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Abstract: Tracking degradation of mechanical components is very critical for effective 

maintenance decision making. Remaining useful life (RUL) estimation is a widely used form 

of degradation prediction. RUL prediction methods when enough run-to-failure condition 

monitoring data can be used have been fully researched, but for some high reliability 

components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from 

normal to failure. Only a certain number of condition indicators in certain period can be used 

to estimate RUL. In addition, some existing prediction methods have problems which block 

RUL estimation due to poor extrapolability. The predicted value converges to a certain 

constant or fluctuates in certain range. Moreover, the fluctuant condition features also have 

bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL 

prediction model based on neural network with dynamic windows. This model mainly 

consists of three steps: window size determination by increasing rate, change point detection 

and rolling prediction. The proposed method has two dominant strengths. One is that the 

proposed approach does not need to assume the degradation trajectory is subject to a certain 

distribution. The other is it can adapt to variation of degradation indicators which greatly 

benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is 

validated by real field data and simulation data. 
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1. Introduction 

Mechanical faults can lead to whole system failure and great economic losses. Especially for key 

assets like helicopters or wind turbines, the possible consequences of component failure are serious. In 

order to plan the maintenance actions and prevent potential failure, many researchers have paid great 

attention to tracking the degradation of mechanical components. Usually, remaining useful life (RUL) 

estimation is a widely used form of degradation prediction which can help make maintenance  

decisions [1]. 

Most previous works use a sufficient number of failure data to train prediction models. It is widely 

accepted that the more failure histories are used to train the models, the more accurate results can be 

achieved. In industry, besides the failure history data, there is suspension data. In order to overcome the 

problem of a limited amount of historic data, Tian et al. [2] proposed a neural network prediction method 

which can utilize both failure and suspension histories data. Then, for alleviating the fluctuation of 

degradation indicators, a function generalized from the Weibull failure rate function was used to fit 

condition indicators [3]. Recently, Lu et al. [4] developed an effective RUL prediction method based on 

a feed-forward neural network. In the paper, only truncated histories were used to train the model.  

Zhou et al. [5] proposed a state space RUL prediction model without linear and Gaussian assumptions. 

In the model, an efficient Monte Carlo-based algorithm was developed to estimate the parameters.  

Zhang et al. [6] developed a Bayesian networks-based degradation model. It can achieve accurate RUL 

values even when the degradation indicator fluctuates over a great range. Besides, maintenance decisions 

can be made efficiently according to the degradation state identification. Dong and He [7] constructed an 

integrated diagnostics and prognostics framework based on a hidden semi-Markov model (HSMM). 

Similarly, the extended HSMM is widely applied to RUL prediction [8–10]. Moghaddass and Zuo [11] 

proposed a new integrated diagnostics and prognostics framework based on non-homogeneous continuous 

time HSMM. Si et al. [12] proposed a Wiener process-based degradation model in which a recursive 

filter algorithm was used to update parameters. Then, Wang et al. [13] developed a new degradation 

prediction framework in which an additive Wiener process model contained both linear and nonlinear 

parts. Wang et al. [14] developed an adaptive RUL prediction method based on a generalized Wiener 

process. The Wiener process also was used to predict the RUL of 2008 PHM competition data [15]. 

Lately, an adaptive and nonlinear prognostic model to estimate RUL using a system history of the 

observed data to date was presented [16]. Ye et al. [17] developed a semi-parametric inference method of 

a simple Gamma-process model and a random-effect variant. This enabled the Gamma process-based 

degradation model results to be close to the practice. Recently, Ye and Chen [18] systematically 

investigated the characteristics of an inverse Gaussian process as a degradation model. Then, based on 

this work, Peng et al. [19] studied the inverse Gaussian model from a Bayesian perspective. Recently, 

Ye and Xie [20] systematically reviewed degradation models, especially for stochastic processes models. 

However, the efficiency of stochastic processes-based degradation models depends on the proper 

estimation of some prior distributions and parameters of the model. In addition, a number of failure or 
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suspension histories are needed. To the best of our knowledge, prediction models adaptive to a limited 

number of condition monitoring data have not been fully researched yet. 

Tran et al. [21] proposed a one-step-ahead prediction method based on regression trees. Similarly, 

Tian and Zuo [22] used an extended recurrent neural network to do one-step-ahead prediction for gear 

degradation. However, one-step-ahead method has drawbacks. It cannot directly be used to predict RUL. 

Tran et al. [23] developed a multi-step ahead prediction method using regression trees and neuro-fuzzy 

systems. Similarly, this method cannot solve the RUL prediction problem. Chen et al. [24] developed an 

integrated adaptive neuro-fuzzy and high-order particle filtering approach to predict the evolution of 

fault indicators and estimate the probability density function of RUL. This method overcomes the 

limitation that the current state of system only depends on the previous state. It can improve the 

prediction accuracy. He et al. [25] developed an integrated RUL prediction method using particle 

filtering, then applied it to gear life prediction. Ma and He [26] improved the trending of the fault features 

through combining vibration analysis with grease debris analysis based on a particle filtering framework. 

Recently, Yoon and He [27] developed a new prognostic estimation technique. Different from previous 

particle filtering-based estimation methods, the proposed model was a hybrid of the unscented Kalman 

filter and particle filtering. Maio et al. [28] developed a degradation trend prediction method based on a 

relevance vector machine and exponential regression. It can deal with degradation indicators with low 

signal-to-noise ratios caused by different working conditions and failure severity. However, existing 

degradation trend prediction methods also have the following problems: (1) When the steps in the  

long-term rolling prediction exceed a certain value, the predicted value will be same or will fluctuate in 

a certain range. This makes RUL prediction unavailable; (2) Degradation indicators extracted from 

vibration signals usually display large fluctuations and the degradation paths vary with the different rates 

at each phase. This results in large variance of the estimated RUL. 

In order to solve the problems mentioned above, this paper proposes a new adaptive degradation 

prediction method based on neural network combined with dynamic windows. The main contributions 

of this paper can be concluded as follows: (1) A new adaptive prediction model which adapts to various 

degradation paths is developed. It achieves this goal by adjusting the training window adaptively 

according to real data; (2) A dynamic window adjusting method based on increasing rate is proposed. It 

can realize RUL predictions using only a limited number of condition monitoring data with high 

prediction accuracy; (3) The change point detection method and window adjusting method of this case 

is proposed. This method can enable determination of predicted values more precisely by using the 

indicators after change point. 

The rest of this paper is organized as follows: Section 2 explains the drawbacks of traditional rolling 

prediction based on neural networks. In order to overcome these drawbacks, a new prediction method 

with dynamic windows is proposed in Section 3. In Section 4, two simulated degradation indicators of 

two different components are used to validate the proposed method. The proposed method is validated 

by two real-field datasets in Sections 5 and 6, respectively. Finally, Section 7 concludes the whole paper 

and presents prospects for future research. 
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2. Traditional Neural Network Based Prediction Model 

2.1. Problem Description 

RUL is usually selected as the index for degradation prediction and is used to schedule maintenance 

actions. For different degradation indicators, there are different forms of RUL. In this paper, degradation 

indicators extracted from vibration signals is used to predict RUL. Suppose the inspection interval is 

equal. The degradation indicators can be denoted as Y = [y1, y2, … yt-1, yt, …. yT]. T is the failure time or 

the time of degradation indicator hitting threshold. Because indicators used for training and prediction 

should be normalized before being input into the neural network, therefore, all the indicator vectors used 

in this paper are supposed to be normalized vectors. If it is predicted at time t, RUL will be T-t. This is 

illustrated in Figure 1. The dashed line is the predicted degradation indicators. D denotes the  

failure threshold. 

 

Figure 1. Illustration of degradation process and RUL prediction. 

2.2. Rolling Prediction Based on a Neural Network 

For some components like gearboxes in wind turbines or helicopters, collecting condition monitoring 

data from normal to failure is very difficult. Especially for new types of gearbox which have not been 

used, no failure history can be used for RUL prediction. Only the collected condition monitoring data 

from in use performance can be used. Traditionally, two kinds of rolling prediction methods are used. 

The first is to predict one future indicator value according to a series of former indicators. For example, 

degradation indicators [y1, y2, y3, y4, y5] are used to predict the indicator y6. Then, [y2, y3, y4, y5, y6] is 

used to predict the value of y7. This process is repeated until the predicted indicator exceeds some 

predefined failure threshold. The second way is to predict a series of future indicators according to a 

series of former indicators. For example, degradation indicators [y1, y2, y3, y4, y5] are used to predict the 

indicators [y6, y7, y8, y9, y10]. Then, [y6, y7, y8, y9, y10] is used to predict the value of [y11, y12, y13, y14, y15]. 

Similarly, this prediction process will stop once the predicted indicator exceeds the predefined  

failure threshold. 
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A back propagation neural network (BPNN) is used to conduct rolling prediction. Roughly speaking, it 

is a black box which obtains output according to the input with regardless of the mechanism between input 

and output. It constructs the relationship between input and output by adjusting the connection weights 

among neurons. The rolling prediction framework based on a neural network is illustrated in Figure 2. 

 

Figure 2. RUL estimation using rolling prediction. 

2.3. The Disadvantages of Neural Network-Based Prediction 

Though neural networks have many advantages like good fitting of time series data, their 

extrapolability is poor, especially for long-term prediction. The main reason is resulted from small 

training samples and the range of activation function of the neurons, so the output converges on a certain 

value or fluctuates in a small range. In order to illustrate these phenomena, a simple example is given. 

Degradation indicators are simulated using the degradation model presented in [29,30]: 

( ) ( )
2

exp
2

t
s t t t

σϕ θ β ε 
= + + − 

   
(1)

where s(t) denotes a continuous degradation indicator extracted from vibration signals, φ is a constant, 

θ is a lognormal random variable, lnθ has mean μ0 and variance (σ0)2. β is a normal random variable with 

mean μ1 and variance (σ1)2. ε(t) is a centered Brownian motion with mean 0 and variance σ2t. 

In this simulation, φ is equal to 1. The mean and standard deviation of lognormal distribution of θ are 

2 and 0.02. The mean and standard deviation of β are 1 and 0.05. σ of Brownian motion is equal to 0.05. 

The simulated indicators of two components are illustrated in Figure 3. 

Figure 3a shows that degradation indicators generally increase from the beginning of the working 

time of Component 1. However, the degradation indicator of Component 2 does not increase in the initial 

state. In engineering applications, components of different type will have different degradation processes. 

Even components from the same type may have different degradation processes, so two different 

degradation processes of different component were simulated. Suppose the time interval between two 

successive inspections is 1 h. 
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Figure 3. Simulated degradation indicators of two components. (a) Component 1;  

(b) Component 2. 

Let us take the simulation data of Component 1 as example. The multi-step ahead prediction 

mentioned in Section 2.2 is used to predict RUL. Indicators before prediction time t are divided into two 

groups. If t = 100 h, each group contains 50 indicators, respectively, so the first 50 indicators  

[y1, y2, …y50] are used as input data. The second 50 indicators [y51, y52, … y100] are used as output data. 

In other words, the first 50 indicators are used to predict the next 50 indicators, which is actually a  

50-step ahead prediction. For the neural network, the number of neurons in hidden layer is selected 10. 

Learning rate is 0.05. Maximum iteration epoch is 1000. Error goal is 1e−10. The activation functions 

in the hidden layer and output layer are ‘logsig’ and ‘purelin’, respectively. Weights are adjusted based 

on gradient descent method. In the rest of this paper, all the neural network parameters are the same. 

Figure 4 shows the two results achieved by rolling prediction. 

 

Figure 4. Results of rolling prediction. (a) Results fluctuate in a range; (b) Results keep the 

same value. 

Figure 4a shows that the predicted values fluctuate within a certain range. However, sometimes the 

predicted values converge to a certain value as shown in Figure 4b. In both cases, the predicted values 

cannot exceed the predefined threshold. Therefore, the traditional BPNN method cannot be used to 

predict RUL. 
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3. Proposed Neural Network-Based Prediction Model 

Most rotating machinery undergoes a gradual degradation process. It is a long period during which 

indicators show only small range variations. In that case, we assume that there is no need to predict RUL 

in that period. Prediction should be conducted after incipient fault is found. The incipient faults of these 

rotating parts can be found through signal processing analysis. Thus, the prediction time t can be 

determined. The degradation indicators before time t are used to train neural network. The newly 

developed prediction method mainly contains three parts: (1) degradation indicator extraction;  

(2) window size determination and (3) rolling prediction. Because indicator extraction is not the main 

scope of this paper, the other two parts will be explained. All the cases suppose that degradation 

indicators are available. 

3.1. Window Size Determination 

A neural network predicts the degradation indicator trends mainly depending on the corresponding 

training data trend. If the training data does not have an obvious trend, it is difficult to predict future 

degradation indicators using a neural network, so training data selection is very important for RUL 

prediction. We name the coordinate range of the training data shown in Figure 5 as the training window. 

 

Figure 5. Illustration of the training window. 

Window size is a dynamic value for each prediction time. That means the window size should be 

adjusted before the prediction. The window size of training data can be determined through two steps. 

First, an initial window size is determined randomly. Then, the window size is gradually adjusted based 

on the increasing rate of the window. Second, detecting whether there is change point in the training 

window or not. If there is change point, indicators after the point are used to train the prediction model, 

rather than the indicators in window determined by the first step. 
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3.1.1. Window Size Determination Based on Increasing Rate 

As shown in Figure 5, suppose the prediction time is t. Then, indicators [yi, …, yo, …, yt−1, yt] are used 

for training. [yi, …, yo−1, yo] are used as input. [yo+1, …, yt−1, yt] are used as output. For window size, it 

should not be too big or too small. Too big window size may make the prediction results over dependent 

on the whole trend of the training data. It means that the predicted indicators may have a similar trend 

as the training data. However, the real trend of increase of future unknown indicators may be very 

different from the training data. This may lead to big deviations between the real values and predicted 

values. This phenomenon is explained by Figure 6. On the contrary, too small a window size may make 

the overall tendency not be reflected well and lead to problems as follows: descending, increasing 

dramatically, and stable. The three typical results from small windows are illustrated in Figure 7. The 

prediction results caused by small windows are explained by Figure 8. 

 

Figure 6. Prediction results comparison using different window sizes (start at 10 h). 

In Figure 6, the real data is from a run-to-failure process of a generator shaft in a helicopter. The data 

is also used in Section 6 to validate the proposed prediction method. Figure 6 shows that smaller window 

size has a better prediction effect than bigger window. 

 

Figure 7. Three typical results from small windows: descending, increasing and stable. 
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Figure 7 shows the three typical results from small windows. One is increasing. In a small local region, 

the degradation indicators are increasing rapidly, so if they are used to train the prediction model, the 

predicted values will increase rapidly like the training data. This may lead to a bigger difference from 

real RUL. Similarly, descending and stable training data may make the predicted values unable to hit the 

predefined threshold. Figure 8 is an example for the prediction effect with a smaller window. 

 

Figure 8. Prediction results comparison using different window sizes (start at 25 h). 

From the above analysis, we can see that selecting an appropriate window size is important for 

effective prediction. In order to adapt to indicator variation trends, the window size should be updated 

in a timely way when new indicators become available. Mean input and output values of window size 

can be calculated as follow: 

[ ], , , 0, ,

o

j
j i

i

y

m i j o T i j o
o i
== ∈ < ≤
−


 

(2)

[ ], , , 0, ,

t

j
j o

o

y

m j o t T o j t
t o
== ∈ < ≤
−


 

(3)

So, an increasing rate can be represented as the ratio of mo and mi: 

r = mo/mi (4)

In order to illustrate the increasing degradation as asset usage increases, an adjustment factor f is 

introduced. Its range is (0, 0.1]. According to the test, the appropriate value of f is 0.02. If r is smaller 

than 1 + f, it means that training data has not obvious increasing trend. Then, the window size should be 

decreased. The window size shrinking should be stopped when it reaches a predefined threshold. We use 

L to denote the low bound of window size. In the adjustment process, if r is bigger than 1 + f, the 

corresponding window size is selected for prediction. Otherwise, the threshold value L should be selected 

as the window size to predict under the condition that r is greater than 1. 
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3.1.2. Window Size Adjusting When It Contains Change Point 

When an appropriate window size is determined using the method described in Section 3.1.1, it is 

necessary to check whether this window contains a change point or not. As shown in Figure 9, yc is a 

change point. For degradations of mechanical components, they are always undergoing several 

degradation states which can be reflected by indicators extracted from vibration signals. We regard the 

points connecting different degradation states as change points. Figure 9 shows how the indicators of 

the left and right sides of the change point have different increasing trends. If we use the window size 

determined in Section 3.1.1, there predicted indicators may show a big deviation, so we need to adjust 

the window size further. Ideally, the window size should be adjusted to the blue region surrounded by 

the blue dotted line. Namely, indicator vector [yc, …, yt] should be used as training data. In order to 

adjust the window size automatically, a judging rule should be developed. 

 

Figure 9. Schematic diagram of window adjusting when change point exists near prediction time t. 

The window determined by Section 3.1.1 can be continually divided into two parts: W1 and W2. Then, 

the indicator vector in window W1 is [yi, …, yp] and in window W2 it is [yp+1, …, yt]. The following 
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If a change point is detected near the predicted time t, then, window W2 is used as the new training 

window. Half indicators are used as input. The remaining indicators are used as output, i.e., [yp, …, yt] 

is used as the final prediction window. However, the selection of point yp which divides the original 

window is very important. The minimum window length used for training is L as mentioned in  

Time

D
eg

ra
d

at
io

n
 in

d
ic

at
or

D

yi

yt

yo

Training window determined by 
increasing rate

Input Output

Change point

Appropriate window size
yp yc

W1 W2

Half

yh



Sensors 2015, 15 7006 

 

 

Section 3.1.1, so the initial value of W2 should be selected as L. Then, yp gradually shifts towards the 

left and its location (right or left of the change point) is determined. The location can be judged by the 

distance from the point to a straight line fitted by indicators of W2. Finally, we can find an appropriate 

window in which yp and yc are overlapped. yh denotes the middle of window W2. 

 

Figure 10. Whole process of RUL prediction based on the proposed method. 

3.2. Rolling Prediction and Limitation 

For the known degradation indicators, if no change point is detected, then the window determined in 

Section 3.1.1 is used as the training data. Indicator vector [yi, …, yo] is the input data. Indicator vector 
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should be greater than associated input values. Meanwhile, predicted values cannot be too big, otherwise, 

it may lead to great variance between the real and predicted values, so we need to give a limitation for 

predicted values. Taking training data as an example, yt should be greater than yo. Otherwise, these two 

indicators are at least equal. It can be explained as the following equation: 
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If the predicted value is too big, a limitation is as follows: 

( )
( )

'if 1

then, 1 ' , 0,
2

t j o j

t j o j

y f y

t i
y f y j

− −

− −

> +

− = + ∈ 
   

(7)

Then, rolling prediction can be implemented until a predicted value hits the predefined threshold. 

Finally, RUL can be acquired. Details about window size determination and prediction process are 

illustrated in Figure 10. 

4. Validation by Simulated Degradation Data 

In order to validate the proposed neural network-based prediction method, two degradation datasets 

are simulated. Details about the simulation process is explained in Section 2.3. These two components 

are from different machinery systems, so their degradation processes are different. Parameters for neural 

network can be found in Section 2.3. Initial window size is 300. The minimum window size L is 20. 

Their trend prediction results are illustrated in Figures 11 and 12. From these two figures, we can see 

that the effects are very good. For Component 1, failure threshold D is set to 75. For Component 2, 

failure threshold D is set to 630. 

 

Figure 11. Trend prediction results of simulated data of Component 1. (a) prediction results 

at start time 500 h; (b) prediction results at start time 600 h; (c) prediction results at start 

time 700 h; (d) prediction results at start time 800 h. 
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Figure 12. Trend prediction results of simulated data of Component 2. (a) prediction results 

at start time 500 h; (b) prediction results at start time 600 h; (c) prediction results at start 

time 700 h; (d) prediction results at start time 800 h. 

The overall prediction effects of Component 1 and Component 2 at different times are given in 

Figures 13 and 14, respectively. From these two figures, we can see that the predicted RULs are close to 

the real RUL, demonstrating the effectiveness of the proposed method. 

 

Figure 13. Prediction results of Component 1 at different time points. 
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Figure 14. Prediction results of Component 2 at different time points. 

5. Validation by Gearbox Run-to-Failure Data 

Figure15 is a three-dimensional diagram of an experimental gearbox system. It includes a gearbox, 

electric motor, and magnetic powder brake. Four accelerometer sensors are mounted on the gearbox 

above the bearings. The gear on the low speed shaft has 81 teeth and meshes with the gear on the 

intermediate speed shaft with 18 teeth. The gear on the high speed shaft has 35 teeth and meshes with 

the gear on the intermediate speed shaft with 64 teeth. 

 

Figure 15. Three dimensional graph of the gearbox test-rig. 

This test is a run-to-failure test, i.e., from normal to failure. When the amplitude of the signal exceeds 

60 m/s2, the experiment is stopped. The whole test took 548 h under the speed of 1200 rpm and 15 Nm 

load (input side). For every inspection point, the sampling frequency is 20 kHz and lasts  

12 s. The interval between two consecutive inspections is ten minutes. After overhaul, it is found that 

the main fault mode of the gearbox is gear wear. All the teeth of low speed shaft gear are broken, while 

the other gears only have slight wear. Detailed information about the run-to-failure test can be  

found in [31]. 

A sideband index developed in [31] is directly used in this paper to validate the proposed prediction 

method. This sideband index of this gearbox is illustrated in Figure 16. 
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Figure 16. Sideband index developed in [31]. 

Then, this set of degradation indicators are used to validate the proposed method. We select four time 

points to explain the prediction effect of proposed model. The results are illustrated in Figure 17, which 

shows that the predicted values mainly depend on the data used for training. The predicted trend values 

are very similar to the real trend of the training data. RUL prediction results at every time point are given 

in Figure 18. It shows that there are big variances between the predicted RUL and real RUL. Most of the 

predicted RULs are bigger than the real ones. This is because the degradation indicators in the early 

stage are flat. The trend of predicted values extends to a long distance. For the smaller predicted values, 

the reason is there are some fast increasing phases. For indicators in these fast increasing phases, the 

trend of predicted values maybe very similar to their trend. This leads to a smaller RUL value. This can 

be seen in Figure 19. For this experiment, the initial window size is selected as 300 (time points-10 min 

a point). The minimum window size L is 20. 

 

Figure 17. Trend prediction results of degradation data of gearbox. (a) prediction results at 

start time 83.3 h; (b) prediction results at start time 366.7 h; (c) prediction results at start 

time 433.3 h; (d) prediction results at start time 516.7 h. 
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Figure 18. Comparison of real RUL and predicted RUL of the gearbox degradation data. 

 

Figure 19. Explaining the great variance of predicted RUL values. 

6. Validation by Helicopter Shaft Run-to-Failure Data 

This helicopter shaft failure data was acquired by a health and usage monitoring system (HUMS). 

This shaft is a generator shaft which has the highest wear rate. Its degradation severity can be directly 

estimated through the amplitude of shaft order 1, 2 or 3 signals in the frequency spectrum. Finally, three 

shaft orders were mapped into one value in the range [0, 1]. A Rayleigh hypothesis test was used to judge 

the alarm. Detailed information can be found in [32]. Figure 20 is the degradation indicator of one 

generator shaft. 
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Figure 20. Helicopter normalized degradation indicator of the left shaft of the generator. 

Trend prediction results of the helicopter generator at four time points are illustrated in Figure 21. It 

shows that the predicted values are overlapped with the real values. This demonstrates the good 

prediction effect of the proposed method. The RUL prediction result at each inspection time is given in 

Figure 22. We can see that the variances of predicted RUL are gradually decreasing. Compared to the 

gearbox RUL prediction, it is more effective for the helicopter degradation prediction. In order to acquire 

more data, we interpolated values into this degradation trajectory. This does not change the original trend. 

For this test, initial window size is selected as 100. The minimum window size is 20. 

 

Figure 21. Trend prediction results of degradation data of gearbox. (a) prediction results at 

start time 17.3 h; (b) prediction results at start time 26.7 h; (c) prediction results at start time 

40 h; (d) prediction results at start time 45.3 h. 
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Figure 22. Comparison of predicted RUL values with real RUL values at different inspection 

time points. 

7. Conclusions 

This paper develops an adaptive trend prediction method. It can adjust window size according to the 

variation of the degradation path. It overcomes a main problem of many existing prediction methods, 

namely the poor extrapolability. The proposed method can predict RUL when no failure or suspension 

histories can be used. It predicts future indicators mainly based on the training data trends, so training 

data selection is very important. The dynamic window adjusting method developed in this paper is its 

main contribution. Finally, two simulated sets of degradation data and two real run-to-failure datasets 

are used to validate the prediction method. The results demonstrate the proposed method can effectively 

predict RUL. The topic needs however further research for non-stationary variation degradation 

indicators, it needs to research further. 
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