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Abstract: With the wide development of UAV (Unmanned Aerial Vehicle) technology, 

moving target detection for aerial video has become a popular research topic in the computer 

field. Most of the existing methods are under the registration-detection framework and can 

only deal with simple background scenes. They tend to go wrong in the complex multi 

background scenarios, such as viaducts, buildings and trees. In this paper, we break through 

the single background constraint and perceive the complex scene accurately by automatic 

estimation of multiple background models. First, we segment the scene into several color 

blocks and estimate the dense optical flow. Then, we calculate an affine transformation 

model for each block with large area and merge the consistent models. Finally, we calculate 

subordinate degree to multi-background models pixel to pixel for all small area blocks. 

Moving objects are segmented by means of energy optimization method solved via  

Graph Cuts. The extensive experimental results on public aerial videos show that, due to 

multi background models estimation, analyzing each pixel’s subordinate relationship to 

multi models by energy minimization, our method can effectively remove buildings, trees 

and other false alarms and detect moving objects correctly. 
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1. Introduction 

Moving target detection for aerial video is one of the core technologies of UAV (Unmanned Aerial 

Vehicle) surveillance systems. This technology can be widely applied in military domains such as 

battlefield reconnaissance and surveillance, positioning and adjustment, damage assessment, electronic 

warfare, etc. Also, it can support civil purposes such as border patrol, nuclear radiation detection, aerial 

photography, aerial prospecting, disaster monitoring, traffic patrol, security surveillance, etc. Due to its 

wide application, low cost, high cost effectiveness, no risk of casualties, strong survival ability, good 

maneuvering performance and convenience, moving object detection algorithm for UAV aerial video 

has become a hot research topic in the computer field. Moving object detection from a UAV is an 

important research topic crossing image processing and vehicle control. The purpose of this research is 

to automatically obtain the target position and motion information based on aerial video. This study can 

not only make UAV’s eyes more clear, but also guarantee the advanced processing and applications, 

such as behavior analysis and importance analysis. 

We are faced with core difficulties in moving object detection for aerial video, such as motion 

mutation caused by UAV fast motion, low resolution noisy images, small target, low contrast, complex 

background, scale changes and occlusion, etc. With UAV development, researchers have proposed many 

algorithms to solve the above problems. However, most of these methods are under the  

registration-detection framework, which assumes that scenario only has a single background and will 

identify all the regions generating parallax error as targets. As a result, tracking failure usually happens 

in complex scenarios with multiple backgrounds, trees, buildings, etc. Therefore, the state of the art 

solutions in moving object detection cannot satisfy application need and it is developing new technology 

for complex scenes is necessary. 

Automatic estimation of multiple background models for complex scenarios can provide a solution 

for perceiving the scene accurately. This paper first focuses on automatic estimation of multiple 

background models for complex scenarios. Then the pixels’ motion information and subordinate degrees 

to multi-background models are analyzed by optical flow. The subordinate degree between a pixel and 

a background model refers to the degree a pixel and its correspondence fit the background model. 

Usually, the projection error can be used to measure the subordinate degree. The larger the projection 

error, the lower the subordinate degree is. Based on the neighborhood information and the subordinate 

degree, we segment the moving objects via energy minimization [1,2]. Since we estimate multiple 

background models and perceive complex scenes correctly, our method can detect moving objects 

accurately under viaducts and other complex backgrounds. Meanwhile, our algorithm can effectively 

remove buildings, trees and other false alarms and improve the locating precision. In addition, the 

adoption of energy minimization, which makes use of both the analysis of neighborhood continuity and 

subordinate degree, can significantly improve segmentation precision. 

The rest of this paper is organized as follows. Section 2 summarizes and analyzes the related work in 

recent years. Section 3 proposes the moving object detection algorithm based on multi-model estimation 

for aerial video of complex scenarios. The experimental results are reported in Section 4, which 

demonstrate the accuracy and effectiveness of our approach. Finally, the conclusions are drawn in 

Section 5. 
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2. Related Work 

Moving object detection for aerial video [3] has widely developed in the past few decades. The 

existing moving object detection algorithms for aerial video mainly include two categories [4,5]: one is 

the bottom-up method and the other one is the top-down method. The bottom-up method is also named 

as Data-driven method, which does not rely on prior knowledge and extracts the moving information 

directly from the image sequences. Top-down method, also named the model-driven algorithm, which 

relies on the constructed model or prior knowledge, performs the matching computing and solves the 

posterior probability in image sequences. In matching computing, the moving objects will be detected if 

the similarity distance is close enough. When computing the posterior probability, the state vector 

corresponding to the maximum posterior probability will be denoted as the current status of the  

moving objects. 

Using bottom-up method to realize moving object detection for aerial video mainly includes three 

steps [6–10]. The first step is image matching [11–13], which performs the adjacent frames registration 

for image sequences. The second step is object detection. Frame difference or background difference is 

often used to detect change blobs and obtain moving objects after registration. The third step is object 

classification. There are two tasks in this step. One is to extract the detected moving objects. The other 

one is to recognize these objects. 

The existing bottom-up algorithms for moving object detection include the classic COCOA system [14]. 

The procedure of this system contains image stabilization, frame difference and block tracking. 

However, this algorithm often fails in scenario scaling due to the Harris corner-based image stabilization. 

Cohen et al. [15,16] proposed a moving object detection and tracking system. First they aligned the 

images by estimating the affine transformation model iteratively. Then, the normalized optical flow field 

was applied for motion detection and the graph representation was constructed to resolve and maintain 

the dynamic template of moving objects. This system runs fast but it cannot solve the complex scaling 

scenarios. Ibrahim et al. [17] proposed the MODAT framework. Instead of Harris corner, they adopted 

SIFT (Scale-invariant feature transform) [18] features to fulfill the image matching. However, all of the 

above methods can only deal with simple background scenes and assume that only the moving objects 

can cause the parallax error. They tend to go wrong in complex multiple background scenarios, such as 

viaducts, buildings and trees. Chad et al. [19] proposed a moving object detection method for aerial 

video with low frame rate. They constructed an accurate background model to solve the object detection 

and the shadow problems. However, the application of this method is restricted because we need to know 

the camera calibration parameters in advance and start tracking objects manually. Shen et al. [20] 

proposed a moving object detection method for aerial video basing on spatiotemporal saliency. However, 

this method still cannot overcome the parallax error problem and the false alarm rate is high in complex 

scenarios. As shown in Figure 1b, false alarms (labeled by the red circles) occurred at buildings and trees 

when using one affine model to describe the scene. The real objects may be missed due to the inaccurate 

model estimation. 

The top-down method transforms the moving object detection problem to Bayesian prediction. With 

the known prior probability of the object state, the problem can be solved by estimating the maximum 

posteriori probability continuously after obtaining the new measurement. In other words, Bayesian 

theory considers the vision-tracking problem as a “best guess” or “deduction” process, and usually 
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adopts the state space approach to achieve vision tracking. The Classical Kalman filter [21] can only 

handle linear, Gaussian and unimodal situation. However, posteriori estimation is often non-linear,  

non-Gaussian and multimodal in practice. Therefore, EKF (Extended Kalman Filter) [22] is proposed to 

handle such cases. A particle filter [23] can also solve such non-linear problems. 

(a) (b) (c) 

Figure 1. The comparison of moving detection results by different methods. (a) Original 

image (b) Moving detection with false alarms in red circles when using one affine model to 

describe the scene (c) Moving detection by our method. 

The top-down method utilizes the priori knowledge to construct a model for the detection problem. 

Then, the model’s correction is verified with the practical image sequences. Since it has a solid 

theoretical foundation of mathematics and many mathematical tools that can be adopted, the top-down 

approaches are always the mainstream methods for vision detection. These approaches transform object 

detection problems to deduction and prediction problems. The assumption is that when the prior 

knowledge of deduction is correct, the deduction results will be correct. Otherwise, the results may be 

wrong. Thus, acquiring correct prior knowledge is very important. Existing approaches mostly initialize 

the objects manually to ensure the correctness of later subsequent detection and location, which is 

unrealistic in the practical applications. Therefore, in order to detect moving objects automatically for 

aerial video, reliable detection results from the bottom-up approach should be used as the deduction’s 

priori knowledge to achieve a correct prediction. 

In this paper, we propose a moving object detection algorithm based on multi-model estimation for 

aerial video. First, we segment the scene into several color blocks and estimate the dense optical flow. 

Then, we calculate an affine transformation model for each large area block and merge the consistent 

models. Finally, Graph Cuts [1,2] is utilized to classify the foreground pixels into different objects. Our 

method can not only handle the moving object detection in the complex multiple background scenarios 

with viaducts, but can also remove buildings, trees and other false alarms effectively. As a result, the 

segmentation and detection precision will be improved. 

3. Multi-Model Estimation Based Moving Object Detection 

In order to overcome the influence of the complex multiple background scenarios, this paper proposes 

a moving object detection algorithm for aerial video basing on multi-model estimation.  



Sensors 2015, 15 8218 

 

 

Firstly, the scene is segmented into several color blocks. Secondly, the affine transformation model 

between each background region in the current frame and the corresponding region in the previous frame 

is estimated basing on the dense optical flow. Thirdly, subordinate degree is calculated between each 

pixel and multiple background models to judge whether the pixel belongs to a moving object or not. 

Finally, moving objects are segmented by energy optimization method solved via Graph Cuts. 

3.1. Algorithm Flow 

The flowchart of the proposed framework is shown in Figure 2. Our approach mainly includes four 

steps: the overall perception of the scene, background model extraction, background region segmentation 

and moving object detection. First, the overall perception of the scene segments the scene into several 

color blocks and estimates the dense optical flow. Here, the Mean shift pyramid segmentation method 

from OPENCV (Open Source Computer Vision Library) is adopted for color blocks segmentation and 

the Gunnar Farneback algorithm [24] is used for calculating dense optical flow. Second, to confirm the 

multiple background models included in the scenario, background model extraction calculates the affine 

transformation models for multiple color blocks and merges the consistent models. Third, the 

background region segmentation will be transformed to the background and foreground binary 

classification, multiple background regions and multiple labels classification problem. This problem can 

be solved by the energy optimization method, which can achieve smooth and continuous global optimal 

solution. Fourth, after obtaining the foreground regions, we merge the blocks and remove false objects 

based on the moving consistency and the region proximity. Afterwards, the moving object detection is 

finished and the accurate detected results are obtained. The background model extraction, background 

region segmentation and moving object detection are introduced in Section 3.2, 3.3 and 3.4, respectively. 

The details are as follows. 

 

Figure 2. The flowchart of moving object detection based on multi-model estimation. 

3.2. Multi-Model Estimation 

Estimating accurately the background model parameters of complex scenarios can ensure the correct 

scene perception, accurate object segmentation and robust object tracking. The current multi-model 

estimation methods, like JLinkage [25], do not need any prior segmentation information and can classify 

samples into multiple categories automatically, where each category corresponds to one model. 

However, this method only adapts to small samples and is unable to solve the big samples like multi-model 

estimation under complex scenarios. In the aerial video, the background blocks with consistent color 
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often belong to the same background and the background area is much larger than that of objects. 

Therefore, this paper first segments the scenarios into color blocks and selects the blocks with the large 

area as the candidate background blocks. Afterwards, an affine transformation model is estimated for 

each background block. 

Let us denote It and It+1 as the adjacent two frames. Then, the dense optical flow can be computed by 

the Gunnar Farneback algorithm [24]. We define OFXt and OFYt as transverse and longitudinal optical 

flow, respectively. The corresponding relationships are as follows: 

1( , )~ ( ', ')+t tI x y I x y  (1)

' ( , ), ' ( , )= + = +t tx x OFX x y y y OFY x y  (2)

where ( , )tI x y  represents the pixel value in ( , )x y  of image . 1( ', ')+tI x y  is defined as the pixel value 

in ( ', ')x y  of image It+1. ( , )x y  and ( ', ')x y  form an optical flow pair. 

Next, we segment  by using Mean shift algorithm, which segments the scene into multiple color 

blocks based on their color consistency. Then, the blocks whose area is larger than threshold minaT  are 

selected as background blocks 1 2{ , ,..., }=t BNumB b b b , where BNum  represents the number of the color 

background blocks obtained by segmenting. The color blocks’ area set is defined as 

1 2{ , ,..., }=t b b bBNumA a a a  and bia  is the number of the pixels included in the ith background color block. 

Afterwards, each point in color background blocks and its optical flow point in the next frame obtained by 

optical flow method [24] form a point pair. Basing on the point pairs in each background block, the affine 

transformation model between the background block in the current frame and the corresponding region 

in the next frame is estimated via RANSAC (RANdom SAmple Consensus) method [12]. 

1 2{ , ,..., }=t BNumM m m m  (3)

2 1 0

2 1 0

 
=  
 

i

a a a
m

b b b
 (4)

The affine transformation model set tM is composite of each background block’s affine 

transformation model. The affine transformation model of the ith background block is denoted as im , 

including translation, rotation, scaling, cropping and other atomic transformations. 0a  and 0b  represent 

shift amount between the background block in the current frame and the region in the next frame along 

the horizontal and vertical direction, respectively. The rest parameters represent composite of scaling, 

rotation and shearing. The current background blocks segmentation is based on color consistence, so 

single background may be segmented into several backgrounds due to color inconsistence. For the 

convenience of later scene analysis, we need to merge multiple background models according to the 

consistency between different background models. Thus, we define the projection error of the pair of 

points as follows: 

2
( ', ') ( , ,1)= − ⋅T T

i iError x y m x y  (5)

where ( ', ')x y  denotes the optical flow point of pixel ( , )x y  in the consecutive frame. The projection 

error is the difference in pixels, between two points located in consecutive images that are related by the 
optical flow. If <i eError T , the point pair often belongs to the inliers of the model im , otherwise the pair 

tI

tI
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of points is an outlier for the ith background block. Then we calculate the connective matrix ×BNum BNumR  

between the background blocks and the affine models as follows: 

11 12 1

1 2

 
 =  
  


   



BNum

BNum BNum BNumBNum

r r r

R

r r r

 (6)

= ij

ij

j

a
r

a
 (7)

where ijr  represents the accordance degree of the jth background block jb  to the ith model im . ijaI  is 

the number of inliers belonging to model im  in the jth background block jb . = ij

ij

bj

aI
r

a
, denotes the th 

background block’s rate of the inliers to model im . If >ij rr T  and >ji rr T , the th background block ib  

and the jth background block jb  are from the same background plane and can be combined to one 

background model. Thus, we update tB  and tM , st. = ∪i i jb b b , and meanwhile delete jb  and jm . 

3.3. Background Segmentation Based on Graph Cuts 

We define the set of points that do not belong to the large background region as Ω. Then points of Ω 

can be judged as background region points or not based on the existing multiple background models. 

This paper proposes an energy minimization based algorithm for optimized classification. First, we 

define the scenario points belonging to 1= +l BNum categories, where  is the number of 
background models. We need to define and solve a label function : Ω →f L  where 

{0,1,2,..., }=L BNum  are all the possible category labels for all the points in Ω. Label 0>i  corresponds 

to the background pixels, which are located in the ith background region. Label 0 corresponds to no 
background models, but corresponds to the foreground pixels. Given a pixel p, if ( ) 0>f p , it belongs 

to background region. Otherwise if ( ) 0=f p , this pixel belongs to foreground region. Energy function 

is as below: 

( ) ( ) ( )= +d sE f E f E f  (8)

where data term dE  represents the sum of classification cost of the points in Ω classified into different 

labels. The smooth term is a regularizer that encourages the neighboring pixels to share the same label. 
Therefore, the classification problem is transformed to minimizing ( )E f   and finding corresponding 

solution. However, minimizing ( )E f  directly is very difficult because the above classification problem 

is the coupling of foreground and background, and background and background classification. This paper 
decomposes the above problem into two optimized solution modules { , }=f fs fc : (1) optimizing fs  for 

background segmentation; (2) optimizing fc  for classifying different background categories. In the first 

module, in order to segment the background regions, we transform this optimized classification problem 

to solve the binary energy minimization. If a pixel belongs to background, its label is 0, otherwise 1. The 

energy function includes a one variable data term and pairwise smoothing terms, where data term 

represents the cost of labeling the pixels to the background. The smoothing term corresponds to the 

continuous smoothness prior of the background region. The Graph Cuts [1,2] is adopted for optimizing 

j

i

BNum
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and solving energy minimization problem. In the second module, the problem of classifying background 

points into different background models is transformed to a multi-labeling energy minimization problem, 

which can also be solved via Graph Cuts [1,2]. The data term of energy function represents the cost of 

tagging the points with the background labels. The smoothing term represents the background regions’ 

continuity constraint. 

3.3.1. Optimal Segmentation of Background Region 

Following the above analysis, we need to seek a labeling function : Ω →fs Ls , : Ω →fs Ls . The 

background energy function is defined as follows: 

( ) ( ) ( )= +d sE fs E fs E fs  (9)

 Data term 

If a point belongs to the background region, it should be an inlier of one background model and its 

projection error corresponding to background model should be small, otherwise this point belongs to the 

foreground region and is the outlier to all the background models. Therefore, we choose the projection 
error to define the data term ( )dE fs : 

( ) ( ) (1 ( ))
∈Ω

= − −d
p

E fs fs p Inl p  (10)

1

1 ( ) 0
( )

0
=

 >= 



BNum

i
i

IsI p
Inl p

otherwise
 (11)

1 ( )
( )

0

<
= 


i e

i

Error p T
IsI p

otherwise
 (12)

where ( )iIsI p  represents pixel p’s inlier property projected in the model im . If the property is 1, this 

pixel belongs to the inliers, otherwise the outliers. ( )Inl p  represents pixel p’s background property. If 

property is 1, this pixel belongs to the background region, otherwise the foreground region. The penalty 
is given when pixel p is classified to the foreground point and ( ) 1=Inl p . The classified cost is not 0 and 

( ) (1 ( )) 1− − =fs p Inl p . Similarly, the classification penalty will also be given when the pixel p is 

classified to the background point and ( ) 0=Inl p . 

 Smooth term 

Smooth term ( )sE fs  is a regularizer that encourages the overall labeling smoothly [1,2]. The prior is 

that two neighboring pixels have a higher probability to be classified as background points together or 

foreground points together. Here, we adopt the standard four-connected neighborhood system and 

penalize the fact if two neighboring pixels’ labels are different. 

,
,

( ) ( ( ), ( ))
∈Ω ∈

= 
p

s p q
p q N

E fs S fs p fs q  
(13)

, ( ( ), ( )) min( , ( , ) ( ) ( ) )= ⋅ −p q sS fs p fs q p q fs p fs qτ β  (14)
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1 1
( , ) ( min( ( )) min( ( )) )

= =
= −

BNum BNum

i ii i
p q h Error p Error qβ  (15)

where sτ  and ( , )p qβ  represent the maximum value and the weight of the smooth term, respectively. 

pN  is the four neighborhoods of pixel p. ( )⋅h  is the weight function. The weight function is a decreasing 

function because a big penalty should be given when the neighboring pixels are classified to different 

categories if their minimum projection errors are similar. When the minimum projection errors of two 

pixels are more similar, the weight is bigger and the smooth constraint is stronger. The inverse function 
( )⋅h  is selected to achieve smooth constraint. If two neighboring pixels p and q share the same label, 

then ( ) ( )=fs p fs q , , ( ( ), ( )) 0=p qS fs p fs q . That is to say, the smooth cost is 0. Otherwise, if the 

neighboring pixels p and q are labeled with different tags, then the smooth cost , ( ( ), ( )) 0>p qS fs p fs q . 

Just as defined in Equation (15), the closer the minimum projection errors of the two neighboring pixels, 

the bigger the smooth cost of labeling them with different tags. 

Based on the design of above data term and smooth term, Graph Cuts is adopted to solve the 
minimization problem of ( )E fs . Afterwards, background segmentation result is obtained. 

3.3.2. Optimal Classification of Different Backgrounds 

Denoting { :| ( ) 0}Ω = =b p fs p  as the set of points classified as the background pixels in Ω. We need 

to seek the labeling function : Ω →bfc Lc , {1,2,..., }=Lc BNum . Similarly, we adopt the energy 

minimization framework for solving fc . The energy minimization of the background classification is 

defined as follows: 

( ) ( ) ( )= +d sE fc E fc E fc  (16)

 Data term 

Data term should reflect the subordinate degree between background pixel and multi-background 

models, and achieve minimum value if the pixel belongs to someone model. Projection error can satisfy 

above requests. Therefore, we define the cost function by using projection error as follows: 

( )( ) ( )
∈Ω

= 
b

d fc p
p

E fc Errop p  (17)

 Smooth term  

Smooth term ( )sE fs  is a regularizer that encourages the overall labeling is smooth [1,2]. Similar with 

Section 3.3.1, we adopt the standard four-connected neighborhood system and penalize if the labels of 

two neighboring pixels are different. 

,
,

( ) ( ( ), ( ))
∈Ω ∈

= 
b p

s p q
p q N

E fc S fc p fc q  
(18)

,

min( , ( , )) ( ) ( )
( ( ), ( ))

0

≠
= 


s

p q

p q fc p fc q
S fc p fc q

otherwise

τ β
 (19)
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where sτ and ( , )p qβ  have the similar definitions to Section 3.3.1. We also adopt Graph Cuts to 

minimize ( )E fc  and obtain the segmentation of different backgrounds. The points of Ωb  are classified 

to the corresponding background blocks according to classified results of the label function fc . 

{ , :| ( ) }= ∪ ∀ ∈Ω =i i bb b p p fc p i  (20)

3.4. Moving Object Detection 

The pixels classified as foreground pixels may come from true moving object, and may also belong 

to false alarms of parallax error caused by buildings and others. How to distinguish these two category 

points is the key of segmenting moving object accurately. As we know, when a moving object is 

compensated by the background model, the parallax error only causes by the object itself, which 

represents the absolute motion vector of the object. Then the object motion between two neighboring 

frames is approximately the linear motion. As a result, the motion vectors of the inliers belonging to one 

object are similar. As shown in Figure 3, the motion vectors of true object in the red bounding box are 

similar. In contrast, the buildings do not belong to any background and all the existing background 

models cannot compensate the parallax error caused by the platform motion. Therefore, no matter if it 

is compensated by any one of the background models, parallax error distributes without dissimilarity, as 

the false alarm in the blue box of Figure 3. 

 

Figure 3. The distribution of motion vectors in blocks. 

According to the above analysis, we will first calculate the motion vectors of foreground blocks 

compensated by the background model, and determine the moving objects by analyzing similarity of the 
motion vectors. The final foreground color blocks 1 2{ , ,..., }=t ObNumOb ob ob ob  can be obtained by 

integrating the foreground-background segmentation in Section 3.3 and the color segmentation in 

Section 3.2. Here, ObNum  is the color block number of the current foreground regions. We count the 

labeling set of the background models surrounding each color block and denote the labeling set as 

1 2{ , ,..., }=t ObNumMOb mob mob mob , where { :| , , }= ∃ ∈ ∈ ∈j j i qmob i p ob q b p N . The number of labels in 

jmob  is jMNum . The motion vector of pixel ( , )p x y  after compensated by model  is defined  

as follows: 

( ', ') ( , ,1)= − ⋅


T T

iv x y m x y  (21)

im
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For each color block job , we calculate the motion vector set compensated by each model, and count 

the mean value and variance of Gaussian distribution of the motion vector set. If the variance is small 
enough (Tσ  is the variance threshold), this block is a moving block, otherwise a false object. The details 

of the procedure are in Algorithm 1. 

Algorithm 1 False Object Removal Algorithm 
Input: background model Tσ , motion block set tOb  and model label set tMOb . 

Output: motion blocks with false alarms removed. 
1. FOR 1:=j ObNum DO 

2. FOR  1:= ji MNum DO 

3. Computing the motion vectors compensated by corresponding models for the ith label, which 

belongs to labels of pixel jmob  in job  

4. Counting the mean value , 


i jμ  and variance 2

,


i jσ  of these motion vectors. 

5. END 

6. If 2

,min | |>


i ji
Tσσ  or the area of job  is larger than threshold maxaT , job  is the false alarm block 

and should be removed, otherwise job   is background block and we define the label of 

minimum variance model as mj . Then the background model label that job  belongs to is also 

set to mj . The moving speed of block ,=
 

mj j jv μ  and the corresponding variance 2 2

,=
 

mj j jσ σ . 

7. END 

Therefore, we can obtain the foreground blocks by removing false alarm and updating tOb  and 

ObNum . However, these blocks are segmented using the color consistence. Since the object color may 

be inconsistent, sometimes an object will be segmented into several blocks. To overcome this drawback, 

we need to merge these foreground blocks. We calculate the adjacent matrix { }× =ObNum ObNum jkNb nb  

between moving blocks, where 1=jknb  represents that the jth and kth foreground block are 

neighborhood, i.e., , ,∃ ∈ ∈ ∈j k pp ob q ob q N . 0=jknb  indicates that two blocks are not neighborhood. 

Next we calculate the area sum matrix { }× =ObNum ObNum jkA a  of moving blocks. If the sum of jth foreground 

block area and the kth foreground area max+ <j k aa a T , then 1=jka , otherwise 0. We compute the speed 

similarity matrix { }× =ObNum ObNum jkV v . If the background model label of jth and the kth foreground block 

are same as well as 
2

− < ⋅
   

j k j kv v σ σ , then 1=jkv , otherwise 0. 

If ,∃j k , st. 1⋅ ⋅ =jk jk jkn a v , then we consider that the jth block and the kth foreground block belong to 

the same object and merge them to one. The new moving speed of the union foreground block is 

⋅ + ⋅
+

 
j j k k

j k

a v a v

a a
 and the corresponding variance is recalculated. Nb , A and V also need to be recalculated. 

Afterwards, merging is repeated until no foreground blocks can be merged. The final merged results 

are the moving object detection results. 
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4. Experimental Results and Analysis 

In order to evaluate the proposed multi-model estimation based moving object detection algorithm 

for aerial video, we perform the comparison experiments on the public DAPAR VIVID (Defense 

Advanced Research Projects Agency, Video Verification of Identity program) and KIT AIS (Karlsruher 

Institut für Technologie Aerial Image Sequences) Data Set databases. In DAPAR VIVID database [26], 

the EgTest01 dataset contains many moving cars but the background is relatively simple. In KIT AIS 

Data Set [27], shooting frame rate is 1FPS and it includes viaducts, overpasses, buildings, trees and other 

complex scenarios, which is very challenging for the moving object detection algorithms of aerial video. 

The configuration of the computer used in our experiments is CPU Intel(R) Core(TM) 2 Duo 2.66 GHz, 

RAM 2.0 G. It takes about 4 s to process each frame for 724 × 708 image sequences. The most  

time-consuming step is the Mean shift segmentation, which takes about 3.5 s per frame. Dense optical 

flow calculation takes about 0.25 s and Graph cuts takes about 0.25 s. We have not done any acceleration. 

For practical application, parallel computing and other fast calculation method can be used to accelerate 

the segmentation and detection procedure. Our approach involves several parameters, including mainly 
the background threshold minaT , the object area threshold maxaT , the projection error threshold eT , the 

variance threshold Tσ  and the smooth threshold sτ . The color blocks with area larger than minaT  are 

considered to be background blocks. The smaller minaT is set, the more background models we get, and 

the more complicated the multi-model estimation step is. The bigger minaT  is set, the more likely we miss 

some background models. In our experiments, we set min 6400=aT  to get a balance between the 

complexity and model number.
 

maxaT  is the max threshold for the object area. If it is set too small, then 

true object will be considered as small background blocks. Otherwise, the objects close to each other 
would be considered as one with large value for maxaT . In our experiments, we set max 800=aT  to detect 

vehicles on the road. eT  is the projection error threshold. If a pixel’s projection error for a given affine 

model is bigger than eT , then it is considered to be an outlier for the model. Otherwise, if its projection 

error is smaller than eT , it is an inlier for this model. The smaller eT
 
can bring more outliners and 

meanwhile cause more false alarms. The bigger eT
 
sometimes makes the algorithm miss true moving 

pixels. For the balance of false alarms and missing, we set 3=eT  in our experiment. The variance 

threshold Tσ  determines which foreground blocks are true object blocks and which blocks are false 

alarms. The smaller the value of Tσ , the fewer false alarms we detect and meanwhile the more likely we miss 

the true moving object. The larger Tσ  would cause more false alarms. We set 4=Tσ  in our experiment for 

the best performance. The smooth threshold sτ  defines the max smooth cost of labeling two neighboring 

pixels with different tags. The larger sτ  brings a smoother labeling map and object missing is more likely to 

occur. The small sτ  decreases the smoothing effect. We set 4=sτ  in our experiments. 

The detection method in [14] is the most representative method in which Harris features are abstracted 

for registration and frame difference is used to detect moving objects. Shen et al. [20] proposed a moving 

object detection method for aerial video based on spatiotemporal saliency. This method can accurately 

handle moving target detection under simple scenarios. However, it has not adopted multiple background 

analysis for the scenarios, and detection missing and false alarms will happen frequently in complex 

scenarios. As there are no published codes for the approach in [14,20] on the web, we implement these 

two approaches for comparison. 
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We compare our algorithm with the method in [14] and Shen [20] on the StuttgartCrossroad01 dataset 

of KIT AIS Data Set. The results are shown in Figure 4. This dataset contains overpasses and multiple 

background complex scenarios as well as complex elements, such as trees and shadow, which will 

influence the detection results. All the factors will bring substantial challenge to the detection algorithms. 

In Figure 4, the images from top to bottom show the detected results of the 1st, 5th, 9th and 12th frames. 

The images from left to right are separately, the detection results of this paper, the segmentation results 

of this paper, the detection results by [14], the detection results of Shen [20], and the ground truth. In the 

first column of Figure 4, the objects in blue boxes are the detection results of this paper. The objects in 

red boxes are stationary targets. The detection results show our approach can segment and detect moving 

objects accurately in the complex background situation of overpasses. Since both of the approaches,  

in [14,20], cannot perceive multiple background of the scenario and cannot obtain accurately background 

information, the situations such as inaccurate moving segmentation and false alarms will happen. We 

can see these situations in the third and fourth column of Figure 4. The blue bounding boxes show the 

detected objects. The yellow boxes show the false detection and missing targets. Although, the method 

in [20] performs better than the method in [14], false alarms and inaccurate detections occur frequently 

in both of these two methods. The ground truth published on the web marks all the vehicles in the scene, 

including both moving objects and stationary vehicles. 

 

Figure 4. Detection comparisons in complex overpass scenarios. 
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Figure 5 shows the comparison results on the MunichCrossroad01 dataset. The characteristic of this 

dataset is that the false objects of parallax error caused by the trees and other elements occupy a large 

proportion of the image area. In Figure 5, the images from top to bottom show the detection results of 

the 1st, 7th, 13th and 18th frames. The results in the first column show that our approach can handle the 

moving object detection in scenarios with many trees and overcome the parallax error caused by trees. 

In contrast, the traditional detection methods [14,20] based on registration will be influenced by trees 

and cannot estimate the scene model accurately. Therefore, as shown in the third and fourth columns of 

Figure 5, the detection rate of traditional method is low and the false alarm is high. Figure 6 shows the 

detection results on Munich Crossroad02 dataset. This dataset includes many buildings. The transitional 

methods [14,20] cannot accurately estimate the background parameters and obtain the correct detection 

and segmentation results in this situation. As shown in the third and fourth columns of Figure 6, many 

false alarms and missing detections occur. In contrast, the results in the first and second columns show 

the detection and segmentation results of our paper. The results demonstrate our approach can perceive 

scenarios and detect moving objects correctly due to multiple background model estimation. 

 

Figure 5. Detection comparisons in scenarios with many trees. 

As shown in Figures 4–6, this paper performs much better than traditional detection algorithm basing 

on registration. Our approach can analyze the multiple background models in scenarios and detect the 
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moving objects accurately. However, since we adopt mean shift color segmentation and pyramid dense 

optical flow to perceive the multiple background models, the algorithm’s efficiency still needs to be 

improved and more efficient multiple background model estimation algorithms are required. 

Additionally, this paper focuses on vehicle-sized objects and cannot detect the point objects like humans. 

We also do not add any special treatment for shadow, so the moving objects after segmenting may 

contain shadow, which is also the future work. 

 

Figure 6. Detection comparisons in scenario with many buildings. 

 

Figure 7. The statistical result of our method and the traditional methods by [14,20]. 

In order to quantitatively analyze the detection accuracy of this paper, we define recall R, accuracy P 
and comprehensive evaluation indicators 1F  as follows: 
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/=R DObNum ObNum  (22)

/=P DObNum DNum  (23)

1 2 / ( )= +F PR P R  (24)

where ObNum , DObNum  and DNum  are the object number of the ground truth, correct detection and 

detected object number, respectively. If a detected object’s overlap rate with a true object is above 0.5, 

then it is considered as a correct detection. Otherwise, it is a false alarm. In practical applications, higher 

R and P are desired, but these two indicators are contradictory in some cases. 1F  integrates the results 

of R and P. Higher 1F  indicates that the experimental method is more effective. Figure 7 shows the 

comparison results of our paper, the traditional method by [20] and the traditional method by [14]. The 

results from left to right are the statistical results of DAPAR VIVID EgTest01, StuttgartCrossroad01, 

MunichCrossroad01 and MunichCrossroad02 of KIT AIS Data Set. As shown in Figure 7a, these three 

algorithms can both achieve high detection rate under simple background and their detection precisions 

are similar. However, 1F  of our algorithm under complex background is higher than the methods  

in [14,20], i.e., on StuttgartCrossroad01 dataset, 1F  of our result is 0.949, which is higher than 0.808 of 

Shen [20] and 0.611 of the method in [14]. In MunichCrossroad01 dataset, our approach’s 1F  is 0.937, 

which is higher than 0.821 of Shen [20] and 0.625 of the method in [14]. These results show the 

significant superiority of our algorithm, as shown in Figure 7b–d. 

5. Conclusions 

This paper is mainly for the moving object detection problem under complex scenarios for aerial 

videos. We propose a novel moving object detection algorithm based on multi-model estimation and 

optimized classification. First, we calculate the dense optical flow of the scene and do color segmentation 

basing on mean shift to capture the perception of the whole scene. Secondly, we calculate affine 

transformation models as the multiple background models for each color block with a large area. 

Through multiple background model cross-validation and merger, accurate multi-model parameters of 

scene can be obtained. Thirdly, in order to obtain the multiple background segmentation results of the 

scene, the background points are segmented into multiple background models by using energy 

optimization method solved via Graph Cuts. Finally, we calculate subordinate degree from foreground 

regions to multi-background models, remove the false alarm and segment moving object accurately. 

Since we break through the single background constraint and adopt multiple background models, our 

algorithm can handle the moving object detection under complex multiple background scenarios. 

Moreover, our algorithm can segment the background and foreground regions accurately due to the 

adoption of Graph Cuts, optical flow information and continuous smooth constraints. The experimental 

results on many aerial videos indicate that our algorithm can correctly perceive multiple background 

information of the scene and detect moving object accurately in the complex scenes with multiple 

backgrounds, buildings and other objects that produce parallax. 
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