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Abstract: Integration of Global Positioning System (GPS) and Inertial Navigation System 

(INS) integrated system involves nonlinear motion state and measurement models. 

However, the extended Kalman filter (EKF) is commonly used as the estimation filter, 

which might lead to solution divergence. This is usually encountered during GPS outages, 

when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To 

enhance the navigation system performance, alternatives to the standard EKF should be 

considered. Particle filtering (PF) is commonly considered as a nonlinear estimation 

technique to accommodate severe MEMS inertial sensor biases and noise behavior. 

However, the computation burden of PF limits its use. In this study, an improved version 

of PF, the unscented particle filter (UPF), is utilized, which combines the unscented 

Kalman filter (UKF) and PF for the integration of GPS precise point positioning and 

MEMS-based inertial systems. The proposed filter is examined and compared with 

traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is 

adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced 

ionosphere-free linear combinations of pseudorange and carrier-phase measurements are 

used for PPP. The performance of the UPF is analyzed using a real test scenario in 

downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of 

samples needed to produce an accurate solution, in comparison with the traditional PF, 

which in turn reduces the processing time. In addition, UPF enhances the positioning 
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accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters 

produce comparable results when the GPS measurement updates are available. 

Keywords: GPS; PPP; INS; EKF; UKF; UPF; tightly coupled 

 

1. Introduction 

Traditionally, differential GPS with tactical or navigation-grade inertial sensors are used in Global 

Positioning System (GPS) and Inertial Navigation System (INS) integration for precise navigation 

applications [1–4]. This is mainly due to the inherited high accuracy of differential GPS in comparison 

with the standalone GPS mode. Unfortunately, this requires a relatively nearby base station, which 

limits the navigation range and increases the cost and complexity of the system. The precise point 

positioning (PPP) technique is capable of providing decimeter-positioning accuracy without the need 

for a base receiver [5]. PPP has been the focus of a number of research groups in the last two decades 

(see for example, [6–8]). To speed up the PPP solution convergence time, a number of PPP ambiguity 

resolution techniques have been developed [9–11]. PPP has been used in a number of applications, 

including precise surveying, disaster monitoring, offshore exploration, and others [12–14]. On the 

inertial side, recent advances in micro-electro-mechanical sensors (MEMS) technology enabled the 

development of a generation of low-cost inertial sensors. MEMS sensors are characterized by their 

small size, light weight and low cost, in comparison with high-end inertial sensors. However, MEMS 

sensors generally have poorer performance compared with high-end inertial navigation unit (IMU) due 

to the significantly higher errors and biases affecting these low-cost inertial sensors.  

Commonly, the extended Kalman filter (EKF) is considered as the estimation filter for GPS/INS 

integration (e.g., [3,4,15]). In EKF, the non-linear system and observation models are linearized 

around the updated navigation parameters using the first-order Taylor series expansion, under the 

assumption that the noise is Gaussian. However, as a result of neglecting higher order terms, EKF 

might fail to produce a reliable estimation solution, especially during GPS outages. This is particularly 

the case when low-cost MEMS-based inertial measurement units (IMU) are used. The iterated 

extended Kalman filter (IEKF) was considered by a number of researchers, e.g., [16,17] which 

attempts to improve the linear approximation of the observation model through iterative re-linearization. 

Unfortunately, the IEKF does not overcome the convergence problem completely.  

The unscented Kalman filter (UKF) was introduced by [18] as a linear regression estimation filter. 

UKF propagates a deterministically a fixed set of sigma points with appropriate weights through the 

non-linear motion and observation models to capture the system a posteriori mean and covariance 

estimates [19]. However, similar to EKF, the algorithm is still dealing with the assumption of Gaussian 

distribution. In contrast to linearization filters, Particle filtering (PF) avoids the linearization of the 

system models. Rather, it obtains an approximate estimation solution for the nonlinear model. In 

addition, PF can accommodate non-Gaussian distributions noise. As a result, it can be considered as a 

non-parametric estimation method for non-linear/non-Gaussian applications. A drawback of the PF, 

however, is that it is featured by a large computational cost, which represents the main limitation in 
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practical use. Nevertheless, with the advances in computer technology, a number of researchers 

successfully used it for GPS/INS integration (e.g., [20–23]). 

To overcome the linearization and computational cost problems, recent research focused on fusing 

PF with either of EKF or UKF to form the extended particle filter (EPF) or the unscented particle filter 

(UPF), respectively [24,25]. Haug [24] used EKF or UKF to produce a posteriori mean and covariance 

estimates, which are then employed to produce the PF importance density function for particle 

generation. Then, the normalized importance weights of the particles are calculated to refine the 

system posteriori estimates. Although, this technique significantly reduces the number of particles and 

processing time compared with traditional PF, it confines the PF importance density function to 

Gaussian distribution. As such, the expected enhancement can be considered limited [26]. According 

to Simon [25], a bank of EKFs or UKFs can used for each particle combined with the likelihood 

function to derive the system a posteriori estimates. This technique can significantly reduce the 

number of needed particles while reserving the non-Gaussian natural of the system noise.  

In this research, a UPF is developed, based on the approach proposed by Simon [25], to merge GPS 

measurements, through un-differenced PPP technique, and the inertial sensor measurements. All of the 

available GPS observations, including pseudorange, carrier-phase, and corrected Doppler observations, 

are used. The performance of the developed filter is compared with that of the traditional filters, 

including the standard EKF, UKF, and PF, both when GPS is available and when there is a complete 

GPS outage, are encountered. It is shown that, as long as no GPS outages are encountered, the 

performance of all estimation filters is comparable. However, during GPS outages, the performance of 

UPF is superior to the traditional estimation filters. On average, about 15% positioning accuracy 

enhancement is obtained through UPF, in comparison with EKF. In addition, the number of particles 

needed to capture an accurate estimation is significantly reduced when UPF is used, in comparison 

with the traditional PF, which in turn reduces the computational cost significantly. 

2. GPS PPP/MEMS Measurement and Motion Models 

Tightly coupled (TC) architecture is implemented in this research, adopting a central filter to 

process the GPS raw measurements (pseudorange, carrier-phase, and Doppler) and the IMU 

measurements to produce estimates of the state vector including position, velocity, and attitude. The 

mathematical model of the inertial navigation system is commonly described in the framework of 

linear dynamic systems. The dynamic behavior of such systems can be described using a state-space 

representation. For this purpose, a system of non-linear first-order differential equations can be 

described as [27]: 

2
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where, r୬	 is the position vector, latitude, longitude and altitude; V୬	 is the velocity vector in the East, 

North and Up (ENU) reference frame, 	Vሶ ୬ is the kinematic acceleration vector in the ENU reference 

frame; 	Ωୣ୬୬ . V୬ represents the effect of the motion of the ENU frame with respect to the ECEF frame; 
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 	2Ω୧୬ୣ . V୬ is the Coriolis acceleration vector; g୬	 is the gravity vector, including the gravitation term 

and the centripetal term related to the Earth rotation; and f ୠ is the specific force vector in the body 

frame, which is measured by the accelerometers. The matrix 	Ω୧୬ୣ 	 is the skew-symmetric matrix of 

rotation rate vector of the Earth, which can be expressed in the ENU frame as: 
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The matrix 	Ωୣ୬୬ 	 is the skew-symmetric matrix of the rotation rate vector of the ENU frame with 

respect to ECEF frame, expressed in the ENU frame as:  
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(3)

The matrix 	Ω୧ୠୠ  is the skew-symmetric matrix of the rotation rate vector of the body frame with 

respect to the ECI frame 	ω୧ୠୠ , expressed in the body reference, which is measured by the gyros. The 

matrix 	Ω୧୬ୠ  is the skew-symmetric matrix of the rotation rate of the navigation frame with respect to 

inertial frame 	ω୧୬ୠ  expressed in the body frame, which is computed combining 	ω୧୬ୣ  and 	ωୣ୬୬ 	 transforming 

the result in the body frame as follows: 

b b n nR ( )n enin ieΩ = ⋅ Ω +Ω  (4)

The bias and scale factor drifts are modeled as a first-order Gauss-Markov process, which can be 

formed as follows: 

1b b wai ai baibai
δ δτ= − +

 (5)

1b b wgi gi bgibgi
δ δτ= − +

 (6)

1S S wai ai SaiSai
δ δτ= − +

 (7)

1S S wgi gi SgiSgi
δ δτ= − +

 (8)

where the subscript “i” indicates the axis; ߬௔ and ߬௚ are the correlation times for the accelerometers 

and gyros, respectively; and 	ݓ௔  and ݓ௚  are the Gauss-Markov process driving noises, of which 

spectral densities are ݍ௔ and ݍ௚. The clock errors unique to the GPS measurements, including the clock 

offset and drift are modeled by [28]:  

( c t ) ( c t ) wo f f s e t d r i f t o f f s e tδ δ δ δ= +
 (9)



Sensors 2015, 15 7232 
 

( c t ) wd r i f t d r i f tδ δ =
 (10)

where ݓ௢௙௙௦௘௧ and 	ݓௗ௥௜௙௧	 are the clock offset and drift driving noise with spectral density 	ݍ௢௙௙௦௘௧ and 	ݍௗ௥௜௙௧, respectively. The measurement model of the GPS/INS filter in the TC architecture has the 

typical form: 

y h( x ) wk k= +  (11)

where ݕ௞ is the corrected un-differenced ionosphere-free GPS measurements; h(ݔ௞) is the nonlinear 

measurement model which relates the stated vector x with the observation vector y and w is the 
Gaussian white noise with zero mean and covariance matrix P୷.  

The mathematical model for the un-differenced ionosphere-free combination of code and carrier 

phase measurements can be written as: 

2 2
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1 2
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2 2f Φ -f Φ s s1 s21 1 2 2Φ = =ρ +cdt -cdt +T+c(Aδ -Bδ ) c(Aδ -Bδ )+( λN )+εr3 r1 r22 2f -f1 2

−  (13)

where ଵܲ and ଶܲ are GNSS pseudorange measurements on ܮଵ and ܮଶ, respectively; ߔଵ	and ߔଶ are the 

GNSS carrier phase measurements on ܮଵ  and ܮଶ , respectively; ݀ݐ௥  and ݀ݐ௦  are the clock errors for 

receiver and satellite, respectively; ݀௥  and ݀ୱ  are frequency-dependent code hardware delay for 

receiver and satellite, respectively; ߜ௥ and ߜ௦ are frequency-dependent carrier phase hardware delay 

for receiver and satellite, respectively; e, ε	are relevant system noise and un-modeled residual errors; 

and ܰߣ	തതതതത is the ambiguity term for phase measurements. For the un-differenced ionosphere free linear 

combination, this term is not integer due to the non-integer nature of the combination coefficients, ܰߣതതതത = ௙భమఒభேభି௙మమఒమேమ௙భమି௙మమ , where ଵܰand ଶܰ are the ܮଵ and ܮଶ non-integer ambiguity parameters, including 

the initial phase biases at the satellite and the receiver, respectively;	ߣଵ	and ߣଶ are the wavelengths of 

the Lଵ and Lଶ carrier frequencies, respectively; c is the speed of light in vacuum; T is the tropospheric 

delay component; ρ is the true geometric range from the antenna phase center of the receiver at 

reception time to the antenna phase center of the satellite at transmission time. A and B are frequency 

dependent factors A= 
௙భమ௙భమି௙మమ and B =	 ௙మమ௙భమି௙మమ.  

With the availability of the final IGS orbital products corrected for the effect of the Earth’s rotation 

during signal transit, the outputs of position and velocity from the INS mechanization are used to 

predict the pseudorange, phase, and Doppler measurements through the non-linear observation 

equations. The UNB3 tropospheric model, consisting of the Saastamoinen vertical propagation delay 

model and Niell mapping function, is used to account for the tropospheric error [29]. The effects of 

ocean loading, Earth tide, carrier-phase windup, sagnac, relativity, and satellite antenna phase-center 

variations are accounted for using existing models [30]. In addition, the satellite clock error is 

accounted for using the final IGS clock products. Considering the above corrections, the corrected 
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pseudorange, carrier phase and Doppler measurements from GPS, as well as the INS-predicted 

measurements, are processed by the integration filter to estimate the INS state vector. Finally, the 

obtained INS state estimates are fed back to the INS mechanization using the closed loop approach. 

The architecture of the proposed tightly coupled integrated system is shown in Figure 1.  

 

Figure 1. Flow chart of the proposed tightly coupled GPS PPP/MEMS integrated system. 

3. Estimation Filters 

Nonlinear estimation filtering techniques are employed to estimate the state vector of the proposed 

integrated GPS PPP/MEMS-based inertial system. In this section, the algorithms of UKF and PF are 

first briefly described. Then, the proposed unscented particle filter (UPF) is introduced. 

3.1. Unscented Kalman Filter (UKF)  

In UKF, number of points with appropriate weights called sigma points are deterministically 

selected to simulate the system probability density function under the assumption of Gaussian 

distribution. According to Bergman [19], the sigma points can capture the mean and covariance of a 

random vector up to the third order accuracy. Comparing with the traditional EKF, in which the higher 

order terms in Tylor expansion series are neglected, UKF should provide superior performance in 

simulating the Gaussian distribution and the nonlinearity behavior of the systems. The sigma points 

with zero mean can be generated based on a given squared dimension covariance matrix. As our 

distribution has a desired mean ̅ݔ, a symmetric of 2n points is generated around the mean state vector. 

The generated points are propagated through the motion model yielding the predicted mean and 

covariance. Finally, the updated mean and covariance are estimated based on the GPS observations 

updating. The unscented Kalman filter can be defined according to [19] follows: 
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1. Initialize with (k=0); 

0 0x E [ x ]=  
0 0 0 0 0

TP E [ ( x x ) ( x x ) ]= − −  

2. Define Sigma Points; 
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Where I = 1: n, are the sigma points and n is the dimension of the state vector. 

The parameter λ is a scaling parameter. 

3.  
4. Motion Model Update Step; 
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where ̅ݔ଴ and ଴ܲ are the initial state vector and variance-covariance matrix, respectively; ݔ௜ and ܼ௜ are 

the state and observation vectors for the corresponding sigma points; f and h are the non-linear motion 
and observation models, respectively; ݔ௞,௞ିଵ, ܼ௞,௞ିଵ and ௫ܲೖ,ೖషభ  are the time prediction state vector, 

observation vector and variance-covariance matrix, respectively;  ௞, and ௫ܲೖ are the time update stateݔ	

vector and variance-covariance matrix, respectively. 

3.2. Particle Filtering (PF) 

In contrast with the deterministic sigma points which are simulating Gaussian probability 

assumption in UKF, PF uses Monte Carlo simulation technique to approximate the non-Gaussian 

probability distribution through a set of weighted samples called particles around the mean state 

vector	̅[31] ݔ. The simulated particles are propagated through the non-linear motion model yielding the 

prior probabilistic density which works as an importance density function. Then, the observation 

probability density function which is obtained from passes the predicted particles through the  

non-linear observation model is used to update the importance density particles. Finally, a resampling 

step is applied to remove the samples with low weights and the posterior probability is redistributed 
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according to the new selected weights. The particles and the corresponding weights prediction and 

updating are described as follows: 

1. Initialize with (k = 0) 

0 0 0
1ix x , w
N

= =
 

For i = 1 …N, the filter particles are drawn for xത଴୧  from prior P(x଴); where, xത଴ and 

P(x଴) are the initial state vector and variance-covariance matrix. 

2. Importance Sampling (k = 1: ∞) 

The prior probabilistic motion density is used as an importance density by passing the 

state vector samples through the nonlinear mechanization equations 

1 0 1 1 1
i
k,k t :k :kx ~ q(x : x , y )− − −  

3. Measurement Updating 

In the measurements updating step, the time updating samples are passing through the 

non-linear measurements system to create the observation probability density; 

1 1 1 1
i i

k ,k :k :k(Z : z ) ~ P( y : x )− −  

For i = 1 …N, the importance weight is evaluated as follow; 
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Normalize the importance weights; 
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Estimation the mean state vector; 

11

N i i
k k k ,ki

x w x −=
=   

4. Resampling Step 

In this step, the samples with high weights are selected and redistributed. The 

multinomial distribution resampling technique is applied as pointed out by [32]. 

3.3. Unscented Particle Filter (UPF) 

In addition to the computational cost of employing the traditional PF due to the large samples 

needed to fit the posterior probability distribution, the major drawbacks of using the traditional PF, is 

the use of the prior probabilistic motion density as an importance density function. The motion 

importance density may fail to move the weighted particles toward the high-likelihood regions due to 

the high drift of low-cost inertial sensors, especially during GPS outages. To overcome these 

limitations, a bank of UKFs (sigma points generating) is used for each particle to generate the 

importance density functions. The UKF-based importance density is leading to move the particles ݔ௜ 
towards the high-likelihood regions by producing new particles ̅ݔ௜ with included knowledge about the 

latest observation. The importance sampling step can be modeled as follows [25]: 
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1. For each particle i = 1…N, a set of sigma points are defined for j = 1…n as follow: 
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2. Sample propagation for each sigma point (time update)  
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3. Sample update for each sigma point (measurement update) 

1 1
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i
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4. Results and Discussion 

A vehicular test was conducted in downtown Kingston, Ontario, to evaluate the performance of the 

developed integrated GPS-PPP/MEMS-based inertial system. The equipment used comprises the 

NovAtel SPAN-CPT system and the Trimble R10 GNSS receiver. The SPAN-CPT system consists of 

NovAtel OEM4 GPS receiver and a MEMS IMU containing three MEMS-based accelerometers and 

three fiber optic gyros. A differential carrier phase-based GPS/MEMS-based INS solution was 

obtained to provide the reference solution. In order to create this reference solution, a Trimble R7 

GNSS receiver was setup at a point with precisely known coordinates, which was used as a base 

station. Dual-frequency raw GPS pseudorange, carrier phase and Doppler measurements were logged 

at a 1 Hz rate, while the IMU raw data were logged at a 100 Hz rate. The duration of the trajectory test 

was approximately 55 min. Figure 2 shows the trajectory test area. 

Figure 3 shows the positioning solution of the newly developed integrated system for latitude, 

longitude and altitude, which are compared with the reference solution. As can be seen, all filters can 

achieve decimeter-level positioning accuracy when no GPS outages are inserted. The results obtained 

by the various filters agree to the few-centimeter level, which indicate that the effect of non-linearity 

on the positioning accuracy is marginal. This means that the use of EKF, which is relatively easier to 

implement, would be advantageous from the estimation cost point of view.  
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Figure 2. Vehicle test trajectory and simulated complete GPS outages.  

 

Figure 3. Cont. 
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Figure 3. Positioning errors for various filters, with no GPS outages inserted.  

(a) Positioning errors in latitude; (b) Positioning errors in longitude; (c) Positioning errors 

in altitude. 

Figure 4 shows the velocity errors in east, north, and up directions, respectively, using EKF as a 

central filter. In comparison with the differential mode, the results show that centimeter/sec-level 

accuracy can be achieved using a single receiver. Figure 5 shows the difference between the east 

component of the velocity solutions obtained through PF and UKF, respectively, and that of EKF. As 

can be seen, the solutions agree to the millimeter/sec-level. Similar results are obtained for the other 

two components.  

 

Figure 4. Velocity estimation errors.  

 

Figure 5. Difference between UKF, PF, and UPF east velocity estimation results and the 

altitude estimated using EKF.  
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For attitude determination, because of the absence of the external aid in our case, the attitude 

accuracy depends mainly on the velocity estimation. This is especially correct for the roll and pitch 

components because of their strong coupling with the horizontal velocities in east and north directions. 

The accuracy of the estimated azimuth depends mainly on the quality of the gyros used. Figure 6 

shows the results of the attitude components, differenced with respect to the differential-based 

solution, using EKF. As can be seen, the two solutions agree to a high degree of accuracy. Figure 7 

compares the roll results obtained through nonlinear filters with those of EKF. As can be seen, all three 

filters provide comparable roll results. Similar results are obtained for other attitude components.  

 

Figure 6. Attitude estimation results using EKF, referenced to differential-based  

integrated system. 

 

Figure 7. Comparison of roll component results obtained through various estimation filters. 

Based on the positioning, velocity, and attitude results presented above, we can conclude that, when 

GPS is available, the contribution of the computationally expensive nonlinear filters, such as PF and 

UPF, is not significant. In other words, EKF, which is relatively easier to implement, would provide a 

more efficient solution for integrating GPS and MEMS-based inertial measurements.  

The advantage of using UPF over PF is that the number of particles needed to capture an accurate 

estimation is reduced. UPF sped up the navigation parameters estimation convergence with small 

number of particles needed. Figures 8 and 9 show the estimation results of the pitch angle, as an 
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example, on the number of samples needed for PF and UPF. While 500 particles are needed for PF to 

detect the best estimate of the parameter, only 100 particles are needed for UPF to detect the same. For 

UPF, increasing the number of particles does not significantly enhance the estimation accuracy. 

 

Figure 8. Pitch angle estimation as a function of number of samples used by PF. 

 

Figure 9. Pitch angle estimation as a function of number of samples used by UPF. 

To simulate challenging positioning conditions through the test trajectory, including high and low 

speeds, twelve simulated GPS outages of 60 s each are introduced as shown in Figure 1. Figure 10 

shows the positioning errors during GPS outages number 2, 5 and 6, as examples. It can be clearly seen 

that meter-level positioning accuracy can be obtained through all estimation filters. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 10. Cont. 



Sensors 2015, 15 7242 
 

(i) 

Figure 10. Positioning accuracy during GPS outages for latitude, longitude, and altitude. 

Outage 2 (a, d, g); outage 5 (b, e, h) and outage 6 (c, f, i). 

It can be also seen that UPF slightly enhances the positioning accuracy during the GPS outages, in 

comparison with the traditional estimation filters. In addition, the nonlinear estimation filters failed to 

present significant improvement in the positioning accuracy compared with the traditional EKF. This 

is essentially attributed to the use of linear stochastic models, i.e., first order Gaussian Markov process, 

for all filters to present a unified comparison between the linear and non-linear estimation filters. In 

addition, we used fiber optic gyros, as opposed to MEMS-based gyros, which exhibit significantly 

better behavior. 

Figure 11 shows the average of the maximum positioning errors, referenced to the carrier-phase-based 

DGPS solution, during the 60-second GPS outages. It can be observed that, in comparison with EKF, 

UPF enhances the positioning accuracy during the GPS outages by 14%, 13% and 15% in latitude, 

longitude and altitude, respectively. However, compared with PF, the solution improvements are only 

6%, 5% and 7% in latitude, longitude and altitude, respectively. It can also be seen that both UKF and 

EKF present comparable positioning results in all three components. 

 

Figure 11. Average of maximum error for different estimation filters during GPS outages. 
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5. Conclusions 

This paper examined the performance of UPF and compared its results with those of UKF, the 

traditional non-linear PF, and the EKF for tightly-coupled PPP GPS/MEMS-based INS integration. A 

field trial was conducted to evaluate the performance of the developed system. It has been shown that 

all estimation filters obtain comparable results in positioning, velocity, and attitude, as long as no GPS 

outages are encountered. However, in comparison with the traditional PF, the use of UPF significantly 

reduces the number of particles needed to obtain an accurate solution, which speeds up the estimation 

of navigation parameters. When a complete GPS outage is encountered, the use of UPF enhances the 

positioning accuracy by up to about 15% in comparison with other estimation filters. 
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