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Abstract: Multiagent application systems must deal with various changes in both the 

system and the system environment at runtime. Generally, such changes have undesirable 

negative effects on the system. To manage and control the system, it is important to observe 

and detect negative effects using an appropriate observation function of the system’s 

behavior. This paper focuses on the design of this function and proposes a new macroscopic 

measure with which to observe behavioral characteristics of a runtime multiagent system. 

The proposed measure is designed as the variance of fluctuation of a macroscopic activity 

factor of the whole system, based on theoretical analysis of the macroscopic behavioral 

model of a multiagent system. Experiments are conducted to investigate basic 

characteristics of the proposed measure, using a test bed system. The results of experiments 

show that the proposed measure reacts quickly and increases drastically in response to 

abnormal changes in the system. Hence, the proposed measure is considered a measure that 

can be used to detect undesirable changes in a multiagent system. 

Keywords: macroscopic behavioral model; variance of fluctuation; behavioral monitoring; 

multiagent system; empirical study 

 

1. Introduction 

A multiagent system (MAS) consists of agents who operate cooperatively as a team and handle 

problem-solving tasks according to their unique features relating to autonomy, reactivity, and social 

ability. At the runtime of an MAS, the system’s behavior fluctuates according to various changes in 

both the system and system environment. Because these changes generally have undesirable negative 
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effects on the system, the system has to deal with the changes to maintain its behavior and 

performance. It is desirable to detect negative effects quickly using appropriate monitoring functions 

of the system’s behavior before fatal changes to the system occur. To develop monitoring functions for 

various information systems, measures for observing the behavior of systems have been investigated. 

Moreover, quantitative and qualitative measures such as the quality of service (QoS) have been 

developed for various information systems aiming to realize user-oriented services. However, it 

appears difficult to use these measures to detect abnormal situations for a system because observed 

measures such as the QoS fluctuate immediately after various changes within the system itself. Useful 

methods for detecting abnormal situations according to the system’s changes before the QoS degrades 

have yet to been established. Hence, the development of a new measure and/or measurement method 

that predicts the occurrence of abnormal changes is an important problem to solve to avoid 

unrecoverable situations of a system. 

Focusing on the problem above, this paper proposes a new macroscopic measure defined using the 

macroscopic activity factor of an MAS according to theoretical analysis of the behavioral model of the 

MAS. The proposed measure is defined as the variance in fluctuation of the activity factor of the MAS. 

The analysis of the behavioral model reveals that the proposed measure increases drastically when the 

activity factor degrades. Therefore, this paper assumes a working hypothesis that clues that can reveal 

undesirable changes in the system are unusual increases in the proposed measure. Basic characteristics 

of the proposed measure are then investigated in experiments using a test bed system of a  

hierarchical MAS. The experiments show that the proposed measure reacts quickly in response to a  

system’s abnormal changes in terms of a drastic rise in the observed values as suggested by the 

working hypothesis above. 

The remainder of the paper is organized as follows: Section 2 explains the background and 

motivation of the study. Section 3 defines a behavioral model of the MAS from a macroscopic 

viewpoint and proposes a new macroscopic measure using this model. The proposed measure is 

defined as the variance of fluctuation of the macroscopic activity factor of the MAS. Section 4 designs 

a measurement function for a test bed system using the proposed measure, and realizes a test bed 

system using a repository-based multiagent framework. The results of experiments conducted using the 

test bed system are presented to demonstrate basic characteristics of the proposed measure. Finally, 

Section 5 concludes the paper. 

2. Background and Motivation 

It is difficult to presume the nondeterministic behavior of an MAS at runtime because the properties 

and functions of agents are affected directly or indirectly by various changes in the system’s runtime 

conditions and environment. These changes occasionally have undesirable effects and can even cause 

catastrophic damage to the runtime system. It is thus necessary to develop effective methods and 

functions to maintain the system’s behavioral characteristics in response to such unusual situations. 

Studies, such as those on resilient systems, have required a system to be proactive and able to 

anticipate, monitor and respond to environmental change or unexpected emerging threats. To realize 

such capabilities, Balchanos et al. [1] proposed a set of problem-dependent metrics that capture a 

resilient system’s ability to perform essential functions of a naval cooling network. The risks faced by 
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MASs, which can cause serious breakdowns in systems’ operations, have been studied in contexts such 

as the trust management of MASs [2]. Self-protecting software systems have been studied as a class of 

autonomic systems capable of detecting and mitigating security threats at runtime [3]. Kaindl et al. [4] 

proposed a description model called self-representation for agents that represents both the software and 

hardware of mechatronic components in flexible automation systems. Moreover, Rahimian et al. [5] 

proposed a method of preserving the structural controllability of multiagent networks in the event of 

simultaneous failures using different quantitative measures of reliability. The above studies provided 

concepts and methods related to the design of new measures, which is the aim of the present paper. 

Qualitative/quantitative measures or indexes have been studied in many technical domains, and 

schemes on the QoS [6] are adopted in various information systems including MASs. For instance, a 

multiagent application system, which operates adaptively in response to changes in both the user’s 

requests and the system environment, has been realized using problem-oriented QoS parameters of 

multimedia communication services [7,8]. Furthermore, Gutierrez et al. [9,10] studied an interesting 

method of detecting undesirable patterns of communication in MASs based on metrics for the 

observation of the performance of agents. The proposed metrics are defined as microscopic measures, 

which are calculated using various parameters representing agents’ activities. These metrics are 

different from the QoS but relate strongly with the QoS of an MAS, and they are used to detect 

undesirable behavioral patterns of an MAS and thus assist designers of an MAS. The results of 

measurement are used to find out undesirable pattern of communication, which should be improved 

using the detailed design information of the system. On the other hand, our measure is defined as a 

macroscopic index based on the macroscopic activity factor of the whole system. The purpose of the 

proposed measure is to make the system’s users aware of changes of the behavioral situations of the 

whole system as soon as possible. Moreover, the macroscopic activity factor can be observed by a 

relatively simple method, which does not utilize the microscopic metrics like QoS parameters of the 

system’s components.  

Furthermore, it should be noted that undesirable changes in QoS parameters are observed only after 

the system has been altered. It is difficult to sense occurrences of undesirable changes in the system 

before the system falls into abnormal situations using QoS schemes only. Therefore, in our previous  

work [11], an index named the margin of potential capability (MoC) was designed to observe the 

degree of maneuverability of QoS parameters of an agent-based application system. Using the 

predefined threshold values of the MoC, degradations of maneuverability of the system can be detected 

and recovery processes relating to a system’s behavioral properties can be activated before the system 

goes down. However, the MoC is calculated using the observed QoS parameters, and the system thus 

cannot predict the occurrence of changes in the system using the MoC. If we want to avoid fatal 

situations like a system going down, we have to devise a new measure that is similar to leading 

indicators in the field of economics to predict undesirable changes of the system. 

We thus introduce a macroscopic behavioral model of the MAS in this paper, and design a new 

observable measure based on theoretical analysis using this model. There have been studies on the 

design of metrics that are used in model-based methods to detect and analyze abnormal parts and/or faults 

in MASs. For instance, Franch [12] investigated a framework for the analysis of predictability of  

agent-oriented models written in the i* language using indicators to define metrics that measure model 

properties. Moreover, Mani et al. [13] proposed a testing method that extracts potential deadlock 
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information from the design models of an MAS. This method allows the testing of a multiagent 

manufacturing system for deadlocks while the system is under development. The models of above 

papers are defined to describe the functional specification of an MAS and used in the design stage of 

an MAS. These models are useful in the design and implementation of MASs. In contrast, our 

behavioral model provides theoretical foundation of the design of a macroscopic measure to detect 

abnormal changes of an MAS, but does not aim to support the development of various MASs. 

Against the background discussed above, this paper proposes a new macroscopic measure based on 

both the analysis of the theoretical behavioral model and experiments conducted using the test bed 

system of the MAS. 

3. Method of Detecting Changes in a Behavioral Property of an MAS 

3.1. Definition of the Macroscopic State Transition Equation of an MAS 

To express the macroscopic behavior of an MAS, the structure and functions of the system are 

modeled using a macroscopic state transition equation. Let the number of agents in a system be n. An 

agent Ai in the system has its own behavioral state 𝑥𝑖, which represents the degree of activity of Ai at 

time t. When Ai works cooperatively with another agent Aj with a behavioral state xj, behavioral states 

of Ai are affected by actions of Aj directly and/or indirectly, and vice versa. When there are many tasks 

in the system, many agents become active to process tasks. For instance, if Aj works actively and its 

behavioral state is high, the possibility of increasing the degree of activity of Ai increases. Hence, in 

this model, a behavioral state of Aj at time t is determined according to various effects of other agents. 

The degree of positive effects of Aj, with respect to Ai at time t, is specified by a parameter wij, called 

the cooperation coefficient, as shown in Figure 1. 

 

Figure 1. Model of a multiagent system. 
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To simplify the behavioral model, let a behavioral state x be a binary variable. The behavioral state 

𝑥𝑖
′ of Ai at time t + 1 is defined using a step function: 

𝑥𝑖
′ =  𝑠𝑡𝑝(𝑢𝑖) 

𝑢𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 ⋅ 𝑥𝑗 − ℎ𝑖, 0 ≤ 𝑤𝑖𝑗 ≤ 1 

𝑥𝑖
′ = {

1, 𝑢𝑖 > 0
0, 𝑢𝑖 ≤ 0

 (1) 

Here, ℎ𝑖 is called the threshold coefficient. This parameter specifies the degree of degradation of 

activity of an agent, due to the runtime situation. For instance, conflicts relating to resources of agents 

on a single platform and overheads of processing and communication of agents on distributed 

platforms can be considered causes of degradation. If the threshold coefficient of an agent is small, 

then the agent has enough room to work more actively.  

Next, the macroscopic behavior of the MAS is defined using behavioral states of the system. 

Because an agent is modeled as a threshold element, the MAS can be viewed as a network of threshold 

elements like a neural network. Hence, the macroscopic behavioral model of the MAS is defined 

employing a similar method of artificial neural network modeling [14].  

A macroscopic state of the MAS at time t is given as a set of behavioral states of agents and 

represented as 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]. Let Z be the degree of activity at time t. The degree of activity Z’ at 

time t + 1 is given by the function: 

𝐴𝑐𝑡(𝑋) =  
1

𝑛
・∑ 𝑥𝑖

′

𝑛

𝑖=1

 (2) 

Let the variables u, w, and h be Gaussian variables. The ensemble average of 𝑢𝑖 (i.e., < 𝑢𝑖 > ) and 

its variance σ𝑢
2  are given as: 

< 𝑢𝑖 > = ∑ < 𝑤𝑖𝑗𝑗 >∙ 𝑥𝑗  − < ℎ𝑖 >  

Hence: 

�̅� =  𝑛 ∙ �̅� ∙ 𝑍 − ℎ̅ (3) 

where �̅� =< 𝑢𝑖 >, �̅� =< 𝑤𝑖𝑗 >, ℎ̅ =< ℎ𝑖 > and σ𝑢
2 = 𝑛 ⋅ σ𝑤

2 + σℎ
2 . 

On the other hand, the probability density function of a Gaussian variable u is given by: 

1

√2π ∙ σ𝑢

⋅ exp {−
(𝑢 − �̅�)2

2σ𝑢
2

 }  

Hence, the probability of 𝑥𝑖
′ = 1 is calculated as: 

𝑝 = 𝑃𝑟𝑜𝑏{𝑢𝑖 > 0} = ∫
1

√2π ∙ σ𝑢

∞

0

∙ exp {−
(𝑢 − �̅�)2

2σ𝑢
2

 } 𝑑𝑢      

= ∫
1

√2𝜋

∞

−�̅�
σ⁄

⋅ exp {−
𝑣2

2
}  𝑑𝑣 

(4) 

The ensemble average of 𝑥𝑖
′, < 𝑥𝑖

′ >, is given by: 

<  𝑥𝑖
′ > = 𝑝 ⋅ 1 + (1 − 𝑝) ⋅ 0 =  𝑝  
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Using the error function, the ensemble average < 𝑥𝑖
′ > is expressed as: 

Φ(𝑢) = ∫
1

√2π

𝑢

−∞

⋅ exp {−
𝑣2

2
}  𝑑𝑣 (5) 

< 𝑥𝑖
′ > =  Φ(�̅�

σ𝑢
⁄ ) (6) 

The variance of the degree of activity, σ𝑢
2 , is given as: 

𝑍′ = < 𝑥𝑖
′ >  

σ𝑢
2 = < | 𝐴𝑐𝑡(𝑋) − < 𝑥𝑖

′ >|2 > =  
1

𝑛2
⋅ ∑ 𝑉𝑎𝑟(𝑥𝑖

′

𝑖

) (7) 

When n is large, 𝐴𝑐𝑡(𝑋) can be approximated by < 𝑥𝑖
′ >, because 𝑉𝑎𝑟(𝑥𝑖

′) can be considered zero. 

Hence, 𝑍′ is expressed as: 

𝑍′ =  Φ(𝑍) =  Φ(𝐶 ⋅ 𝑍 − Θ) (8) 

Here, 𝐶 = 𝑛 ⋅ �̅�
σ𝑢

⁄  is the macroscopic cooperation coefficient and Θ = ℎ̅
σ𝑢

⁄  is the macroscopic 

threshold coefficient. Formula (8) is the macroscopic state transition equation of the MAS, and the 

system’s characteristics can be manipulated by the system’s parameters C and Θ. Moreover, the 

macroscopic state transition function has hysteresis characteristics due to an error function. Hence, in 

the runtime system, it is expected that unstable states of the activity factor will emerge according to 

changes in the system’s parameters. An image of unstable states Sa and Sb with respect to different  

sets of parameters can be depicted as in Figure 2. Because an unstable state will jump to another  

state discontinuously, the behavioral characteristics of the system will also change suddenly at the  

unstable state. 

 

Figure 2. Image of unstable state of activity factor. 
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3.2. Analysis of the Macroscopic Behavior of an MAS 

To define a new measure that can be used to observe the behavior of the MAS as a whole, the 

macroscopic behavioral model of the MAS is constructed and analyzed using a master equation [15,16]. 

Let N be the number of agents of an MAS, 𝑥𝑖  be the state of an agent and ℎ𝑖  be the threshold 

coefficient. The agent is in an active state if 𝑥𝑖 ≧ ℎ𝑖 and in an inactive state if 𝑥𝑖 < ℎ𝑖. Let N1 be the 

number of active agents and N2 be the number of inactive agents. The activity factor 𝑧 at time t is then 

defined as: 

𝑧 =  
(𝑁1 − 𝑁2)

𝑁
⁄  and 𝑁 = 𝑁1 + 𝑁2 (9) 

An agent becomes active or inactive along with a process of the system’s behavior. Such a process 

is modeled as a stochastic birth–death process and represented by the following master equation. The 

following transitions of behavioral states of agents can occur for an initial state (𝑁1,  𝑁2) at time t: 

(𝑁1, 𝑁2) → (𝑁1 + 1,  𝑁2 − 1): an agent becomes active (10) 

(𝑁1,  𝑁2) → (𝑁1 − 1,  𝑁2 + 1): an agent becomes inactive (11) 

Let 𝑊+,− and 𝑊−,+ be the ratios of transitions defined as: 

𝑊+,−(𝑁1, 𝑁2  →  𝑁1 + 1, 𝑁2 − 1) = 𝑁2 ⋅ π1(𝑧) (12) 

𝑊−,+(𝑁1, 𝑁2  →  𝑁1 − 1, 𝑁2 + 1) = 𝑁1 ⋅ π2(𝑧) (13) 

Here, π1(𝑧) is the transition rate for an inactive agent becoming active, and 𝜋2(𝑧) is the transition 

rate for an active agent becoming inactive.  

Let 𝑃 (𝑁1,  𝑁2, 𝑡)  be the probability density of finding a state (𝑁1,  𝑁2)  at time t. Considering  

Equations (10)–(13), the change of 𝑃 (𝑁1,  𝑁2, 𝑡) at time t is defined as: 

𝑃 (𝑁1,  𝑁2, 𝑡 + 1) =  [1 −  𝑁2 ∙ 𝜋1(𝑧) −  𝑁1 ∙ π2(𝑧) ] ∙ 𝑃( 𝑁1,  𝑁2, 𝑡) 

+ (𝑁2 + 1) ∙ π1(𝑧) ⋅ 𝑃( 𝑁1 − 1,  𝑁2 + 1, 𝑡) 

+ (𝑁1 + 1) ∙ π2(𝑧) ⋅ 𝑃( 𝑁1 + 1,  𝑁2 − 1, 𝑡) 

(14) 

As shown in Figure 3, first term of Equation (14) represents the effects that (𝑁1,  𝑁2) changes to 

adjacent states (𝑁1 + 1,  𝑁2 − 1) and (𝑁1 − 1,  𝑁2 + 1), at time t. On the other hand, second and third 

terms represent the effects that (𝑁1 + 1,  𝑁2 − 1) and (𝑁1 − 1,  𝑁2 + 1) change to (𝑁1,  𝑁2). 

Equation (14) is rewritten as 

[𝑃 (𝑁1,  𝑁2, 𝑡 + 1) − 𝑃 (𝑁1,  𝑁2, 𝑡)]
𝑡⁄  

≅  
𝜕𝑃(𝑁1,  𝑁2, 𝑡)

𝜕𝑡
⁄  

=  −[ 𝑁2 ∙ π1(𝑧) +  𝑁1 ∙ π2(𝑧) ] ∙ 𝑃( 𝑁1,  𝑁2, 𝑡) 

     + (𝑁2 + 1) ∙ π1(𝑧) ⋅ 𝑃( 𝑁1 − 1,  𝑁2 + 1, 𝑡) 

+ (𝑁1 + 1) ∙ π2(𝑧) ⋅ 𝑃( 𝑁1 + 1) 

(15) 
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Figure 3. Transitions between state (𝑁1,  𝑁2) and its adjacent states at time t. 

Using Equation (15), we define the master equation as: 

𝜕𝑃(𝑁1,  𝑁2, 𝑡)
𝜕𝑡

⁄ = −[ 𝑁2 ∙ π1(𝑧) +  𝑁1 ∙ π2(𝑧) ] ∙ 𝑃( 𝑁1,  𝑁2, 𝑡) 

+ (𝑁2 + 1) ∙ π1(𝑧 − ε) ⋅ 𝑃( 𝑁1 − 1,  𝑁2 + 1, 𝑡) 

+ (𝑁1 + 1) ∙ π2(𝑧 + ε) ⋅ 𝑃( 𝑁1 + 1,  𝑁2 − 1, 𝑡) 

(16) 

Here, ε = 2
𝑁⁄  and we assume ε ≪ 1. 

Considering the relations: 

𝑁1 = 1
ε⁄ ⋅ (1 + 𝑧) and 𝑁2 = 1

ε⁄ ⋅ (1 − 𝑧)  

which are derived from Equation (9), the master Equation (16) is rewritten as: 

∂𝑃(𝑧, 𝑡)
∂𝑡

⁄ = −[ 1 ε⁄ ⋅ (1 − 𝑧) ∙ π1(𝑧) + 1
ε⁄ ⋅ (1 + 𝑧) ∙ π2(𝑧)] ∙ 𝑃(𝑧, 𝑡) 

+ 1 ε⁄ ⋅ (1 − 𝑧 + ε) ∙ π1(𝑧 − ε) ⋅ 𝑃(𝑧 − ε, 𝑡) 

+ 1 ε⁄ ⋅ (1 + 𝑧 + ε) ∙ π2(𝑧 + ε) ⋅ 𝑃(𝑧 + ε, 𝑡) 

(17) 

Using a well-known procedure [17], the stochastic Equation (17) is equivalently transformed to the 

Fokker–Planck equation with respect to the fluctuation of activity factor, ξ, (see Appendix A): 

∂𝑃(ξ, 𝑡)
𝜕𝑡

⁄ =  − 
∂

∂𝑧0
∙ [(1 − 𝑧0) ∙ π1(𝑧0) − (1 + 𝑧0) ∙ π2(𝑧0)] ∙

𝜕[ξ ∙ 𝑃(ξ, 𝑡)]

𝜕ξ
 

           + 
1

2
∙ [(1 − 𝑧0) ∙ π1(𝑧0) + (1 + 𝑧0) ∙ π2(𝑧0)] ∙

∂2𝑃(ξ, 𝑡)

𝜕ξ2
 

(18) 

Here, 𝑧0 is the steady state of activity factor z, and the fluctuation ξ is defined as: 

ξ =
1

√ε
⋅ (𝑧 − 𝑧0) (19) 

Moreover, the evolution of z0 is given as (see Appendix A): 
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𝜕𝑧0
𝜕𝑡

⁄ =  (1 − 𝑧0) ∙ π1(𝑧0) −  (1 + 𝑧0) ∙ π2(𝑧0) (20) 

On the other hand, the evolution of the variance of the fluctuation of the activity factor is derived 

using Equation (18) (see Appendix B) as: 

∂σξ
2

𝜕𝑡
⁄ = 2 ∙

𝜕[(1 − 𝑧0) ∙ π1(𝑧0) − (1 + 𝑧0) ∙ π2(𝑧0)]

𝜕𝑧0
∙ σξ

2 

+ [(1 − 𝑧0) ∙ π1(𝑧0) + (1 + 𝑧0) ∙ π2(𝑧0)] 

(21) 

Using the results above, the characteristics of steady states of the activity factor are analyzed in the  

next section. 

3.3. Macroscopic Measure Used to Observe the Behavioral Property of an MAS 

In the steady state of the system, z0, the condition: 

𝜕𝑧0

𝜕𝑡
=

𝜕σξ
2

𝜕𝑡
= 0  

is satisfied. Under this situation, the behavioral properties of an MAS are stable, and the system works 

smoothly. Using Equations (20) and (21), 𝑧0 and σξ
2 are calculated as: 

𝑧0 =
[ π1(𝑧0) − π2(𝑧0) ]

[ π1(𝑧0) + π2(𝑧0) ]⁄  (22) 

σξ
2 =

−[(1 − 𝑧0) ∙ π1(𝑧0) + (1 + 𝑧0) ∙ π2(𝑧0)]

2 ∙
𝜕[(1 − 𝑧0) ∙ π1(𝑧0) − (1 + 𝑧0) ∙ π2(𝑧0)]

𝜕𝑧0

⁄
 

(23) 

Moreover, we assume that π2(𝑧0) = 1 − π1(𝑧0)  and π1(𝑧0) = π(𝑧0) , and 𝑧0 , π(𝑧0)  and σξ
2  are 

calculated as: 

𝑧0 = 2 ∙  π(𝑧0) − 1 (24) 

π(𝑧0) =
(𝑧0 + 1)

2
⁄  (25) 

σξ
2 =

−[(1 − 𝑧0) ∙ π(𝑧0) + (1 + 𝑧0) ∙ π(𝑧0)]

2 ∙
𝜕[(1 − 𝑧0) ∙ π(𝑧0) − (1 + 𝑧0) ∙ π(𝑧0)]

𝜕𝑧0

⁄
 

=
−[1 + 𝑧0 − 2 ∙ 𝑧0 ∙ π(𝑧0)]

2・(2 ∙
𝜕π(𝑧0)

𝜕𝑧0
− 1)

⁄
 

(26) 

When unusual changes occur in the runtime MAS, the system’s behavior becomes unstable 

temporary or permanently, and σξ
2  fluctuates according to changes of activities of the MAS. It is 

obvious that σξ
2 →  ∞  when 

∂π(𝑧0)
𝜕𝑧0

⁄ → 1
2⁄ , that is, there exists a state where the variance of 

fluctuation is divergent. 

As explained in Section 3.1, the macroscopic state transition function has hysteresis characteristics. 

Hence, an image of transitions of z0 and σξ
2, with respect to the parameter Θ, can be depicted as in  

Figure 4. The variance of fluctuation gradually increases and finally diverges as the steady state 

approaches the point of discontinuous transition. Such a feature shows the possibility that the variance 
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of fluctuation of the activity factor can be used as an observable measure of behavioral characteristics 

of the system. Furthermore, when an unusual increase in the variance of fluctuation of an activity 

factor is observed, it can be said that the system is in an unstable state and the system’s state is going 

to transit to another state in the near future, through abnormal changes of the system. Therefore, the 

variance of fluctuation of an activity factor of an MAS is proposed as a new measure for observing the 

behavior of a system, in this paper. The proposed measure is taken as a measurement function of an 

MAS. The specific measurement function of the test bed system is designed and implemented in the 

next section. 

 

Figure 4. Image of transitions of z0 and σξ
2 with respect to the parameter Θ. 

4. Experiments and Evaluation 

4.1. Test Bed System and the Environment of Experiments 

Experiments are conducted to test and validate the proposed measure using a test bed system.  

An important objective of the experiments is to explore basic properties and usefulness of the proposed 

measure using a real MAS in a real computer environment. The test bed system, which simulates 

typical behavior of multiagent applications such as a distributed monitoring system [18] and  

agent-based microgrid [19], developed in previous studies, has been realized as a simple hierarchical 

MAS using a repository-based multiagent framework [20,21]. 

The test bed system consists of one manager agent and many worker agents as shown in Figure 5. 

The manager agent generates a task, selects a worker agent, which is in the inactive state because it has 

no task to be processed, and assigns the task by sending an assignment message to the selected worker 

agent. In the test bed system, a task is designed as a pseudo task to make the selected worker agent 

active. If a task is assigned successfully, the manager agent considers that the selected worker agent is 

in the active state until receiving a finish message from the worker agent. From the viewpoint of the 

worker agent, the worker agent can accept and process one task at a time. The task process functions of 

worker agents are the same. The selected worker agent becomes active by accepting the assigned task, 

and stays active during the processing of the assigned task. When the assigned task is finished, the 

worker agent sends a finish message to the manager agent and becomes inactive again. Moreover, we 
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introduce a random delay time before sending a finish message, to simulate the task process overhead 

of a worker agent. In this sense, the performance of each worker agent is different from each other. 

 

Figure 5. Structure of the test bed system. 

The assigned task has information on the elapsed time, which specifies the required time to 

complete the task. An elapsed time of a task is set as a random value distributed around the specified 

average value. As mentioned above, we assign a random delay time of task process to each worker agent. 

Hence, the total processing time of the assigned task, called the duration time, is the sum of the elapsed 

time and delay time. 

 

Figure 6. Configuration of the measurement environment. 

All agents in the test bed system are designed and implemented as software agents using the 

repository-based agent framework and its interactive design environment (version: IDEA_1.3.1) [20,21]. 
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The agent framework supports the development of multiagent applications, on both a single platform 

and distributed platforms. In the experiments, the test bed system is realized as a system running on a 

single computer (CPU: Core-i5 3.0 GHz, Memory: 4.0 GB, OS: Windows 7). For this architecture, 

each agent is directly and adversely affected by other agents’ workloads and minimizes the overhead 

of measurement throughout the system environment. The agent framework allows the measurement of 

the behavioral properties of agents. This facility collects data of runtime agents, such as the task 

processing time, the duration time, the messages processed by agents and the number of activated 

agents, and accumulates time series data as external log files, as shown in Figure 6. Moreover, the 

analysis module inspects behavioral situations of the system based on the proposed measure and the 

results are to be used by maintenance operations to be realized in future work. The function of the 

analysis module is discussed in Section 4.5. 

4.2. Implementation of the Measurement Function 

The proposed measure is defined according to the active agents in the test bed system. As shown in 

Figure 5, N is the total number of agents of the test bed system, and 𝑛𝑡 is the number of active worker 

agents at time 𝑇. According to the definition of the activity factor in Equation (9), the normalized 

activity factor 𝑧𝑡 ∈ [0,1]  at time T is calculated in each unit time ∆𝑇  and is specified by the 

measurement facility of the agent framework: 

𝑧𝑡 =
1

2 ∙ 𝑁
∙ (2 ∙ 𝑛𝑡 − 𝑁 + 1) (27) 

The time series of the normalized activity factors, { 𝑧1, 𝑧2, ⋯, 𝑧𝑗, ⋯, 𝑧𝑡} is then given at time T. 

Here, 𝑧𝑗 is the jth element at time 𝑇𝑗 = 𝑇 − (𝑡 − 𝑗) × ∆𝑇. Next, the fluctuation of the activity factor is 

calculated as: 

ξ𝑡 = 𝑧𝑡 −
1

𝐿
∙ ∑ 𝑧𝑡−𝑖

𝐿−1

𝑖=0

 (28) 

The variance of fluctuation of the activity factor, 𝑣(ξ𝑡), is also calculated using part of a time series, 

{ ξ𝑡−𝑀+1, ⋯, ξ𝑡−1,  ξ𝑡 }, as: 

𝑣(ξ𝑡) =
1

𝑀
∙ ∑ ξ𝑡−𝑖

2

𝑀−1

𝑖=0

− (
1

𝑀
∙ ∑ ξ𝑡−𝑖

𝑀−1

𝑖=0

)

2

 (29) 

The smoothed data are useful for the detection of abnormal changes observed in the time series of 

𝑣𝑎𝑟(ξ𝑡). Hence, the moving average of the variance of fluctuation is calculated using part of a time 

series, {𝑣(ξ𝑡−𝑀+1), ⋯, 𝑣(ξ𝑡−1), 𝑣(ξ𝑡)}, as: 

𝑉𝑎𝑟(ξ𝑡) = 𝑣(ξ𝑡) −
1

𝑀
∙ ∑ 𝑣(ξ𝑡−𝑖)

𝑀−1

𝑖=0

 (30) 

A new measurement function of the proposed measure is implemented using these equations as the 

design specification in the test bed system. In the implementation, the unit time ∆𝑇 is set to 2 s, and the 

parameters in above equations are set as L = 20 and M = 20. 
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4.3. Experiment 1 and Evaluation 

4.3.1. Setting of Experiment 1 

The behavior of the test bed system in normal situations, in which the system does not change, is 

observed to study basic characteristics of the proposed measure. The structure and function of the 

normal test bed system do not change during the measurement in Experiment 1. The system consists of 

one manager agent and 150 worker agents. The elapsed time of a task is set as a random value selected 

between 18 and 22 s, and the average elapsed time is 20 s. The delay time of each task is also set as a 

random value, selected between 0 and 10 s, and the average delay time is 5 s. At the beginning of the 

experiment, to make worker agents active, the manager agent sends initialization messages to all 

worker agents, one by one, at intervals of 0.1 s, and the task assignment and processing begin. The log 

data of runtime agents are collected and accumulated in intervals of 0.01 s, until a time of 5760 s. 

Using the log data, the normalized activity factor and the variance of fluctuation are calculated in 

intervals of 2 s. 

 

 

Figure 7. Results of measurements of the normal test bed system. 
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4.3.2. Evaluation of Experiment 1 

The results of measurement (i.e., time series data of both the system’s activity factor and the 

variance of fluctuation of the activity factor) of a normal system are depicted in Figure 7a,b. In 

general, the amplitude distribution and power spectrum of the low-frequency region are useful for the 

observation of the features of time series data. Hence, three parts of the time series data specified as 

Sections 1–3 in Figure 7a, are selected and analyzed. Here, Section 1 is the steady-state region immediately 

after the transient region of initialization, while Sections 2 and 3 are steady-state regions long after system 

initialization. We can specify these sections freely as non-overlapped sections in the steady-state region 

(600–5000 s). The length of each section is 1024 s. The periods of Sections 1–3 are set to 1000–2024, 

2288–3312 and 3736–4760 s, respectively. The measurement results are shown in Figure 7c,d. 

The temporal change in the proposed measure is no more than 0.02, indicating that the system 

behavior is stable; i.e., the temporal transition of the system’s activity factor remains in a stable range 

of 0.6–0.7 after 1000 s. The amplitude distributions of activity factors in the three sections have almost the 

same average values, about 0.65, and the power spectra show almost the same features. The results  

of experiment 1 show that the behavioral property of the system is stable when the system does  

not change. 

4.4. Experiment 2 and Evaluation 

4.4.1. Setting of Experiment 2 

The purpose of Experiment 2 is to evaluate the proposed measure using a system that changes 

dynamically at runtime. This experiment simulates the unusual situations in which a system’s 

components halt gradually because of trouble in the system. 

The setting of Experiment 2 is basically the same as that of experiment 1. However, the structure of 

the test bed system is changed at runtime by removing worker agents. Some worker agents are selected 

randomly and removed from the system at the time points given in Table 1. The system’s activity 

factor, in general, is worsened by the negative effects of structural and functional changes of the 

system. For the test bed system, the proposed measure can reveal the deterioration of macroscopic 

activity of the system but cannot classify causes of the deterioration. Therefore, structural changes of 

the system are adopted as a cause of deterioration. 

Table 1. Setting of changes in the test bed system. 

Time Point [s] Number of Worker Agents to be Removed Number of Agents of the System 

600 1 150 

1100 2 148 

1600 4 144 

2100 8 136 

2600 16 120 

3100 32 88 
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4.4.2. Evaluation of Experiment 2 

The temporal transitions of both the system’s activity factor and the variance of fluctuation of the 

system’s activity factor are shown in Figure 8a,b. The time points at which the worker agents are 

removed are indicated by dashed lines in Figure 8a,b. The amplitude distributions and the power 

spectra are calculated with respect to the sections specified for Experiment 1, and the results are shown 

in Figure 8c,d. However, in Experiment 2, Sections 1–3 correspond to regions of small changes, large 

changes, and no changes, respectively. 

 

 

Figure 8. Results of measurements of the changed test bed system. 

Interestingly, the temporal feature of the activity factor is similar to that in Experiment 1 until Section 2. 

The averages of activity factors in Sections 1 and 2 fluctuate around 0.6 and the activity factor 

degrades a little according to changes in the system. The disturbance of the activity factor remains 

small until a discontinuous change at 3100 s. It thus appears difficult to detect abnormal situations for 



Sensors 2015, 15 9127 

 

 

the system by observing only the transition of the activity factor, even when there are actual  

structural changes. 

However, using the proposed measure, it becomes possible to detect abnormal situations according  

to an unusual increase in the proposed measure, in the early stages of abnormal situations of the 

system. The temporal feature of the variance of fluctuation of the activity factor is clearly different 

from that in Experiment 1. The variance of fluctuation becomes large gradually, according to changes 

in the system. At around the time point where the worker agents are removed, the proposed measure 

varies violently, and increases. The amplitude of the proposed measure becomes two or three times 

that for the unchanged system. As expected from theoretical analysis of the behavioral model in 

Section 3, an unusual increase in the proposed measure is observed in response to abnormal changes in 

the system. 

Meanwhile, the variance of fluctuation becomes small after 2700 s. At this point, about 21% of the 

worker agents have been removed from the system, and it seems that the system’s behavioral 

characteristics transited to unusual states because of undesirable changes of the system. Obviously, the 

peak shifts can be observed in the amplitude distributions of Section 2 as shown in Figure 8c. 

Specifically, the single-peak distribution in Section 1 shifts to a double-peak distribution in Section 2, 

and then returns to a single-peak distribution in Section 3. Moreover, the features of the power 

spectrum of Section 2 resemble those of Section 1 whereas the power spectrum of Section 3 has 

different features compared with the other spectra. 

The above result suggests that the behavioral characteristics of the initial system in Section 1 

transformed to other characteristics via unstable states in Section 2. To inspect unstable behavioral 

situations in Section 2, the activity factor of the manager agent, who is responsible for controlling the 

whole system, is observed at the time corresponding to measurements in Experiments 1 and 2. The 

activity factor of the manager agent is a macroscopic measure defined as the rate of inference 

processing time per unit time. In the experiment, the unit time is set to 2 s.  

The result of measurement of the manager agent is shown in Figure 9. In the normal system, the 

manager agent works at almost 100% to control the whole system. The behavior of the manager agent 

is stable and the variance of fluctuation of the activity factor is always very small, as shown in  

Figure 9a1,a2. By contrast, in the changed system, the behavior of the manager agent is stable until the 

large change in the system at around 2600 s. However, immediately after this point, the behavior of the 

manager agent changes suddenly. The variance of fluctuation of the activity factor increases rapidly, 

and fluctuates violently, as shown in Figure 9b1. Moreover, as shown in Figure 9b2, there is a peak 

shift of the amplitude distribution in Section 2, and the activity of the manager agent reduces to about 

60% of that of the normal system.  

The negative effects of eliminating worker agents are observed immediately after the first change  

in Figure 8b. As the worker agents are removed step by step, the rate of responses of the worker agents 

decreases and it becomes difficult for the manager agent to find suitable worker agents to accept the 

assignment of new tasks. The idle time of the manager agent varies rapidly, depending on the 

fluctuating situation of the worker agents, and the average idle time also increases. The behavior of the 

manager agent becomes unstable states around 2600 s, as shown in Figure 9b1. The unstable states of 

both the manager agent and the whole system continue until the end of measurement, and the 
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capability of the whole system also reduces. This result shows that the original behavioral 

characteristics of the test bed system have shifted to other characteristics at around 2600 s. 

In Experiment 2, no point of divergence of the variance of fluctuation is observed because such a 

point corresponds to an unstable state in which the system cannot behave stably. However, it can be 

said that the basic feature of the proposed measure is confirmed by the results of experiments in this 

paper. When there are abnormal changes in the system, unusual changes of the fluctuation of the 

system’s activity factor emerge and the variance of fluctuation increases rapidly. Hence, the proposed 

measure (i.e., the variance of fluctuation of the activity factor) can be considered a new observable 

measure with which to monitor the behavior of an MAS. 

 

 

Figure 9. Results of measurements of the manager agent. 

4.5. Considerations of the Observations of the Runtime System  

The results of the above experiments reveal that the proposed measure responds to undesirable 

changes in an MAS. Hence, a mechanism that provides an alarm in the event of changes in a runtime 

system can be realized using the proposed measure. In this section, an idea for the design of such an 

alarm mechanism is discussed. 

As shown in Figure 6, the alarm mechanism will be realized as part of the function of the analysis 

module, which can work in on-line or off-line mode. In the off-line mode adopted in the experiments 

of this paper, various analyses of time series data can be conducted using all data. However, the alarm 
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cannot be raised at the runtime of the system. In the test bed system, the measurement facility of the 

agent framework provides the log data files, which hold raw data of agent behavioral properties 

accumulated in intervals of 2 s. Hence, in the experiments discussed above, we analyzed the time 

series of the proposed measure of the whole observation period in intervals of 2 s, as shown in  

Figures 7 and 8.  

The purpose of the on-line mode is to generate alarms quickly in the event of changes in the runtime 

system using some of time series data of agent behavioral properties. We can calculate the proposed 

measure in each fixed time period specified in advance of the measurement, and we can obtain a 

discrete time series of the proposed measure. Moreover, using alarm generation mechanisms, we can 

detect a time point at which there is a discontinuous change of the measure and issue an alarm at this 

point. The following simple procedure is an example of alarm generation mechanisms. 

[Alarm generation procedure at discrete time point p] 

- At the discrete time point p, the result of observation is given by a time series of observed 

values; i.e., { 𝑣0, 𝑣1, ⋯, 𝑣𝑝−1, 𝑣𝑝}. Here, 𝑣0 = 0. 

- The interval of the adjoining observed values, 𝑑𝑝, is given by 𝑑𝑝 ← 𝑣𝑝 − 𝑣𝑝−1. 

- The maximum value of 𝑑𝑡 (𝑝 ≥ 𝑡 ≥ 0) is 𝑑𝑚𝑎𝑥. 

- The predefined threshold is 𝐻 (𝐻 ≥ 0). 

- The score at time point p, 𝑆𝑝, is calculated in this procedure.  

- At the initial time point 𝑝 = 0, 𝑆0 ← 0, 𝑑0 ← 0, and 𝑑𝑚𝑎𝑥 ← 0. 

- if 𝑑𝑝 ≥ 𝐻  

    then {if 𝑑𝑝 > 10 × 𝑑𝑚𝑎𝑥 then {𝑆𝑝 ← 0; 𝑑𝑚𝑎𝑥 ← 0; “Generate Alarm”}; 

               if 𝑑𝑝 > 𝑑𝑚𝑎𝑥 then 𝑑𝑚𝑎𝑥 ← 𝑑𝑝; 

               if 𝑆𝑝−1 > 0 then 𝑆𝑝 ← 𝑆𝑝−1 + 1 else 𝑆𝑝 ← 1 } 

     else {if |𝑑𝑝| ≥ 𝐻 

                  then {𝑆𝑝 ← 0; 𝑑𝑚𝑎𝑥 ← 0; 

                             if 𝑆𝑝−1 > 0 then “Generate Alarm”} 

                  else 𝑆𝑝 ← 𝑆𝑝−1 }; 

The above procedure generates an alarm if a peak of change is detected or 𝑑𝑝 has a sudden large 

change exceeding 10 times 𝑑𝑚𝑎𝑥. Because 𝑆𝑝 is reset after the alarm is generated, this procedure can 

generate alarms many times during a long observation of the runtime system. 

Figure 10 shows the result of an experiment for the above procedure using some of the data of 

experiments 1 and 2. The discrete time series of the proposed measure are depicted by circles. In this 

experiment, we set the fixed observation period to 200 s, and the proposed measure is calculated every  

200 s using the short time series of data with length of 40 s. The predefined threshold is set to 0.01. 

In the case of the normal test bed system, the observed measure is stable and stays under 0.02, as 

shown in Figure 10a. No alarm is generated. In the case of the changed system, two alarms are 

generated in response to discontinuous changes in the observed measure as shown in Figure 10b. The 

upward arrows show the time points of 𝑑𝑝 ≥ 𝐻 and the downward arrows show the time points of  

|𝑑𝑝| ≥ 𝐻. In this case, the alarms are generated in response to large discontinuous changes in the 

proposed measure. 
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Figure 10. Experiment on an observation in on-line mode. 

5. Conclusions 

A macroscopic measure that responds to abnormal changes in the behavioral property of a 

multiagent system was proposed in this paper. The proposed measure was designed as the variance of 

fluctuation in a system’s activity factor according to theoretical analysis of the behavioral model of a 

multiagent system defined in this paper. To verify basic characteristics of the proposed measure, 

experiments were conducted using a test bed system based on a repository-based multiagent 

framework. The results of experiments showed that the proposed measure undergoes an unusual 

increase in response to abnormal changes in the system. Hence, the proposed measure is considered a 

measure that can be used to detect undesirable changes in a multiagent system. Further studies on the 

design of easy-to-use measures for various multiagent applications and the development of a practical 

measurement environment of runtime systems remain as future work. 
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Appendix 

Appendix A. Derivation of the Fokker–Planck Equation 

In Equation (17), we introduced two functions: 

𝑓(𝑧, 𝑡) = (1 − 𝑧) ∙ π1(𝑧) ∙  𝑃(𝑧, 𝑡)  

𝑔(𝑧, 𝑡) = (1 + 𝑧) ∙ π2(𝑧) ∙  𝑃(𝑧, 𝑡)  

Using the Taylor series expansion, these functions are transformed as: 

𝑓(𝑧 − ε, 𝑡) = ∑
1

𝑛!

∞

𝑛=0
∙ (−ε)𝑛 ∙ π1(𝑧) ∙  

𝜕𝑛𝑓(𝑧, 𝑡)

𝜕𝑧𝑛
  

𝑔(𝑧 + ε, 𝑡) = ∑
1

𝑛!

∞

𝑛=0
∙ ε𝑛 ∙ π2(𝑧) ∙  

𝜕𝑛𝑔(𝑧, 𝑡)

𝜕𝑧𝑛
  

The master equation is then transformed as: 

𝜕𝑃(𝑧, 𝑡)
𝜕𝑡

⁄ = ∑
1

𝑛!

∞

𝑛=0
∙ (−1)𝑛 ∙ ε𝑛−1 ∙  

𝜕𝑛𝑓(𝑧, 𝑡)

𝜕𝑧𝑛
  

+ ∑
1

𝑛!

∞

𝑛=0
∙ ε𝑛−1 ∙  

𝜕𝑛𝑔(𝑧, 𝑡)

𝜕𝑧𝑛
 (A1) 

Next, the activity factor z is decomposed to the steady-state 𝑧0 and its fluctuation ξ as: 

𝑧 =  𝑧0 + √ε ∙ ξ  

From this definition, it follows that: 

ξ =
1

√ε
⋅ (𝑧 − 𝑧0) (A2) 

Furthermore, the relations: 

𝜕

𝜕𝑧
=

𝜕ξ

𝜕𝑧
∙

𝜕

𝜕ξ
+

𝜕𝑡′

𝜕𝑧
∙

𝜕

𝜕𝑡′
=

1

√ε
⋅

𝜕

𝜕ξ
  

and: 

𝜕

𝜕𝑡
=

𝜕𝜉

𝜕𝑡
∙

𝜕

𝜕ξ
+

𝜕𝑡′

𝜕𝑡
∙

𝜕

𝜕𝑡′
=

1

√ε
⋅

𝜕𝑧0

𝜕𝑡
∙

𝜕

𝜕ξ
+

𝜕

𝜕𝑡′
 (A3) 

are introduced. Using Equations (A2) and (A3), the master Equation (A1) is transformed as: 

(
𝜕

𝜕𝑡
−

1

√ε
⋅

𝜕𝑧0

𝜕𝑡
∙

𝜕

𝜕ξ
 ) 𝑃(ξ, 𝑡)  

=  ∑
1

𝑛!

∞

𝑛=0
∙ (−1)𝑛 ∙ ε

𝑛
2−1 ∙  

𝜕𝑛𝑓(𝑧0(𝑡) + √ε ∙ ξ, 𝑡)

𝜕ξ𝑛
  

+ ∑
1

𝑛!

∞

𝑛=0
∙ ε

𝑛
2−1 ∙  

𝜕𝑛𝑔(𝑧0(𝑡) + √ε ∙ ξ, 𝑡))

𝜕ξ𝑛
  

=  ∑
1

𝑛!

∞

𝑛=0
∙ (−1)𝑛 ∙ ε

𝑛
2−1 ∙  

𝜕𝑛

𝜕ξ𝑛
[ ∑

1

𝑚!

∞

𝑚=0
∙ (ε

1
2 ⋅ ξ)

𝑚

∙  
𝜕𝑚𝑓(𝑧0(𝑡), 𝑡)

𝜕𝑧0
𝑚

 ]  
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+ ∑
1

𝑛!

∞

𝑛=0
∙ ε

𝑛
2

−1 ∙  
𝜕𝑛

𝜕ξ𝑛
[ ∑

1

𝑚!

∞

𝑚=0
∙ (ε

1
2 ⋅ ξ)

𝑚

∙  
𝜕𝑚𝑔(𝑧0(𝑡), 𝑡)

𝜕𝑧0
𝑚

 ] (A4) 

Using Equation (A4), the evolution of 𝑧0 is given by the smallest terms of ε; i.e., 
1

√ε
. 

Left hand side of Equation (A4):  −
𝜕𝑧0

𝜕𝑡
∙

𝜕𝑃(ξ,𝑡)

∂ξ
. 

Right hand side of Equation (A4): in the case of 𝑛 = 1 and 𝑚 = 0: 

−
𝜕

𝜕ξ
∙ (1 − 𝑧0) ∙ π1(𝑧0) ∙ 𝑃(ξ, 𝑡) + 

𝜕

𝜕ξ
∙ (1 + 𝑧0) ∙ π2(𝑧0) ∙ 𝑃(ξ, 𝑡)  

=  −[(1 − 𝑧0) ∙ π1(𝑧0) − (1 + 𝑧0) ∙ π2(𝑧0)] ∙
𝜕𝑃(ξ, 𝑡)

𝜕ξ
  

Hence, the evolution of 𝑧0 is: 

𝜕𝑧0
𝜕𝑡

⁄ =  (1 − 𝑧0) ∙ π1(𝑧0) −  (1 + 𝑧0) ∙ π2(𝑧0) (A5) 

On the other hand, the Fokker–Planck equation is derived from the terms of ε0 in Equation (A4). 

Left hand side of Equation (A4): 
𝜕𝑃(ξ,𝑡)

𝜕𝑡
. 

Right hand side of Equation (A4): in the case of 𝑛 = 2 and 𝑚 = 0, and the case of 𝑛 = 1 and  

𝑚 = 1: 

1

2
∙  

∂2𝑓(𝑧0, 𝑡)

∂ξ2
−  

1

√ε
∙  

∂

∂ξ
∙ [√ε ∙ ξ ∙

∂𝑓(𝑧0, 𝑡)

∂𝑧0
]  

+ 
1

2
∙  

∂2𝑔(𝑧0, 𝑡)

∂ξ2
+ 

1

√ε
∙  

∂

∂ξ
∙ [√ε ∙ ξ ∙

∂𝑔(𝑧0, 𝑡)

∂𝑧0
]  

=
1

2
∙ [(1 − 𝑧0) ∙ π1(𝑧0) + (1 + 𝑧0) ∙ π2(𝑧0)] ∙

∂2𝑃(ξ, 𝑡)

∂ξ2
  

− 
𝜕

𝜕𝑧0
∙ [(1 − 𝑧0) ∙ π1(𝑧0) − (1 + 𝑧0) ∙ π2(𝑧0)] ∙

∂[ξ ∙ 𝑃(ξ, 𝑡)]

∂ξ
  

Hence, the Fokker–Planck equation is: 

𝜕𝑃(𝜉, 𝑡)
𝜕𝑡

⁄ =  − 
𝜕

𝜕𝑧0
∙ [(1 − 𝑧0) ∙ 𝜋1(𝑧0) − (1 + 𝑧0) ∙ 𝜋2(𝑧0)] ∙

𝜕[𝜉 ∙ 𝑃(𝜉, 𝑡)]

𝜕𝜉
 

+ 
1

2
∙ [(1 − 𝑧0) ∙ π1(𝑧0) + (1 + 𝑧0) ∙ π2(𝑧0)] ∙

𝜕2𝑃(ξ, 𝑡)

𝜕ξ2
 

(A6) 

Appendix B. Derivation of the Variance of Fluctuation from the Fokker–Planck Equation 

A general form of the Fokker–Planck equation with respect to fluctuation �̂� is given as: 

�̂� = {𝑢𝑖 | i = 1,2, ⋯ , 𝑛}  

𝜕𝑃(�̂�, 𝑡)

𝜕𝑡
 =  − 

𝜕

𝜕�̂�
∙ [𝒦 ∙ �̂� ∙ 𝑃(�̂�, 𝑡)] +

1

2
∙

𝜕2

𝜕�̂�2
∙ [𝒟 ∙ 𝑃(�̂�, 𝑡)] (B1) 

The variance of fluctuation can be derived using Equation (B1). Considering the definitions: 

σ𝑖𝑗
2 ≡ ∫ 𝑢𝑖 ∙ 𝑢𝑗 ∙ 𝑃(û, 𝑡)𝑑𝑢 (B2) 
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σ2 =< (û− < û >)2 >  

=< �̂� ∙ �̂� > −< �̂� >2 (B3) 

We have the evolution of variance as: 

𝜕σ2

𝜕𝑡
 = ∫ û ∙ û ∙

𝜕

𝜕𝑡
𝑃(û, 𝑡)𝑑𝑢 − 2 ∙< û > ∫ û ∙

𝜕

𝜕𝑡
𝑃(û, 𝑡)𝑑𝑢 (B4) 

The first term of Equation (B4) can be rewritten using the Fokker–Planck equation: 

∫ û ∙ û ∙ [−
𝜕

𝜕û
{𝒦 ∙ û ∙ 𝑃(û, 𝑡)} +

1

2
∙

𝜕2

𝜕û2
{𝒟 ∙ 𝑃(û, 𝑡)}]𝑑û  

= −𝒦 ∫ û ∙ û ∙
𝜕

𝜕𝑢
{û ∙ 𝑃(û, 𝑡)}𝑑û +

1

2
∙ 𝒟 ∙ ∫ û ∙ û ∙

𝜕2

𝜕û2
𝑃(û, 𝑡)𝑑û  

=  −𝒦 ∙ [û ∙ û ∙ û ∙ 𝑃(û, 𝑡) − 2 ∙ ∫ û ∙ û ∙ 𝑃(û, 𝑡)𝑑û  

+ 
1

2
∙ 𝒟 ∙ [ û ∙ û ∙

𝜕

𝜕û
𝑃(û, 𝑡) − 2 ∙ û ∙ 𝑃(û, 𝑡) + 2]  

= 2 ∙ 𝒦 ∙< û ∙ û > +𝒟 (B5) 

Here, we suppose that 𝑃(û, 𝑡) → 0 and 
𝜕

𝜕𝑢
𝑃(û, 𝑡) → 0 when 𝑡 → ∞. 

The second term is rewritten as: 

∫ û ∙ [−
𝜕

𝜕û
{𝒦 ∙ û ∙ 𝑃(û, 𝑡)} +

1

2
∙

𝜕2

𝜕û2
{𝒟 ∙ 𝑃(û, 𝑡)}]𝑑û  

= −𝒦 ∫ û ∙
𝜕

𝜕û
{û ∙ 𝑃(û, 𝑡)}𝑑û +

1

2
∙ 𝒟 ∙ ∫ û ∙

𝜕2

𝜕û2
𝑃(û, 𝑡)𝑑û  

=  −𝒦 ∙ [û ∙ û ∙ 𝑃(û, 𝑡) − ∫ û ∙ 𝑃(û, 𝑡)𝑑û  

+ 
1

2
∙ 𝒟 ∙ [ û ∙

𝜕

𝜕û
𝑃(û, 𝑡) − ∫

𝜕

𝜕û
𝑃(û, 𝑡) 𝑑û]  

= 𝒦 ∙< û > (B6) 

From Equations (B5) and (B6), the evolution of variance is given as: 

𝜕σ2

𝜕𝑡
 = 2 ∙ 𝒦 ∙< û ∙ û > +𝐷 − 2 ∙< û >∙ 𝒦 < û > 

= 2 ∙ 𝒦 ∙ σ2 + 𝒟 

(B7) 

In Fokker–Planck Equation (18), the parameters in Equation (B7) are given as: 

𝒦 =
𝜕

𝜕𝑧0
∙ [(1 − 𝑧0) ∙ π1(𝑧0) − (1 + 𝑧0) ∙ π2(𝑧0)] (B8) 

𝒟 = (1 − 𝑧0) ∙ π1(𝑧0) + (1 + 𝑧0) ∙ π2(𝑧0) (B9) 

From Equations (B7)–(B9), we have Equation (21). 
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