motion. Recordings were made using a wireless Noraxon system (Telemyo 

2400T G2) at a sampling rate of 1500 Hz. The sensors were fixed to the right limb of healthy subjects 

and to the limb of the MS patients that was most affected by spastic paresis. To compare the activity 

classification and step detection with a commercially available system, an activPAL activity monitor 

(Pal Technologies, Glasgow, UK) was applied to the same limb. The sessions were recorded using a 

video camera. 

Table 2. Trial protocol tasks. 

No. Exercise Expected Activities 

(I) Sensor application - 
(II) Sensor calibration and synchronization standing 
(III) Sensor familiarization sitting 

(IV) 
Maximum active knee flexion and extension in 
sitting, standing and lying posture 

sitting; standing and lying 

(V) Transitions between postures standing ↔ sitting; standing ↔ lying 
(VI) Walking standardized paths marked on the ground walking 
(VII) 25ft walk test walking 
(VIII) Sitting and resting sitting 

(IX) Eating a snack 

sitting → walking → standing and opening a 
cupboard → walking → sitting while eating 
→ walking → standing and washing hands 
→ walking → sitting 

(X) Opening a window 
sitting → walking → standing and opening 
window → walking → sitting 

(XI) Watching TV sitting 
(XII) Interview sitting → walking → standing → sitting 
(XIII) Maximum active knee flexion and extension lying; sitting; standing 
(XIV) Sensor removal - 

The trial protocol consisted of sensor application (I) sensor calibration and synchronization;  

(II), sensor familiarization while sitting; (III), and repetition of maximum knee flexion and extension 

in different positions; (IV) (sitting, standing, and lying) to acquire the maximum active knee joint 

range of motion. Afterward, transitions between standing, sitting, and lying positions were recorded 

repeatedly; (V). The subjects were asked to walk standardized paths multiple times; (VI) along a 

square with diagonals that were marked on the ground, at a self-selected speed and with changes in 

walking directions. The subjects also performed the following activities: a 25-ft walking test;  

(VII), sitting and resting; (VIII), eating a snack; (IX), walking and standing while opening a window; 

(X), and sitting and watching TV; (XI). Finally, a short interview was conducted (XII), and the 

maximum active knee flexion and extension in different postures; (XIII) were repeated for a second 

time. The sensor system was removed afterward (XIV). 
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Tasks (VIII)–(XII) are included as selected activities of daily living. They are supposed to focus the 

subject on a different task and distract them from the activities our algorithm can classify. Table 2 lists 

the exercises and expected activities in sequential order. 

The video recording was annotated by two independent researchers at a sampling rate of 2 Hz to 

generate ground truth data for activity classification and step counting. The goniometric knee angle 

was resampled at 50 Hz to generate ground truth data that matches our system’s sampling rate. 

Ambulatory behavior was divided into four classes: lying; sitting; standing; and walking. Single steps 

from the considered leg were counted. The annotations showed slight differences at posture transitions 

resulting from the researchers’ subjective view of the beginning and ending of activities. Therefore; the 

activity was defined as ground truth for a sample only if both researchers annotated the same activity 

class. Otherwise; the activity was undefined for that sample. The steps counted by the two researchers 

were averaged to reduce counting errors and subjective differences; for example weight transfer steps 

in the beginning or ending of the walking phases. The activity classifications from our algorithm and 

from the activPAL system were resampled at 2 Hz to create confusion matrices with the annotation 

data. The maximum range of motion exercises at the beginning and end of each trial were excluded 

from the classifier performance evaluation. Excluding one complete measurement; we recorded and 

annotated 1671 steps with 12.4 min of lying; 337.4 min of sitting; 29.3 min of standing; 37.3 min of 

walking; and 7.8 min of unknown activity for the MS patients; and 1959 steps; 14.8 min of lying; 

123.7 min of sitting; 31.4 min of standing; 40.7 min of walking; and 5.5 min of unknown activity for 

the healthy subjects. 

2.3.1. Excluded Data 

We excluded two measurements from the activPAL system (one faulty activity classification, one 

broken sensor) and two measurements from our system (one faulty classification, one disrupted 

measurement because of a corrupted SD card file system). A camera failure led to the exclusion of one 

complete measurement of the classifier validation. We also had to completely exclude the data of three 

subjects for knee angle validation because of technical problems with the reference goniometer during 

data acquisition. Recording was stopped prior to the second range of motion exercises for two subjects 

because of connectivity problems between the wireless Noraxon goniometer system and the PC. Three 

patients were unable to perform single flexion/extension tasks at the end of the trial protocol due to 

muscle fatigue after previous exercises. 

2.3.2. Statistical Analysis 

The performance of both systems’ classification algorithms, including the chronological sequence 

of classifications, was assessed by creating confusion matrices for each system and calculating the 

kappa coefficient (κ) as well as the overall accuracy (OAA) [41,42]. OAA and κ values were compared 

using the Wilcoxon test calculated using IBM SPSS Statistics 20 (IBM Corp.; Armonk, NY, USA). 

Additionally, precision, sensitivity (recall), specificity, and accuracy were calculated for each activity 

class [43]. We also created box plots and Bland-Altman diagrams of the summarized durations of each 

activity class and step count. Range of motion exercises at the beginning and end of the trial protocol, 

as well as two recording periods consisting of ten consecutive steps that were randomly selected from 
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the walking exercise, were used for knee angle measurement validation. Timestamps were 

synchronized manually and data window sizes for comparison were matched between the reference 

goniometer and the calculated knee angle. The root mean square error (RMSE) and Pearson’s 

correlation coefficient (PCC) were calculated to assess our system’s accuracy. 

3. Results 

3.1. Activity Classification and Step Counting 

Table 3 shows the performance of each classifier in the confusion matrices. The two manual video 

annotations are matched in Table 3a, and show very high inter-observer agreement (>97.7%) for the 

activity classes lying, sitting, and walking in both groups. However, the agreement for standing 

activity was lower (>86%) between researchers 1 and 2 in both groups due to confusion between 

standing and walking activities.  

The classifications by our system and by the activPAL system are matched to the merged video 

annotation in Table 3b,c, respectively. Our algorithm showed significantly higher classification 

performance (OAA = 95.2% (SD = 0.5%); κ = 0.921 (SD = 0.007)) than the activPAL system  

(OAA = 93.9% (SD = 0.9%); κ= 0.889 (SD = 0.019)) for healthy subjects (p ≤ 0.018). For  

MS-patients both systems show comparable performance (our system: OAA = 96.5% (SD = 0.9%);  

κ = 0.901 (SD = 0.002) vs. activPAL: OAA = 96.7% (SD = 0.6%); κ = 0.890 (SD = 0.018); p ≥ 0.11). 

Our system could distinguish between the activity classes sitting and lying with a good strength of 

agreement. Both sensor systems showed the highest level of confusion between walking and standing 

activities. General performance parameters are calculated for both systems in Table 4. Our algorithm 

showed high accuracy (>0.98), precision (>0.89), sensitivity (>0.92), and specificity (>0.98) for all 

activity classes. 

The boxplots in Figure 3 show the total durations for each activity class and the step count from 

both monitoring systems normalized to ground truth data without regard to chronological sequence. 

Outliers and extreme values were excluded from further analysis. The Bland-Altman plots in Figure 4 

demonstrate the percentage difference between the recognized activity duration and the step count data 

from the video annotation data. Mean and SD values are listed in Table 5. While the total walking time 

and summarized step count were underestimated by both systems, our algorithm showed a smaller 

deviation from the ground truth data for step counts. 
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Table 3. Confusion matrices (values in %) (N/D: not defined, e.g., transition between 

categories) (a) manual video annotation researcher 1 compared to researcher 2; (b) our 

presented algorithm compared to the merged video annotation; (c) activPAL system 

compared to the merged video annotation. 

 Video Annotation-Researcher 2 

 Lie Sit Stand Walk N/D 

(a) 

Video  
Annotation  

- 
Researcher 1 

A (n = 10) 

Lie 99.50 0.50 

Sit 0.11 99.08 0.02 0.01 0.78 

Stand 0.31 90.62 5.34 3.73 

Walk 1.88 97.70 0.42 

B (n = 10) 

Lie 99.07 0.93 

Sit 0.20 99.39 0.01 0.41 

Stand 0.32 85.95 8.13 5.60 

Walk 1.77 98.01 0.22 

 Our Algorithm 

 Lie Sit Stand Walk N/D 

(b) 

Merged  
Video  

Annotation  
(ground truth) 

A (n = 8) 

Lie 96.94 3.06 
Sit 0.07 99.88 0.01 0.04 

Stand 0.82 96.45 2.73 
Walk 0.70 6.37 92.87 0.05 

B (n = 10) 

Lie 92.68 7.32 

Sit 0.11 99.71 0.12 0.01 0.04 

Stand 2.08 92.63 5.21 0.09 

Walk 0.56 7.57 91.88 

 activPAL 

 Lie/sit Stand Walk N/D 

(c) 

Merged  
Video  

Annotation  
(ground truth) 

A (n = 9) 

Lie 100.00  

Sit 99.70 0.30 0.01 

Stand 5.22 89.24 5.54 

Walk 0.83 7.87 91.30 

B (n = 9) 

Lie 100.00  

Sit 99.98 0.02 

Stand 6.78 87.36 5.86 

Walk 0.32 7.20 92.48 
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Table 4. Classifier performance parameters for each predicted activity class compared to 

video annotation. 

Our Algorithm activPAL 
A B A B 

Lying 

Precision 0.99 0.97 

not applicable, distinction between lying  
and sitting posture is not possible  
due to functionality 

Sensitivity 0.97 0.93 

Specificity 1 1 

Accuracy 1 1 

Sitting 

Precision 0.99 0.99 

Sensitivity 1 1 

Specificity 0.99 0.98 

Accuracy 0.99 0.99 

Lying + Sitting 

Precision 1 1 0.99 0.99 

Sensitivity 1 1 1 1 

Specificity 0.99 0.99 0.97 0.97 

Accuracy 1 1 0.99 0.99 

Standing 

Precision 0.92 0.89 0.89 0.90 

Sensitivity 0.96 0.93 0.89 0.87 

Specificity 0.98 0.99 0.98 0.99 

Accuracy 0.98 0.99 0.97 0.98 

Walking 

Precision 0.98 0.96 0.96 0.95 

Sensitivity 0.93 0.92 0.91 0.92 

Specificity 0.99 1 0.99 1 

Accuracy 0.98 0.99 0.97 0.99 

 

Figure 3. Differences between summarized activity durations from our System/activPAL 

compared to ground truth video data. (A: healthy subjects, B: MS patients, light gray: our 

system, dark gray: activPAL, rings: outliers). 
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Figure 4. Difference of summarized activity time for our algorithm and the activPAL 

system compared to video data, shown as Bland-Altman plot (o: healthy subjects, X: MS 

patients, black line: mean error, gray line: mean error ± 1.96 SD). 

Table 5. Summarized activity durations, difference compared to video recording. 

 Difference [%] Mean (SD) 

 Our System activPAL 

Lie/Sit 0.18 (0.27) 0.70 (1.21) 
Stand 4.75 (4.50) −1.02 (6.91) 
Walk −4.68 (3.17) −3.95 (4.44) 

Step Count −5.87 (6.02) −12.92 (5.11) 

3.2. Knee Angle Measurement 

Table 6 shows the results from the knee angle measurements. The RMSE and PCC were calculated 

between measured (mechanical goniometer) and time-synchronized data recorded by our system for 

each motion exercise. Time window durations differed between subjects depending on the task 

execution speed. All exercises showed a RMSE of less than 5° compared with the ground truth data.  

Table 6. Comparison of measured (goniometer) and predicted (our system) knee angles 

calculated as root mean square error (RMSE) in angular degree and Pearson correlation 

coefficient (PCC) for each sequence. 

Quality of Knee Angle Measurement 

n RMSE [°] Mean (SD) PCC Mean (SD) 

Activity 

ROM lying 34 4.86 (1.97) 0.999 (0.000) 
ROM sitting 33 2.91 (1.09) 0.999 (0.001) 

ROM Standing 32 2.37 (0.78) 0.999 (0.001) 
Walking 36 3.63 (1.23) 0.975 (0.026) 
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4. Discussion 

The reliable, long-term measurement of physical activity and joint motion can be a helpful 

instrument for the assessment of rehabilitation status and functional outcome in clinical and domestic 

environments [28]. The widespread occurrence of walking impairment caused by different neurologic 

or orthopedic disorders demonstrates that there is a need for a robust and universally applicable 

measurement system. The aim of the present study was to describe a cost-efficient sensor hardware 

and software system for the measurement of ambulatory behavior and knee joint motion in a home 

care environment. The new system was evaluated against video recording data and compared to 

commercially available activPAL sensors. Healthy subjects and patients suffering from MS performed 

a test protocol simulating daily living activities. The huge differences in movement and gait 

performance between healthy subjects and MS patients were used to stress test the system. Gait was 

impaired in some patients who needed walking aids (e.g., crouches, walking sticks, or walking frames) 

to complete our protocol. A sensor system for long-term measurements in a less controlled home care 

environment should nonetheless be able to deliver valid and meaningful data. Furthermore, it should 

be unobtrusive, not restricted to certain prepared rooms and independent of separate devices for power 

supply and data recording with a capability of recording data for multiple days. Therefore, our 

minimalistic sensor system is based on currently available, low-power-consuming electronic 

components without real-time evaluation capabilities. We did not use machine learning methods, e.g., 

neural networks or support vector machines, to solve the tasks because the algorithm needed to be 

computationally simple to be integrated into the utilized microprocessor for real-time processing at a 

later development stage. 

The uniaxial activPAL sensor was defined as the reference for activity classification performance: 

however, a direct comparison to that system is difficult because of its much simpler design. Because it 

is worn on a single location, it groups sitting and lying activities, which limits its functionality. 

ActivPal’s advantages are its much smaller size and longer battery runtime. It has been validated in 

healthy subjects [44–47], and it is an accepted monitor for the assessment of physical activity. Because 

of our more complex design using accelerometers and gyroscopes on two body segments, which was 

selectively developed for patients with neuromuscular disorders, our system should at least reach or 

exceed a comparable accuracy. 

Our system showed significantly higher classification performance for healthy subjects and 

comparable performance for MS patients. Additionally, our system showed a good distinction between 

the sedentary postures of lying and sitting, whereas the activPAL system does not provide this 

function. Other studies that have also used video-based evaluation protocols and activPAL monitors 

have reported similar classification accuracies [44,45]. Both systems underestimated step counts 

compared with video annotation. ActivPAL showed an approximately a two-fold higher mean 

deviation. Several studies reported higher accuracy for step counting using video recording data 

compared with activPAL in a treadmill/outdoor walking protocol [46] and a treadmill-only  

protocol [47]. The main reason for this difference might be the simulation of activities of the home 

environment, including several changes of walking direction in the present study, while most studies 

have used a treadmill at different walking speeds. Furthermore, the measurement of the knee joint 

flexion-extension angle showed lower accuracy compared with optical motion analysis systems used in 
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gait laboratories [48]. However, averaged RMSEs were within 5°, which, according to the American 

Medical Association, is a clinically accepted mean error limit for reliable joint angle measurements in 

the evaluation of movement impairments [49]. Because our system and the reference goniometer were 

rigidly connected, any influences on knee joint motion were measured by both systems equally and 

therefore should not affect our performance calculations. The influences on absolute knee angle 

accuracy depending on soft tissue movement or missalignment should be considered by employing a 

more accurate 3-dimensional motion capturing system in future studies. 

There are some technical limitations resulting from the low cost design of the presented hardware 

and the moderate complexity of the proposed algorithms. First, the knee joint, with all its degrees of 

freedom, is simplified as a hinge joint by our algorithm. Varus-valgus movements and internal-external 

rotations, as well as all translations [50–52], are ignored and superimposed onto the calculated  

flexion-extension joint angle. This angle is best approximated with the sensor’s z-axes aligned to the 

knee joint’s main axis of rotation. As the axis of rotation is not constant throughout movement of the 

anatomic knee joint, perfect alignment of sensor axes may never be achieved for the whole range of 

motion. Additionally, there are subject-dependent movement artifacts caused by skin and tissue 

motion, which affect all externally applied sensors [53,54]. 

Second, if the sensor is tilted from the sagittal plane, for example, during sitting with legs crossed or 

lying on one’s side, the error for the joint angle calculation from the accelerometer data will increase. 

Tilting the sensor from the sagittal plane was noticeable in our range of motion exercise, where the 

lying exercise showed an RMSE that was almost twice those of the sitting or standing exercises. The 

reason for this difference might be that the subjects’ legs were slightly rotated toward the outside when 

they were lying comfortably on their backs. 

Another limitation is the irregular distribution of the activity durations throughout our tests. 

Although the exercises should simulate the activities of daily living; the distribution of activity classes 

is not related to typical activity profiles in a home care environment [55,56]. The differences between 

both manual video annotations probably resulted from subjectivity when viewing the beginning and 

ending of activities. The visual distinction between standing and walking during slow transitions was 

particularly difficult and should be considered in further related work. 

5. Conclusions 

The present article describes the development of hardware and a software algorithm for a simplified 

ambulatory behavior monitoring system that is also capable of measuring the knee joint angle in a 

simulated home care environment without the need for expensive and complex laboratory equipment. 

The hardware of our activity monitor consists of few components and, therefore is cost-efficient. The 

categorization of different activity classes in chronological sequence and summarized in time over the 

measuring periods showed comparable results to a clinically accepted, commercially available physical 

activity monitor. The step detection algorithm delivered good accuracy compared with the reference 

system. The algorithm can be programmed directly into modern, low-current microprocessors because 

of its simplicity. In terms of the overall complexity and total costs of the sensor system, we conclude 

that the accuracy is sufficient for long-term monitoring of ambulatory behavior and range of motion of 

the knee joint in healthy subjects and patients with impaired gait performance. Thus, the new system 
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can be considered to be a valuable clinical tool for monitoring the effectiveness of therapy. In future, 

the battery runtime has to be extended by using a larger battery or improving the sensors firmware to 

exceed a minimum recording time of seven days without recharging the system. 
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