

www.mdpi.com/journal/sensors

Supplementary Information

Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor. *Sensors* 2015, *15*, 10723-10733

Yonghong Zhang ¹, Fangzhi Hu ², Bin Wang ³, Xiaomei Zhang ² and Chenjiang Liu ^{1,3,*}

- Key Laboratory of Petroleum and Gas Fine Chemicals of Ministry of Education, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China; E-Mail: zhzhzyh@126.com
- ² Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China; E-Mails: ssfangzhi@126.com (F.H.); xmzhang@cioc.ac.cn (X.Z.)
- Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China; E-Mail: wangbin.yang@163.com
- * Author to whom correspondence should be addressed; E-Mail: pxylcj@126.com; Tel. +86-991-8581-211; Fax: +86-991-8582-809.

Figure S1. UV-Vis spectra of **S-G1** (8×10^{-5} mol/L) in a solution of EtOH.

Figure S2. Fluorescence of **S-G1** (8×10^{-5} mol/L) in EtOH *versus* the concentration of D-tartaric acids ($\lambda_{ex} = 330$ nm).

Figure S3. Fluorescence of **S-G1** (8×10^{-5} mol/L) in EtOH *versus* the concentration of L-tartaric acids ($\lambda_{ex} = 330$ nm).

Figure S4. Fluorescence of *S*-G1 (8 × 10⁻⁵ mol/L) in EtOH *versus* the concentration of D-proline (λ_{ex} = 330 nm).

Figure S5. Fluorescence of **S-G1** (8 × 10⁻⁵ mol/L) in EtOH *versus* the concentration of L-proline (λ_{ex} = 330 nm).

Figure S6. ¹H NMR of S-G1 in CDCl₃.

Figure S7. ¹³C NMR of S-G1 in CDCl₃.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.313	4907847	178797	50.114	53.397
2	18.263	4885446	156046	49.886	46.603
Total	TAN DE LA PE	9793293	334843	100.000	100.000

Figure S8. HPLC of racemic 1c.

Detector A Ch1 254nm Height Area % Height % Peak# Ret. Time 0.032 99.968 3793 149 0.023 19.004 99.977 2 21.843 16654636 466195 100.000 100.000 Total 16658429 466344

Figure S9. HPLC of chiral 1c.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.476	4873998	231628	50.062	74.017
2	10.633	4861972	81312	49.938	25.983
Total	10.055	9735969	312939	100.000	100.000

Figure S10. HPLC of racemic S-10.

Figure S11. HPLC of chiral S-10.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).