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Abstract: Maintaining contact between the robot and plume is significant in chemical plume 

tracing (CPT). In the time immediately following the loss of chemical detection during the 

process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, 

expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out 

activity, we propose an online instance-based reinforcement learning method, namely virtual 

trail following (VTF). In VTF, action-value is generalized from recently stored instances of 

successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in 

which multiple robots store their own instances, and learn from the stored instances, in the 

same database. The proposed VTF and cVTF methods are compared with biased upwind surge 

(BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, 

in an indoor environment with three different airflow fields. With respect to our experimental 

conditions, VTF and cVTF show stronger adaptability to different airflow environments than 

BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF. 

Keywords: chemical plume tracing; reinforcement learning; collaborative learning; 

behavior-based robotics 
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1. Introduction 

Many animals exhibit the capability of tracing the plume of chemical stimuli to its source using the 

olfactory sense: Pacific salmons retain odor memories of their home stream to guide homeward 

migration [1]; crustacean species sense the relatively rare patches of coral reef to search for their 

settlement habitat [2]; crabs [3] and crayfishes [4] use chemical cues to find the source of food odor; male 

moths [5] navigate along pheromone plume, which consists of intermittent, wind-blown patches [6] of 

chemical substances separated by large voids, to locate females, etc. Mobile robots capable of such feats 

(i.e., tracing the chemical plume to its source using the olfactory sense) can be used in sweeping mines, 

searching for survivors in collapsed buildings, and finding the leakage sites of hazardous chemicals. 

Compared with living animals trained for similar purposes, robots have the capability of searching in 

dangerous environments without impairment. In addition, while static sensor nodes [7] deployed for 

environment monitoring can only cover a limited region, mobile robots can theoretically cover an 

indefinitely large area. Therefore, mobile robots are more robust to hazards than trained animals and are 

more flexible than static sensor nodes. 

From the early 1990s, various biomimetic methods for chemical plume tracing (CPT) using mobile 

robots have been proposed. A class of most extensively studied biomimetic CPT methods are the ones 

imitating the pheromone plume tracing behavior of male moths to search for females [8]. Li et al. 

developed, optimized, and evaluated [9] a moth-inspired cross-plume counterturning strategy, and 

proposed [10] a behavior-based adaptive mission planner (AMP). Four behaviors were implemented in 

this AMP: Plume finding, plume tracing, plume reacquiring, and chemical source declaration, in which 

the second and third behaviors are moth-inspired. Marques et al. [11] concluded that the moth-inspired 

method is more effective than the bacterium E. coli’s chemotaxis method. Lilienthal et al. [12] proposed 

a moth-inspired fixed motion pattern which is (re-)started when an increased chemical concentration is 

sensed. Ishida [13] proposed a moth-inspired “casting” behavior, i.e., cross-wind movement with 

gradually broadened scanning width, which can be combined with the upwind movement to realize an 

efficient CPT method. Generally, two distinctive features [14] of moth’s plume-tracing behavior have 

been replicated in these methods. Firstly, the flow direction while detecting the plume was exploited as 

a reliable directional cue to approach the females; secondly, counter-turning movements were used as 

fail-safe mechanisms to reacquire the plume in unsteady environments. 

In particular, the AMP proposed in [10] has successfully accomplished the CPT mission over one 

hundred meters in near-shore ocean environments. Specifically, in the AMP proposed in [10], plume 

finding behavior is activated at the initial stage of CPT to find the first chemical clue. After the first 

chemical detection event, plume tracing behavior, which is decomposed into Track-In and Track-Out 

activities, is activated. Track-In activity steers the robot upwind when it detects the chemical. Track-Out 

activity, which moves the robot along a biased upwind direction (i.e., the summation of real-time upwind 

direction and a universal bias angle), is activated immediately after the robot losing contact with the 

plume, expecting to rapidly re-contact the lost plume. The way of adding a universal bias angle to the 

real-time upwind direction to form the robot heading in Track-Out activity is referred to as biased upwind 

surge (BUS) method in the rest of this paper. If Track-Out activity fails to re-contact the plume in a 

predefined time span, plume reacquiring behavior, which outputs a clover-leaf-shaped route for the 

robot, is activated as a fail-safe mechanism for further re-contacting the plume and then activating the 
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plume tracing behavior. To declare the chemical source location, chemical source declaration behavior 

is activated if six successive last detection positions (LDP), i.e., the position where the robot lost contact 

with the plume, lie close to each other. 

The Track-Out activity comprises two successive processes: (1) rotating: At the beginning of the 

Track-Out activity, the robot rotates to align its heading with the biased upwind direction; (2) sprinting: 

The robot moves along the biased upwind direction. On one hand, a big acute bias angle along the right 

direction is often needed for directing the robot towards the lost plume. On the other hand, most real 

mobile robots (e.g., fin-controlled underwater robots [10], various terrestrial [14,15] or flying [16–18] 

robots) require longer time to rotate a bigger bias angle. To minimize total time spent in the Track-Out 

activity, a bargain between the time spent in rotating and sprinting can be stricken by properly 

determining the bias angle. However, the bias angle used in BUS [10] is optimized beforehand for all 

possible Track-Out activities using offline Monte-Carlo simulations. The offline optimized bias angle would 

not be optimal when it is used in real environments with airflow field different from the simulated ones.  

The problem of determining the bias angle to adapt different real airflow fields needs further investigations. 

In this paper, we propose an online reinforcement learning (RL) method to determine the bias angle 

used in Track-Out activities. In the proposed RL method, action-values [19] are generalized from 

recently stored instances of successful Track-Out activities. Since the structure of stored instance 

resembles chemical trail (i.e., trail of chemical substances laid on the ground), the proposed RL method, 

which guides the robot by its previous “trails”, is analogous to chemical trail following [14,20]. 

Nevertheless, the robot does not lay or follow real chemical trails in our method. Thus, the proposed RL 

method and the stored instance are referred to as virtual trail following (VTF) method and virtual trail 

(VT), respectively. The VTF method defers the determination of bias angle till the beginning of each 

Track-Out activity and learns to steer the robot in an online manner. Thus, it has the merit of adaptation 

to different real environments which remedies the drawback of offline optimization in BUS.  

Another merit of the VTF method is that it enables a straightforward solution to realizing collaboration among 

multiple robots: The robots can share their stored VTs with each other for learning collaboratively [21]. 

Therefore, we further propose a collaborative VTF (cVTF) method, in which multiple robots store their 

own VTs, and learn from the stored VTs, in the same database. Finally, we compare VTF, cVTF, and 

BUS, as well as a reverse BUS (rBUS) method which is used for clarifying the influence of bias angle 

on BUS, in real-world experiments. The experiments were conducted within two different controlled 

airflow fields, i.e., mildly and severely fluctuating airflow fields, and a naturally ventilated indoor 

airflow field. 

The rest of this paper is organized as follows: BUS and the AMP proposed in [10], as well as the fundamental 

of RL, are introduced in Section 2. The VTF and cVTF methods are detailed in Section 3. Experimental setup 

and results are presented in Sections 4 and 5, respectively. Conclusions are given in Section 6. 

2. Background 

2.1. Track-Out Activity Using BUS 

Before introducing the BUS method, the overall logic of the AMP proposed in [10] is sketched in 

Figure 1. At the beginning of CPT, the robot is maneuvered by plume finding behavior to find a plume. 
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Once the first chemical detection event occurs, the robot is controlled by the circulation process shown 
in Figure 1, where LT  denotes the number of cycles from the last chemical detection event till the current 

time; λ  and Re  are the cycle limit of the Track-Out activity and plume reacquiring behavior, 

respectively. (Note: A list of the notation used in this paper is given in the Appendix.) As shown in 

Figure 1, the plume tracing behavior is decomposed into Track-In and Track-Out activities.  

The activation or inhibition of plume reacquiring behavior, plume finding behavior, as well as Track-In 
and Track-Out activities, is triggered by determining whether the value of LT  falls within the 

corresponding range or not. Only one activity or behavior is activated at the same time. This circulation 

process can be terminated by the source declaration behavior, which is not included in Figure 1 because 

we focus on the behavior of re-contacting the lost plume in this paper. 

 

Figure 1. Circulation process following the first chemical detection event. 

When LT  falls within the range (0, ]λ , the Track-Out activity is activated. In other words, the  

Track-Out activity starts when LT  equals one, and ends when LT < λ  if succeeded in re-contacting the 

plume or when LT  equals λ  if failed. In BUS, the robot heading ( )kθ  is calculated as follows  

(see Figure 6 in [10] and Equation (4) in [9]): 

( )
( ) ( ) 180 ( ),

( ) 10 sgn ( ) ( ) L

k k k

k k k

θ = ψ + ° + β

β = °× ψ − ∠

x x  (1)

where ( )kψ , ( )kβ , and ( )kx  are the angle of wind direction, the bias angle, and the robot position at 

the k-th cycle, respectively; the magnitude of ( )kβ , i.e., 10°, is the optimized result obtained using 

offline Monte-Carlo simulations in [9]; Lx  and ( ) Lk∠

x x  denote the LDP and the angle of the vector 

pointing from ( )kx  to LDP, respectively. 

An illustration of using BUS in a Track-Out activity triggered by the event that time-varying wind 

blew the plume away from the robot is shown in Figure 2. Unfortunately, BUS steers the robot away 

from the departing plume in this case, which can be inferred as follows: Suppose that the Track-Out 
activity begins at the k-th cycle and that the anticlockwise direction is positive. Then, ( ) ( 1)k kψ > ψ − , 

since the wind has shifted anticlockwise in Figure 2. Since the robot moves upwind at the (k − 1)-th 

cycle, ( ) ( 1)k k∠ −

x x  equals ( 1)kψ − . Moreover, since ( 1)k −x  equals Lx , ( ) Lk∠


x x  equals ( 1)kψ − . 

Thus, sgn( ( ) ( ) )Lk kψ − ∠

x x  equals sgn( ( ) ( 1))k kψ − ψ −  which is bigger than zero, ( )kβ  and ( )kθ  
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equal 10°  and ( ) 190kψ + ° , respectively. In addition, ( ) 190kψ + °  is bigger than ( 1) 180kψ − + °  which 

equals ( 1)kθ − , ( ) ( 1)k kθ > θ − , which makes the robot turn anticlockwise and move away from the 

chemical plume. 

 

Figure 2. Robot trajectories obtained using BUS in the Track-Out activity. Due to the 

variation of wind direction, the chemical patches in the plume were carried from their past 

positions (i.e., dotted ellipses) to current positions (i.e., grey oblong plates). 

2.2. Reinforcement Learning 

The term RL was primitively used for characterizing the problem of learning from interaction between 

an agent and its environment to maximize the total amount of reward received by the agent over the long 

run [19]. Any method that is suitable for solving the RL problem can be considered as a RL method.  
At each learning step, the agent conducts an action ,a a A∈  in state ,s s S∈ , then moves to state 

,s s S′ ′∈  and receives a reward r  at the next learning step. The action-value ( , )Q s aπ  (i.e., Q-value) 

defines the expected discounted reward when action a  is selected in state s . ( , )Q s aπ  is expressed as: 

( , ) 1
0

,
( , ) kk

s a k
k k

s s
Q s a E r

a a

∞
π

π +
=

= 
= γ = 

  (2)

where 1kr +  represents the reward received at the (k + 1)-th learning step; [0,1]γ ∈  is the discount rate. The 

RL problem can be solved by finding an optimal policy *π  which guarantees 
*

( , ) ( , )Q s a Q s aπ π≥  for all 

s S∈ . 

Most action-value-based RL methods follow the idea of generalized policy iteration (GPI) [19] to 

determine the optimal policy. A GPI consists of two interacting processes: Policy evaluation and policy 

improvement. The former calculates the Q-value function using the current policy, while the latter makes 

the policy greedy with respect to the original value function. In the popular Q-learning algorithm [22], 

policy evaluation is realized according to: 

1

1

( , ) ( , )

                 + [ max ( , ) ( , )]
k k

k k k
a A

Q s a Q s a

r Q s a Q s a
+

+ ′∈

=
′ ′α + γ −  (3)

where [0,1]α ∈  denotes learning rate. Then, policy improvement is performed using the ε -greedy  

policy [19], which selects the action with the highest Q-value with the probability 1− ε  or randomly 

selects an action otherwise. 
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In tabular RL problems [19], the Q-learning algorithm has been proved to be convergent when each 

state-action pair is visited indefinitely often. When the state and action spaces are very huge or continuous, 

tabular methods would suffer from the curse of dimensionality. It is impossible to maintain an individual 

update of Q-value for every state-action pair in continuous state spaces [23]. Q-value approximation, 

which approximates the Q-values in states that have not been experienced before using previously 

obtained learning results [23], appears to be a feasible technique to handle continuous state and action 

spaces. In principle, any of the methods studied in function approximation, e.g., artificial neural network, 

locally weighted regression [24], and decision-trees, can be used in RL [19]. At present, the convergence 

proof of the RL methods with Q-value approximation is lacking. Nevertheless, no matter how complex 

about the convergence, there still have been a lot of works about combining Q-value approximation with 

RL methods in continuous state and action spaces [23,25], since they promisingly provide good solutions 

even not optimal ones. 

3. Learning to Re-Contact the Plume via VTF and cVTF 

3.1. VTF Method 

First, some preliminaries, including the problem formulation, and handling of the continuous action 

and state spaces, are presented. Then, two main steps of VTF, i.e., policy improvement and policy 

evaluation, are detailed. 

3.1.1. Preliminaries 

Problem Formulation 

As mentioned, the Track-Out activity is realized by rotating the robot to align its heading with a new 

heading angle, and then move ahead. The new heading angle in VTF is represented as follows:  

,

[ , ], 90
Lθ = ψ + β

β∈ −β β β > °
 (4)

where Lψ  denotes the wind direction measured at Lx ; −β  and β  are the lower and upper bounds of the 

bias angle β , respectively. The constraint that 90β > °  is used to avoid the robot moving towards the 

downwind area of Lx , which could steer the robot away from the chemical source and deteriorate the 

overall time-efficiency of CPT. 
The problem of determining β  in Equation (4) to minimize the time spent in an individual Track-Out 

activity is formulated as a RL problem. In this RL problem, each Track-Out activity corresponds to an 

individual learning step, which usually extends over multiple cycles. At the beginning of each learning 

step, the robot starts from one position, rotates, moves, and then arrives at another position at the end of 

the learning step. State is defined as the robot position, so the start state s  and end state s′  correspond 
to the start and end positions, respectively. Action ia  is defined as rotating to and then moving along the 

direction with angle i L iθ = ψ + β . Possible robot positions and values of β  are mapped one-to-one with 

the states and actions, respectively. Thus, the continuous spans of robot position and β  lead to 

continuous state and action spaces, respectively. 
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At the end of each learning step, the robot receives a numerical reward, which is defined as Lr T= λ − . 

The reward is inversely proportional to the time spent in the learning step, i.e., LT . Thus, maximizing the  

Q-value, i.e., expected total rewards, reflects the objective of learning, i.e., rapidly re-contacting the lost plume. 

Handling of the Continuous State and Action Spaces 

To handle the above-mentioned continuous state space, Q-value is generalized from stored VTs using 
a locally weighted average (LWA) method. The VT is represented as a structure , , ( , )s s Q s a′< > , where 

( , )Q s a  is the Q-value of conducting a  in state s  which results in the associated VT. Thus, the dot 

operator is used to represent the elements of a VT (e.g., u  represents a VT, then .su  is the start state of 

u ) in the rest of this paper. 
The continuous action space is handled by discretizing the continuous span [ , ]−β β  to the set: 

2
( 1),   1, 2,..,

1i i i M
M

 ββ = β − ⋅ − = − 
 (5)

where M  denotes the number of actions. To avoid ( 1)/2M +β  and θ  equal zero and Lψ  respectively, 

which in turn make the robot continue moving upwind in the Track-Out activity, M  is set as an even 
integer. Figure 3 illustrates the case that β  and M  equal 90°  and eight, respectively. 

 

Figure 3. Discretizing the continuous action space to a set of eight actions. 

3.1.2. Main Steps of the VTF Method 

The flow chart and pseudo-codes of the VTF method are shown in Figures 4 and 5, respectively.  

Each learning step comprises two main steps: Policy improvement and policy evaluation, which are 

conducted at the beginning and the end of Track-Out activities, respectively. 
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Figure 4. Flow chart of the VTF method. u s and ˆau s denote the nearby VTs of u  and the 

VTs associated with action a , respectively. 

 

Figure 5. Pseudo-code of the VTF method. ˆau  denotes the VT associated with the action a . 

Policy Improvement 

The process of policy improvement includes the steps enclosed in the left dashed frame of Figure 4, 

which corresponds to lines 1–7 in Figure 5. Policy improvement takes the robot position and stored VTs 

as input, and outputs a selected action a  for the corresponding Track-Out activity. 

At first, a new VT, denoted as u , is created, and the robot position is set as .su . Then, the ε -greedy 
mechanism is used to determine the output action a  (line 4 in Figure 5). To determine max ( , )a Q s a  and 

*a  in the ε -greedy mechanism, ( , ), [1, ]iQ s a i M∈  are approximated using the LWA method [24] 

 (line 3 in Figure 5). The LWA method has the property of emphasizing relevant data points. In our 

problem, VTs are the data points, and the distance between two VTs measures their relevance. The 
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distance between two VTs is defined as the distance between their start states. If the start state of a VT 
falls within the neighbourhood of .su , i.e., a disk-shaped area centred at .su  with radius of thd , the VT is 

considered as a nearby VT of u . As shown in Figure 6, the neighbourhood of .su  is represented as a disk 

with solid edge. 

 

Figure 6. Q-value approximation based on nearby VTs. The solid circle encloses the 

neighboring area of the starting state in the following Track-Out activity, i.e., .su . 

The LWA-based Q-value approximation method consists of three steps: 

(1) Find nearby VTs of u  in the database, which are denoted as u s. As mentioned, Q-value is 

approximated based on VTs that are previously stored in a VT database  . In Figure 6, nearby 

and faraway VTs are represented as solid and dashed arrows, respectively. 
(2) Associate the nearby stored VTs with the M  actions. Suppose that ia  covers a flabellate sector 

bi-partitioned by ia . In Figure 6, the flabellate sector covered by 1a  is marked as shadowed. The 

radius and included angle of the flabellate sector are maxvλ ⋅  ( maxv  is the maximal velocity of the 

robot) and ( )2 1Mβ − , respectively. Then, if the end state of .s′u  falls within the sector covered 

by ia , u  is associated with ia . The VT associated with ia  is denoted as ˆiu . In Figure 6, there 

are two VTs associated with 1a , while there is only one VT associated with each of other actions. 

(3) Approximate ( , )iQ s a  by weighted-averaging the Q-value of all ˆiu s. The weight for the Q-value 

of the j-th ˆiu  (i.e., ˆ .ij Qu ), which is denoted as ijw , is calculated as: 

( )( , )

( ( , ))

( ( , ))

1
( ( , ))

1 ( , )

i ij ijj

ij
ij

ijj

ij
ij

Q s a Q w

K d s s
w

K d s s

K d s s
d s s

= ⋅

=

=
+



  (6)

where ijs  and ijQ  are the start state and the Q-value of ˆ
iju , respectively; ( , )ijd s s  is the distance 

between ijs  and s . 
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Note that, at the early stage of CPT, there are only a small number of VTs in  . If the number of 

nearby VTs is less than M , which means there are not enough nearby VTs to be used in the LWA-based 

Q-value approximation method, then an action is randomly selected from the set of M  actions (see  

line 6 in Figure 5). 

Policy Evaluation 

The process of policy evaluation includes the steps enclosed in the right dashed frame of Figure 4, 

which corresponds to lines 8–14 in Figure 5. When the Track-Out activity ends, policy evaluation 
process takes the end state and the time spent in the Track-Out activity (i.e., s′  and LT ) as inputs, and 

outputs the updated Q-values of the conducted action a  and the VTs associated with a . 

.Qu  is evaluated using Equation (3), in which max ( , )
a

Q s a
′

′ ′  is determined in the same way as 

determining max ( , )
a

Q s a . In addition, the Q-value of the VT associated with the conducted action a  is 

evaluated as follows: 

ˆ ˆ. .

ˆ            [ max ( , ) . ]
a a

a
a A

Q Q

w r Q s a Q
′∈

= +
′ ′⋅α + γ −

u u
u  (7)

where ˆau  is one of the VTs associated with action a , w  is the associated weight. Compared with 

Equation (3), an additional weighting factor w  is additionally utilized in Equation (7) to control the 
extent to which ˆ .a Qu  should be varied. Recall that the VTs associated with action a  have been 

determined in LWA-based Q-value approximation conducted at the beginning of the Track-Out activity. 
Moreover, a weight that is positively related to the distance between ˆau  and u  has been calculated using 

Equation (6). These weights are reused in Equation (7) so that the variation of ˆ .a Qu  is positively 

correlated with the distance between ˆau  and u . 

Finally, u  is pushed into the  . If the size of   exceeds N , the oldest VT in   is popped out.  

This kind of first-in-first-out configuration can adapt the stored VTs to dynamic environments. 

3.2. Collaborative VTF Method 

On the premise that VTF is utilized as the strategy of Track-Out activity by multiple robots for CPT 

in the same field, cVTF is realized by sharing a common VT database among these robots:  

(1) During policy improvement, the VTs in the same database are exploited by multiple robots in the 

LWA-based Q-value approximation. In other words, the robots determine their own heading by 

learning from the experience of each other at the beginning of Track-Out activities. 

(2) The Q-value of nearby VTs stored in the same database are updated by multiple robots. Moreover, 

the VTs generated by multiple robots are pushed into the same database after policy evaluation. 

4. Experimental Setup 

In this section, the real mobile robots, experimental scenarios, and experimental schemes are 

introduced. Moreover, the process of selecting parameters for the methods is detailed. The proposed 

VTF and cVTF methods were compared with BUS and rBUS (see Section 4.3 for details) in real-world 
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experiments using multiple robots. Since cVTF involves collaboration among multiple robots, four real 

mobile robots were used to conduct a multi-robot CPT mission in our experiments. Although VTF is 

capable of working with a single robot, running it on multiple robots independently can include the 

influence of obstacle avoidance and enable an equitable comparison between VTF and cVTF. So do 

BUS and rBUS. 

4.1. Real olfactory robots 

The mobile olfactory robots used in our experiments, namely MrCollie [26,27], are displayed in 

Figure 7. A chemical sensor (MICS-5521, SGX Sensor Technology, Co. Ltd.: Neuchatel, Switzerland) 

is sustained on top of the case by a pillar. Eight ultrasonic sensors and eight infrared sensors are mounted 

around the case to detect the remote (0.8~3 m) and close (0~0.8 m) obstacles, respectively. On the top 

of the robot, an anemometer (WindSonic, Gill Instruments, Co. Ltd.: Hampshire, UK) is mounted for 

measuring real-time wind velocity. A hard-wired CCD camera is mounted on the ceiling over the valid 

search region to capture the image of identification labels stuck on the top of the anemometers.  

By processing the acquired image on a workstation, the orientation, index, and global position of the 

robots can be recognized. The workstation received real-time measurements from the robots, conducted 

the CPT methods for about two cycles per second, and sent movement commands back through  

ultra-high-frequency radio waves. 

 
(a) (b) 

Figure 7. Mobile olfactory robots used in the experiments. (a) One of the MrCollie robots; 

(b) a scene of controlling the robots in the experiments. 

Referring to [17] and [28], chemical detection event was determined by comparing the transient 
concentration measurement [29] ( )c k  with an adaptive threshold ( )c k : ( ) ( 1)c k c k> −  and 

( ) ( 1)c k c k≤ −  indicate the detection and non-detection event at the k-th cycle, respectively. The 

adaptive threshold ( )c k  proposed in [28] was defined as:  

( 1) (1 ) ( ),    0
( )

( ),                           0

c k c k k
c k

c k k

δ ⋅ − + − δ ≥
=  =

 (8)
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where δ  was set to 0.5 [17,28]. Besides, due to the intermittent feature of real chemical plumes,  

short-term flashed non-detection events would occur when the robots get into the voids between 

chemical patches within the plume. Thus, to preclude this case, contact between the robot and plume 

was considered as lost after two consecutive non-detection events. In other words, the Track-Out activity 
was activated when LT  equals three in our experiments. 

To obtain absolute wind velocities, the robots’ theoretical velocities were subtracted from the relative 

wind velocities, which were measured with a sampling period of 0.5 s by the anemometer. Moreover, to 

reduce measurement errors, the absolute wind velocities were moving-averaged across two seconds 

before being used in our experiments. The feasibility of calculating the absolute wind velocities based 

on the robots’ theoretical velocities is analyzed in the appendix. 

4.2. Experimental Scenarios 

Experiments were carried out in a laboratory, in which the valid search region is a 5 m ×  7 m 

rectangular area, as shown in Figure 8. An ultrasonic humidifier, which can spray atomized ethanol 

vapour out from its nozzle, was used as the chemical source. Experiments were conducted in three 

different airflow fields, including two controlled airflow fields and one naturally ventilated airflow field. 

These airflow fields were constructed as follows: 

 Two controlled airflow fields: With the door and all windows of the laboratory closed, mildly and 

severely fluctuating wind were produced by oscillating the fan with scopes of about 30°  and 90°
, respectively. In these two controlled airflow fields, the chemical source was placed at S1, and the 

robots started from R1. 

 Naturally ventilated airflow field was constructed by opening the windows and the door of the 

laboratory in a windy day. The chemical source was placed at S2, so that the released chemical 

can be blown by the wind coming from the door and the window in the bottom wall. The robots 

started from R2. 

 

Figure 8. Plan sketch of the laboratory. The valid search region is represented as a 

rectangular area with dotted edges. 
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4.3. Experimental Scheme 

Because this paper focused on re-contacting the lost plume, the plume finding and source declaration 

processes were omitted in our experiments. The resulting control logic used in our experiments is as 

follows: At the start of a CPT run, each robot waited at its start point till it detected an above-threshold 

concentration measurement. After the first chemical detection event, the robot was controlled by the 

circulation process shown in Figure 1, in which the time constraint for plume reacquiring behaviour was 

removed, i.e., Re = +∞ . The activation or inhibition of the robots’ behaviors or activities was triggered 
independently based on the value of their own LT . Once a robot got into the neighbourhood of the 

chemical source, where the distance between the robot and chemical source did not exceed thd , it was 

steered to its end point. When all robots arrived at their end points, the CPT run ended. 

The upwind movement [10] and the “casting” behaviour [13,14] were used as the Track-In activity 

and the plume reacquiring behaviour, respectively. Four alternative methods were employed in  

Track-Out activities: BUS, rBUS, VTF, and cVTF. BUS, VTF, and cVTF have been detailed in  

Sections 2.1, 3.1 and 3.2, respectively. rBUS was realized by determining the robot heading during 

Track-Out activity as follows: 

( )
( ) ( ) 180 ( ),

( ) 10 sgn ( ) ( )L

k k k

k k k

θ = ψ + ° + β

β = °× ∠ − ψ

x x  (9)

where the bias angle ( )kβ  is the opposite number of the bias angle used in Equation (1). In the typical 

case shown in Figure 2, where the wind shifted anticlockwise and blew the plume away from the robot, 

BUS made the robot turn anticlockwise and move away from the plume. It was not clear that whether 

the performance of BUS is dominated by the sign of bias angle used in Equation (1) or not. Thus, BUS 

was compared with rBUS, which can make the robot turn clockwise in expectation of chasing the 

departing plume in the case shown in Figure 2. 

The artificial potential field (APF) based method proposed in [30], which took relative position and 

velocity of moving obstacles into account, was used in our experiments for avoiding moving obstacles 

(i.e., other robots). In the APF-based obstacle avoidance method, the robot is attracted to its goal position 
{ , }g g gx y=x , whereas repulsed away from nearby obstacles. Two types of movements were realized in 

our experiments:  

(1) Moving along a designed direction (e.g., upwind direction in Track-In activities, the direction 
learned in Track-Out activities): gx  was set to a position in front of the robot along the designed 

direction. To move the robot at { , }x y=x  along direction θ , for example, the goal position gx  

was set to: 

cos

sin
g big

g big

x x d

y y d

= + ⋅ θ
 = + ⋅ θ

 (10)

where bigd  should be big enough to make sure the APF method outputs sufficient attractive force for 

the robot. 
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(2) Cross-wind movement with gradually broadened scanning widths in the “casting” behaviour [13]: 
Suppose the robot position at the beginning of “casting” was { , }x y=x . During the “casting” 

behavior, the robot was moved towards gx . Once the robot arrived at the old position of gx , gx  

was reset as follows: 

( 1) sgn( )t

g
n

g L t ss

x x

y y y y n d

=
 = + − ⋅ −

 (11)

where Ly , tn , and ssd  are the y-coordinate of Lx , the number of times that the robot has arrived 

at gx , and the scanning span added to the scanning width, respectively. Note that the resulting 

robot trajectories do not strictly equal the one illustrated in [13] and [14]. Nevertheless, plume 

reacquiring behaviour is not the main concern of this paper. 

4.4. Parameter Selection 

Three categories of parameters were used in our methods:  

(1) Common parameters of Track-Out activity: λ  and δ , which influence the performance of all 

methods used in the Track-Out activity. The value of δ  was set to 0.5 in [17,28], which both used 

the adaptive concentration threshold in Equation (8) to determine chemical detection events. 

(2) Parameters for RL: ε , γ , and α . In an analogous continuous instance-based Q learning method [25], 
ε , γ , and α  were set to 0.01, 0.9, and 0.1, respectively. 

(3) Parameters for obstacle avoidance using the APF method: maxv , thd , bigd , and ssd , which were 

set to 15 cm/s, 45 cm, 4 m, and 80 cm, respectively. The guideline for selecting these parameters 

is that the robots would not collide with each other while searching in the valid search region. 

The process of selecting the parameters in the first and second categories are detailed in  

Sections 4.4.1 and 4.4.2, respectively. The value of the parameters in the third category were not varied 

in our experiments, because we found they worked quite well in our experiments. 

4.4.1. Selecting the Common Parameters of Track-Out Activity 

Due to the similar principles underlying BUS and rBUS, as well as underlying VTF and cVTF, only 

BUS and cVTF were tested for selecting δ  and λ . During the process of selecting δ  and λ , the second 

category of parameters (i.e., ε , γ , and α ) were set to their old values used in [25]. 

First, δ  was kept invariant as 0.5, while the value of λ  was set to 10, 18, and 26, which corresponds 

to a maximal period of 4, 8, and 12 s for the Track-Out activity. The resulting robot trajectories obtained 

in individual Track-Out activities are shown in Figure 9. 

If a small λ  (e.g., 10λ = ) is used, the robot failed to re-contact the plume mostly because it only 

sprinted for a short span away from the LDP. Therefore, the value of λ  was set to 18 in the rest of this 

paper. As shown in the left sub-figures of Figure 9, the robots spent most the time of Track-Out activity 

for rotating when λ  was set to 10, which corresponds to a time of five seconds. However, a large λ  

(e.g., 26λ = ) brings about large failure costs when Track-Out activities fail to direct the robots towards 

the lost plume. In the right sub-figures of Figure 9, many failed Track-Out activities steered the robots far 

away from the LDP in vain. Therefore, we select a medium case and set λ  to 18 in the rest of this paper. 
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Figure 9. Comparison of the robot trajectories obtained by setting different values of λ .  

(a) Robot trajectories obtained using BUS; (b) Robot trajectories obtained using cVTF. 

Then, the value of δ  was set to 0.1, 0.5, and 0.9. The resulting robot trajectories are shown in Figure 10. 

Due to the slow recovery time of the MiCS-5521 sensors, both the chemical detection and non-detection 

events could lag significantly [28] if a fixed concentration threshold was used to determine the chemical 

detection event. Consequently, the smaller the fixed threshold, the greater the chance of false positive 

detection (i.e., chemical detection events still occurs even though the robot does not contact the plume); 

the larger the fixed threshold, the bigger the risk of false negative detection (i.e., failed to detect the 

chemical contact). The adaptive concentration threshold in Equation (8) can be used to correctly capture 

a sequence of chemical detection and non-detection events [17,28]. 

 

Figure 10. Comparison of the robot trajectories obtained by setting different values of δ . 

(a) Robot trajectories obtained using BUS; (b) Robot trajectories obtained using cVTF. 
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However, if δ  in the adaptive concentration threshold is too small, false positive detection events still 

occurs frequently. As shown in the left sub-figures of Figure 10, the success rates of Track-Out activities 

were abnormally high when δ  was set to 0.1. In particular, the red and green robots were misled to get 

across the chemical source by the false positive detection events in the upper-left  

sub-figure. Conversely, the probability of false negative detection is very high if δ  is too big. In the 

right sub-figures of Figure 10, most Track-Out activities failed in re-contacting the lost plume, even in 

some cases the robots have got close to the chemical source, when δ  was set to 0.1. A medium case that 

setting the value of δ  to 0.5 accords with the rule of thumb that chemical detection events occurs more 

frequently near the chemical source than other places. Therefore, the value of δ  was set to 0.5 in the rest 

of this paper. 

4.4.2. Selecting the Parameters for RL 

Similarly, due to the similar underlying principles of VTF and cVTF, only cVTF was tested. A set of 

three different values were tested in cVTF for each of ε , γ , and α . Unlike the common parameters of 

Track-Out activity, which directly influence the activation and inhibition of Track-Out activities, ε , γ , 

and α  only indirectly influence the performance of cVTF through Q-value of the VTs stored in  .  

The influence of ε , γ , and α  on the performance of cVTF are not discernible in the robot trajectory of 

individual Track-Out activity. Therefore, success rate (sr) of the Track-Out activities in ten CPT runs 

conducted in the severely fluctuating wind field, i.e., the percentage of Track-Out activities in which the 

robots successfully re-contacted the plume within the cycle limit, was used as the criterion for selecting 
ε , γ , and α . While comparing different settings of an individual parameter, the value of the other two 

parameters were kept invariant as those used in the continuous Q-learning method proposed in [25].  

For example, while selecting α , the value of γ  and ε  were set to 0.9, and 0.01, respectively. The srs 

obtained using different settings of ε , γ , and α  are shown in Figure 11. 

 

Figure 11. Success rates of the Track-Out activities in ten CPT runs obtained using different 
values of ε , γ , and α . The tested values are displayed on top of the bars. 

As shown in Figure 11, the value of ε , γ , and α  that yielded the highest srs among the corresponding 

set of values are 0.01, 0.9, and 0.5, respectively. Increasing the value of ε  and decreasing the value of 
γ  both reduced the sr, while a medium value of α  yielded the highest sr. The extreme low value of ε  

(i.e., 0.01ε = ) means that only a very small proportion of exploration is needed for determining the 
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output actions in the policy improvement process of cVTF. A high value of γ  stresses future  

rewards [19]. Figure 11 shows that striving for long-term rewards is important for re-contacting the 

plume using cVTF. A medium value of α  means that both recently acquired rewards and the stored Q-

values should be taken into account during the learning process. Based on the results shown in Figure 11, in 

the rest of this paper, the value of ε , γ , and α  were set to 0.01, 0.9, and 0.5, respectively. 

5. Results and Discussion 

In each of the three airflow fields mentioned in Section 4.2, we conducted a group of forty CPT runs, 

in which each of BUS, rBUS, VTF, and cVTF was tried for ten CPT runs. At the beginning of each CPT 

run, the databases for storing VTs were cleared. The groups of experiments conducted in mildly 

fluctuating, severely fluctuating, and naturally ventilated airflow fields were denoted as M group,  

S group, and N group, respectively. Results obtained in these three groups were presented and discussed 

in Sections 5.1 and 5.2, respectively. 

5.1. Experimental Results 

5.1.1. Success Rates 

The srs obtained in the three groups are shown in Figure 12a. In addition, the number of successful 

Track-Out activities and total number of Track-Out activities in each group are displayed as numerator 

and denominator in the fraction on top of the corresponding bar, respectively. 

 

(a) (b) 

Figure 12. Numerical results. (a) Success rates in the three groups of experiments.  

The numerator and denominator of the fraction on each bar are the corresponding number of 

successful Track-Out activities and total number of Track-Out activities, respectively;  

(b) Box plots with the whisker lengths specified as 1.0 times the interquartile range for each 

method in the three groups. 

Firstly, cVTF yielded the highest srs in all groups. The srs of BUS and rBUS are similar in each 

group, indicating the low srs of BUS are not caused by the sign of bias angle. Secondly, the srs are 

higher in M group than in S and N groups, averaged across all methods. This indicates that the srs of 
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Tack-Out activities depend on the wind fluctuation. Moreover, the srs obtained by the same method in 

S and N groups are similar, suggesting that the constructed airflow fields have not been intentionally 

optimized for the proposed methods. Thirdly, BUS and rBUS cannot adapt to different airflow fields: 

They yielded noticeably higher srs in M group than in S and N groups, while the difference of srs 

obtained by VTF or cVTF in different groups are much milder. 

5.1.2. Time-Efficiency 

Time-efficiency is assessed using the number of cycles that a method was performed per successful 

Track-Out activity, which is denoted as cys. Recall that each Track-Out activity usually extends over 

multiple cycles. The larger the cys, the longer the time used to re-contact the plume and the lower the 

time-efficiency. Box plots on the cys in the three groups are shown in Figure 12b, where the average of 

cys in each group is displayed on the bottom of the corresponding box plot. 

Generally, cVTF yielded the highest time-efficiency, while the time-efficiencies of BUS and rBUS 

are lower than VTF and cVTF: The average cys of BUS, rBUS, VTF, and cVTF across all groups are 

8.96, 8.39, 8.02, and 7.36, respectively. Moreover, the cys of BUS and rBUS are more diverse than those 

of VTF and cVTF, across different groups or within individual groups: (1) the median of box plots varies 

more severely in different groups for BUS and rBUS than for VTF and cVTF. For example, the median 

of box plots in different groups for BUS are 7.33 (M group), 11 (S group), and 6 (N group), while those 

for cVTF are 6 (M group), 7.33 (S group), and 6.67 (N group). (2) In general, the interquartile range of 

box plot, which measures the diversity of cys in a single group, averaged across different groups, for 

BUS and rBUS are larger than those for VTF and cVTF. This indicates that VTF and cVTF are generally 

more reliable than BUS and rBUS for rapidly re-contacting the plume in CPT. 

5.1.3. Robot Trajectories 

Qualitative Analysis 

Robot trajectories of typical experiments in the M, S, and N groups are shown in Figures 13–15, 

respectively. The winding feature of these robot trajectories is attributed to the APF-based obstacle avoidance 

algorithm. A video of these typical experiments can be found via the link: http://youtu.be/youhdIpp2kA. 

 

Figure 13. Typical robot trajectories obtained in M group. 
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Figure 14. Typical robot trajectories obtained in S group. 

 

Figure 15. Typical robot trajectories obtained in N group. 

From Figures 13–15, it is readily seen that cVTF succeeded more times in each group than other 

methods, as well as that BUS and rBUS succeeded more times in M group than in S and N groups.  

Both results accord with the statistical success rates shown in Figure 12a. Most of the robot trajectories 

resulted from BUS and rBUS are obviously winding, while the trajectories obtained by VTF and cVTF 

are generally straight (exceptions are caused by obstacle avoidance or the visual-based robot positioning 

system). Because a fixed universal bias angle and the time-varying wind direction are incorporated into 

the robot heading in BUS and rBUS, while the robot heading is calculated and then fixed at the beginning 

of each Track-Out activity in VTF and cVTF. In addition, it is easy to distinguish that VTF and cVTF 

yielded generally larger bias angles in S and N groups than in M group. This is mainly because the 

actions with large bias angle were prone to receive higher rewards in S and N groups than in M group. 

Quantitative Analysis 

A new quantitative metric analogous to the distance overhead [31] is used to quantitatively analyze 

the robot trajectories with respective to individual Track-Out activities. The new metric, namely  

re-contact distance overhead (rdo), is defined as the travelled distance divided by the result of subtracting 

the distance between the chemical source and the end position of the Track-Out activity from the distance 
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between the chemical source and the start position of the Track-Out activity. For simplicity, travelled 

distance is approximated as the distance between the start and end positions of the Track-Out activity. 

The averages of the rdos of successful Track-Out activities in the typical experiments shown in  

Figures 13–15 are given in Table 1. 

Table 1. Averaged re-contact distance overheads of successful Track-Out activities in the 

qualitatively analyzed typical experiments. 

 BUS rBUS VTF cVTF 

M group 1.0162 1.0178 1.2474 1.2647 
S group 1.0116 1.0184 1.4782 1.5280 
N group 1.0201 1.0193 1.6045 1.6893 

In general, VTF and cVTF yielded higher rdos, which mean lower efficiencies with respect to robot 

trajectories, than BUS and rBUS in all the three groups. While BUS and rBUS yielded similarly low rdos 

in all groups, the rdos for VTF and cVTF in the S and N groups are higher than those in the M group.  

This circumstance reflects that the rdos are dependent on the bias angle. The small universal bias angle of 

ten degree utilized by BUS and rBUS yielded similarly low rdos for the two methods in all groups.  

As shown in Figures 13–15, the bias angles learned by VTF and cVTF are larger in S and N groups than 

in M group, which accounts for the higher rdos in S and N groups than in M group for VTF and cVTF. 

5.2. Discussion 

In our experiments, BUS and rBUS have achieved much higher srs and time-efficiencies in M group 

than in S and N groups, which means the optimal bias angle obtained using Monte-Carlo simulation 

cannot adapt to different real environments. It is assumed that the sign of bias angle dominates the poor 

performance of BUS, since the robot is steered away from departing plume in the typical case shown in 

Figure 2. However, BUS and rBUS yielded similar srs and time-efficiencies in the experiments, which 

reveals the sign of bias angle do not account for the low srs and time-efficiencies of BUS. A possible 

reason is that BUS succeeded with the small rotating angle, i.e., 10°, in biasing the robot heading towards 

the departing plume for more times in M group than in S and N groups. In real applications, the 

fluctuation of airflow field is unpredictable. Optimizing the bias angle beforehand to adapt various 

unknown airflow fields is infeasible in real-world CPT missions. 

cVTF yielded similarly high srs, i.e., 58.57% (M group), 48.91% (S group), and 50.13% (N group), 

and time-efficiencies in the three groups. Even without collaboration, VTF produces higher srs and  

time-efficiencies than BUS and rBUS in S and N groups. This reveals that learning the bias angle for 

Track-Out activities in an online manner is a feasible solution to rapidly re-contacting the lost plume in 

real CPT problems. Since the bias angle is learned at the beginning of individual Track-Out activities, 

the robots can learn from recently updated VTs, which enable the adaptation to different environments. 

Moreover, cVTF yielded higher srs and time-efficiencies than VTF. Due to the ε -greedy selection 

mechanism used in the process of policy improvement, only good VTs with high Q-value are stored in 

the VT database. The shared VT database maintained by multiple robots usually contains much more 

good VTs than VT databases that are maintained independently. Thus, the probability of yielding rapid 

and successful Track-Out activities is higher for cVTF than for VTF. In addition, VTF and cVTF provide 
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an invariant robot heading during each individual Track-Out activity, while BUS produces new robot 

heading for the robot in each cycle. Thus, VTF and cVTF reduce the communication burden needed for 

controlling the robots. Although VTF and cVTF yielded higher rdos and lower efficiency with respect 

to the robot trajectory than BUS and rBUS, such a drawback can be compensated by their higher srs. 

Failed Track-Out activities will trigger the plume reacquiring behavior, which usually outputs much 

more winding routes (e.g., clover-leaf-shaped routes [10]) for the robot and deteriorates the overall 

distance overhead of the whole CPT method. 

Two major limitations of the experimental results are as follows: First, the necessity of optimizing 

the bias angle is based on the assumption that the robot requires longer time to rotate over a bigger angle. 

If the robot can realize an ideal rotating, i.e., rotating over any angle can be accomplished immediately, 

utilizing a new robot heading perpendicular to the current wind direction along the right direction might 

be optimal in most cases. Nevertheless, in the case of ideal rotating, VTF can be modified for learning 

the optimal sign of bias angle. Second, only three groups of experiments were conducted in normal 

airflow fields. The performance of our methods are not tested in more complicated environments, e.g., 

turbulent environments. Thus, we declare the applicability of our methods within a limited range. 

6. Conclusions 

We have proposed an instance-based RL method and its collaborative version, namely VTF and 

cVTF, for learning the bias angle used in Track-Out activity to rapidly re-contact the lost plume during 

the process of CPT. The Track-Out activity, which biases the robot heading relative to upwind direction, 

is activated in the time immediately following the loss of chemical detection. In VTF, the robots learn 

from their recently stored instances of successful Track-Out activities. Through collaboration, the robots 

learn from their own instances and the instances shared by other robots in cVTF. 

With respect to our experimental conditions, VTF and cVTF yielded generally higher success rates 

and time-efficiencies than BUS. VTF and cVTF realize online learning based on recently stored 

instances of successful Track-Out activities. In contrast, BUS utilizes an offline optimized bias angle 

through all Track-Out activities. Therefore, VTF and cVTF can adapt to different environments, while 

it is hard to optimize the bias angle beforehand for BUS with respect to all possible environments. 

Moreover, cVTF yielded higher success rates and time-efficiencies than VTF. Since there are more 

instances of rapidly succeeded Track-Out activities shared in cVTF than those maintained independently 

in VTF, cVTF yields higher probability of rapidly re-contacting the plume than VTF. 

As mentioned in Section 4.1, the robots’ theoretical velocity vectors were subtracted from the 

measured relative wind velocity vectors to calculate the absolute wind velocity vectors. Through this 

calculation, noises can be introduced by the robot’s movements into the absolute wind velocities. 

Nevertheless, it is feasible to neglect the introduced noises, since they are rather minor compared with 

the measured relative wind velocities. Typical wind magnitudes measured in the three groups of 

experiments are shown in Figure 16a. Errors introduced by the robot’s movements were assessed by 

averaging the differences between the theoretical and actual velocities of the robot in 30 tests, which are 

shown in Figure 16b. In each test, the robot was manuvered for 3 meters with a theoretical forward 

velocity of 15 cm/s. The actual velocity was recorded as the result of dividing 3 meters by the actual 
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spent time. While the majority of measured wind magnitudes ranged from 30 cm/s to 200 cm/s, the 

robot’s movements only introduced small errors of less than 1 cm/s. 

(a) (b) 

Figure 16. (a) Typical wind magnitudes measured in the three groups of experiments;  

(b) The robot’s actual velocities recorded in 30 tests. 
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Appendix 

Table A1 lists the notation used in this paper. 

Table A1. The notation used in this paper. 

LT  Number of cycles from the last chemical detection event till the current time. 
λ  Cycle limit for the Track-Out activity. 

ReT  Cycle limit for the plume re-acquiring behavior. 
( );kθ θ  Robot heading at the k-th cycle for BUS; Robot heading learned by VTF/cVTF. 
( );kβ β  Bias angle at the k-th cycle for BUS; Bias angle learned by VTF/cVTF. 
( ), Lkψ ψ  Angle of wind direction measured at the k-th cycle and LDP, respectively. 
( ), Lkx x  Position of the robot at the k-th cycle and LDP, respectively. 
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Table A1. Cont. 

, ,k k ks a r  State, action, and reward at the k-th cycle, respectively. 
( , )Q s aπ  Action value when action a  is conducted at state s  and thereby following policy π .

α  Learning rate used in VTF/cVTF. 
γ  Discount rate used in VTF/cVTF. 
ε  Probability of selecting random action in the ε -greedy selection mechanism. 

M  Number of actions. 
,.s, .s .Q′u u u  Start state, end state, and Q-value of the new VT u , respectively. 
u  Nearby VT of u . 
ˆ

au  The VTs associated with action a . 

  Database for storing VTs. 
N  Size limit of  . 

ijw  The weight for the j-th VT associated with action ia . 

( )c k  Transient concentration measurement at the k-th cycle. 
( )c k  Adaptive concentration threshold at the k-th cycle. 
δ  Constant parameter for calculating ( )c k . 

{ , }g g gx y=x  Goal position of the robot. 

thd  Distance threshold for determining whether to generate repulsive force or not. 

bigd  A distance that is big enough for APF to generate sufficient attractive force. 

tn  Number of times that the robot has arrived at gx  in “casting” behavior. 

ssd  Scanning span added to the scanning width in “casting” behavior. 

maxv  The maximal velocity of the robot. 
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