Enantioselective Recognition of Chiral Carboxylic Acids by a $\boldsymbol{\beta}$-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor. Sensors 2015, 15, 10723-10733

Yonghong Zhang ${ }^{1}$, Fangzhi Hu ${ }^{\mathbf{2}}$, Bin Wang ${ }^{\mathbf{3}}$, Xiaomei Zhang ${ }^{\mathbf{2}}$ and Chenjiang Liu ${ }^{1,3, *}$

1 Key Laboratory of Petroleum and Gas Fine Chemicals of Ministry of Education, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China; E-Mail: zhzhzyh@126.com
2 Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China; E-Mails: ssfangzhi@126.com (F.H.); xmzhang@cioc.ac.cn (X.Z.)
${ }^{3}$ Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China; E-Mail: wangbin.yang@163.com

* Author to whom correspondence should be addressed; E-Mail: pxylcj@126.com; Tel. +86-991-8581-211; Fax: +86-991-8582-809.

Figure S1. UV-Vis spectra of \boldsymbol{S}-G1 $\left(8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ in a solution of EtOH.

Figure S2. Fluorescence of \boldsymbol{S}-G1 $\left(8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ in EtOH versus the concentration of D-tartaric acids ($\lambda_{\mathrm{ex}}=330 \mathrm{~nm}$).

Figure S3. Fluorescence of \boldsymbol{S}-G1 $\left(8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ in EtOH versus the concentration of L-tartaric acids $\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$.

Figure S4. Fluorescence of \boldsymbol{S}-G1 $\left(8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ in EtOH versus the concentration of D-proline ($\lambda_{\mathrm{ex}}=330 \mathrm{~nm}$).

Figure S5. Fluorescence of \boldsymbol{S}-G1 $\left(8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ in EtOH versus the concentration of L-proline ($\lambda_{\mathrm{ex}}=330 \mathrm{~nm}$).

Figure S6. ${ }^{1} \mathrm{H}$ NMR of \boldsymbol{S} - $\mathbf{G 1}$ in CDCl_{3}.
zyh-356
玉

[^0]Figure $\mathbf{S 7}{ }^{13} \mathrm{C}$ NMR of \boldsymbol{S} - $\mathbf{G 1}$ in CDCl_{3}.

1 Det.A Ch1 / 254 nm

Detector A Chl 254 nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
- 1	16.313	4907847	178797	50.114	53.397
2	18.263	4885446	156046	49.886	46.603
Total		9793293	334843	100.000	100.000

Figure S8. HPLC of racemic $\mathbf{1 c}$.

1 Det.A Ch1 / 254 nm
Detector A Ch1 254 nm
Detector A Chl 254 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	19.004	3793	149	0.023	0.032
2	21.843	16654636	466195	99.977	99.968
Total		16658429	466344	100.000	100.000

Figure S9. HPLC of chiral 1c.

I Det.A Chl / $254 n m$
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	7.476	4873998	231628	50.062	74.017
2	10.633	4861972	81312	49.938	25.983
Total		9735969	312939	100.000	100.000

Figure S10. HPLC of racemic $\boldsymbol{S} \mathbf{- 1 0}$.

Det.A Chl / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.155	19273	1097	0.325	1.134
2	10.596	5911688	95651	99.675	98.866
Total		5930962	96748	100.000	100.000

Figure S11. HPLC of chiral $\boldsymbol{S} \mathbf{- 1 0}$.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

[^0]:

