
Sensors 2015, 15, 5197-5227; doi:10.3390/s150305197 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Continuous Human Action Recognition Using Depth-MHI-HOG 
and a Spotter Model 

Hyukmin Eum 1, Changyong Yoon 2, Heejin Lee 3 and Mignon Park 1,* 

1 School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong, 

Seodaemun-Gu, Seoul 120-749, Korea; E-Mail: hmeum@yonsei.ac.kr 
2 Department of Electrical Engineering, Suwon Science College, Hwaseong 445-742, Korea;  

E-Mail: cyyoon@ssc.ac.kr 
3 Department of Electrical, Electronic and Control Engineering, Hankyong National University,  

Anseong 456-749, Korea; E-Mail: lhjin@hknu.ac.kr 

* Author to whom correspondence should be addressed; E-Mail: mignpark@yonsei.ac.kr;  

Tel.: +82-2123-2868; Fax: +82-312-2333. 

Academic Editor: Gonzalo Pajares Martinsanz 

Received: 19 September 2014 / Accepted: 4 February 2015 / Published: 3 March 2015 

 

Abstract: In this paper, we propose a new method for spotting and recognizing continuous 

human actions using a vision sensor. The method is comprised of depth-MHI-HOG 

(DMH), action modeling, action spotting, and recognition. First, to effectively separate the 

foreground from background, we propose a method called DMH. It includes a standard 

structure for segmenting images and extracting features by using depth information, MHI, 

and HOG. Second, action modeling is performed to model various actions using extracted 

features. The modeling of actions is performed by creating sequences of actions through  

k-means clustering; these sequences constitute HMM input. Third, a method of action 

spotting is proposed to filter meaningless actions from continuous actions and to identify 

precise start and end points of actions. By employing the spotter model, the proposed 

method improves action recognition performance. Finally, the proposed method recognizes 

actions based on start and end points. We evaluate recognition performance by employing 

the proposed method to obtain and compare probabilities by applying input sequences  

in action models and the spotter model. Through various experiments, we demonstrate  

that the proposed method is efficient for recognizing continuous human actions in  

real environments. 
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1. Introduction 

In everyday life, people exchange information by using language and nonverbal expressions. For 

example, a person may greet someone by waving a hand. Therefore, it is important to study recognition 

of nonverbal expressions in order to establish a natural interface. Thus, new studies have been actively 

researched to recognize speech [1] and nonverbal expressions [2] for exchanging information. 

Nonverbal expressions are demonstrated through facial expressions, the gaze, hand gestures, gait, 

bodily actions, and so on. Specific aspects of subjects are recognized through these expressions [3–8], 

while subject actions likewise use parts of the whole body (the head, arms, legs, etc.). It is therefore 

difficult to automatically recognize actions because people have complex joint structures. 

Many systems that recognize nonverbal expressions currently exist. However, most methods recognize  

only a specific aspect of a subject. A method for recognizing the whole body is relatively rare. Many 

problems occur when recognizing the whole body instead of a specific portion. Therefore, research has 

continued to progress in terms of developing and improving whole body recognition. 

Actions have been initially recognized using displacement values obtained by attaching sensors to 

the joints of the body [9]. However, this method is cumbersome and complicated because the sensors 

are attached to the body. Moreover, it is difficult to calibrate the system because the devices are not 

always attached to the same area. In addition, it is impossible for the body to engage in natural actions 

because of the connected cables. Consequently, this method is rarely used. 

A similar method proposed in [10] recognizes action through a camera after optical markers are 

attached to the body. However, in this method, the equipment used is expensive and the creation of a 

test environment is cumbersome. 

Alternative methods exist, such as the vision-based recognition method [11,12], which analyzes 

continuous human action information with only a camera. This method is not constrained in terms of 

experimental mechanisms and it apparently provides good recognition results. This approach is less 

expensive than other methods because only a camera is used; there is no need to attach a device and  

real-time experiments are possible because the test environment is invariable. For this reason, we 

recognize continuous human action based on the camera. 

In this paper, we use camera sensor that includes an IR emitter and IR depth sensor. The IR emitter 

(IR projector) emits an infrared light pattern and the IR depth sensor (IR camera) reads and analyzes 

the infrared beams reflected back to the sensor. The reflected infrared beams are converted into depth 

information. This information can indicate the distance between an object and the sensor and is used in 

applications that implement a variety of functions such as object detection, motion tracking, and so on. 

In addition, we use a method that calculates the structure through the reflected beams based on the 

specific light pattern unlike the time of flight (TOF) method. The TOF method measures the time 

difference between the pulses that are emitted and reflected, and is used in radar and ultrasonic sensors. 

TOF based camera is method to analyze the phase difference of the reflected wave from the sensor and 
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is used in the outside environment. However, the TOF method requires integration time to remove 

noise and generates problems. The problems relatively cause lower frame rate, motion blur 

phenomenon, distance errors, and so on. Therefore, specific light pattern method has the better 

performance than TOF method but limitation is that it can be used indoors only. 

Among several methods used in this paper, two types—template-based feature extraction [13] and 

the state-space-based model [14]—are explained as related method. We use templates as features and 

recognize action through modeling the state space. 

Template-based feature extraction uses a spatio-temporal template and assumes that a specific  

pattern is followed. This method easily creates the template and is useful in a fixed environment. The  

template-based method can representatively describe the motion energy image (MEI) and motion history 

image (MHI) [15,16]. Bobick and Davis proposed MEI and MHI for human action recognition [17]. It 

includes prior information and gradually gathers the most recent information. It therefore can readily 

handle moving objects, such as human action, gait, moving cars, and gestures. In addition, it is easy to 

create template because MEI and MHI are composed of a simple algorithm. 

The modeling method based on state space uses a model that stochastically changes the internal 

state in accordance with time through input symbols. States are connected to other states, transferred to 

other states through any probabilities (transitions), and can return to oneself (self-transitions). The 

hidden Markov model (HMM) is a typical state-space-based method [18–20]. Because this method 

stochastically handles signal variation, it can naturally model spatio-temporal information. It has been 

applied in various fields because of its efficient and effective algorithm for learning and recognition. 

The algorithm is particularly renowned for use in speech recognition and online handwriting 

recognition; furthermore, it has been used for action recognition, gesture recognition, and so on. HMM 

has a temporal structure that can naturally represent speech, online handwriting, gestures, actions,  

and more. 

Based on these studies, we use MHI because it employs a camera with a fixed background. In 

addition, we have an interest in spotting to distinguish meaningful action from meaningless action. 

Therefore, we compose an action model that can be used for recognition, and the spotter model can be 

employed for spotting. These methods perform the process shown in Figure 1 to recognize a 

continuous human action. 

 

Figure 1. The proposed system process for continuous human action recognition. 

As shown in the Figure 1, DMH uses the template-based method, action modeling applies the  

state-space-based method, and action spotting employs the spotter model. In this system, six actions 

(Bend, Hand, Kick, Run, Walk, and Sit) are recognized by using the process shown in Figure 1.  

In unexpectedly continuously entered images, DMH features are extracted and action is recognized 

after detecting the start and end points. 
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In this paper, continuous actions are continuously performed; for example, these actions (order:  

Bend → Walk → Kick → Run → other actions) are continuously performed. In other papers [21–23], 

the word “continuous” is generally used. In [21], a person sits down, then stands up, walks forward, 

bends down to pick up something, and then gets up and walks away. Each of these actions (sitting down, 

standing up, walking, bending down, and getting up) are primitive actions of a continuous action 

sequence; however, the transitions between actions are not clearly defined. Therefore, a segmentation 

method is used to clearly define each of the primitive actions in a continuous action sequence. This 

approach is typically the same procedure used to find meaningful actions, e.g., the spotting method in 

this paper. 

Our contribution is the recognition of continuous action using the spotter model. This method filters 

meaningless action and extracts meaningful action from a continuous sequence. Consequently, the start 

and end points are found automatically. This method is used in online handwriting recognition and in 

gesture recognition to detect start and end points and thus improve recognition accuracy. 

The reason for using the spotter model is that there is a limit to expressing meaningless action 

because of the wide range of actions. Therefore, we create the spotter model using the information of 

the action model. 

Two examples of meaningless actions are ambiguous and similar actions, and these actions are 

filtered by the spotting method. In the first case, the ambiguous parts between meaningful actions 

(Walk and Sit) are removed. In the second case, the Run action is performed after the Bend action. 

However, similarity to the Walk action is also identified. It is necessary to filter these actions to 

improve recognition accuracy. 

In this paper, we propose continuous human action recognition using the DMH feature and  

HMM-based spotter model, and we evaluate the performance of this model. The remainder of this 

paper is organized as follows: Section 2 reviews related work, and, in Section 3, the details of human 

action spotting and recognition are explained. Experimental results of our system are provided in 

Section 4. Our conclusions and future plans are described in Section 5. 

2. Related Work 

Camera-based action recognition methods are divided into 3D methods [24–28] and 2D  

methods [29–32]. 3D methods perform recognition using 3D modeling of the human body; however, it 

is difficult to match and model a high degree of freedom in human body joints with them. On the other 

hand, 2D methods perform recognition using a silhouette appearance of the image as seen by the 

camera. Because we employ a fixed indoor background, the complex process of creating a skeleton in 

the 3D method is unnecessary. Therefore, we use the 2D method, which is simpler and easier to use 

than the 3D method. 

Moreover, we use a template method that achieves excellent results when using a fixed background. 

Although it is difficult to use with changing backgrounds or differing viewpoints, it provides good 

performance with a fixed background. In addition, human action is not shown in a single image; rather, 

it appears in a series of images. For these reasons, we employ this method. 

To recognize continuous human action, a technique that can extract meaningful action and remove 

meaningless action is required. This technique is called pattern spotting. As a method for detecting 



Sensors 2015, 15 5201 

 

 

start and end points in human action recognition, pattern spotting can be regarded as a single 

application. In this paper, action recognition using action pattern extraction is called action spotting 

and is performed by using the spotter model. 

The pattern spotting method is used for online handwriting recognition [33], gesture recognition [34,35], 

and other purposes; this method affects recognition accuracy. An example of this is included in [34,35]. 

A spotting method for gesture recognition did not be used in [34], but this technique did be used  

in [35], and the experimental recognition accuracy of [35] was higher than that of [34]. As a result, the 

spotting method was found to increase recognition accuracy. 

Most of the existing spotting methods use a backward approach. This approach first finds an end 

point and traces a start point back through an optimal path. Thus, an inevitable time delay occurs, and 

is not suitable for continuous action recognition. 

To solve this problem, we use a forward spotting approach. This approach is similar to that used  

in [10], but without a sliding window and accumulative HMM methods, as they can cause delays. 

Therefore, we propose using a spotter model that finds start and end points through the flow of action 

changing with time to recognize actions. 

3. Proposed Method 

The present objective is to recognize six actions of the human whole body image based on depth 

information obtained with a fixed camera. The proposed spotting approach and action recognition 

method are divided into four components: DMH, action modeling, action spotting, and recognition. 

Details of the proposed system are illustrated in Figure 2. 

 

Figure 2. Block diagram of system for human action spotting and recognition. 
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First, DMH performs segmentation and feature extraction. The main goal of image segmentation is 

to separate the foreground and background and to remove noise from an image, which eliminates the 

background, by using a filter. This preprocessing identifies an object through the depth image received 

from a camera. We employ a simple method of background subtraction using the depth image, 

weighted binarization, and a median filter for image segmentation. Moreover, feature extraction 

reduces the computational cost of recognition because features of the segmented object are used 

without a full image. The features we use include MHI and HOG [36], which are more robust than 

color information in changing light and clothes on account of employing depth information.  

In addition, the method is easier to handle than methods using human skeletons or background models 

and quickly extracts objects. 

Second, action modeling is used to model various human actions through extracted features.  

The input features are converted to human action sequences by employing k-means clustering based on 

features; action is then modeled using clusters as HMM input. Because human action is shown by 

continuous sequences, we use k-means clustering in the action modeling. Feature clustering is included 

in [31,32] and other papers use a codebook created by vector quantization. A code book generation and 

symbol selection step are used in [31,32], and this step creates an action sequence. However, in this 

procedure, we chose to use k-means clustering because this method is easily implemented and has 

good performance among clustering methods to easily separate a large amount of data. In addition, to 

select the action that is stochastically the most similar to an action sequence, human action is modeled. 

Action modeling can be used to create models of meaningful actions through HMM rather than 

labeling, which means that transition and output probabilities are trained using HMM. Because action 

changes with time, we use HMM. HMM naturally models temporal and spatial information because 

the variation of the signal is stochastically handled. In summary, HMM has a temporal and spatial 

structure, and is able to stochastically model the correlation between frames. Therefore, HMM is more 

appropriate for continuous action recognition. Moreover, we subdivide six actions into twelve actions 

to improve recognition accuracy before the action is modeled. 

Third, meaningless actions are filtered from continuous actions, and action start and end points can 

then be detected in action spotting. This comprises the created models in the action modeling step; the 

spotter model is then modeled. The spotter modeling procedure creates a new model using the 

properties of action models made by HMM. HMM has implicitly separate attributes. These attributes 

represents that each states and self-transition express the sub patterns of action pattern and transition to 

other state indicates the combined ordering of the sub patterns in action pattern. Transition probability 

includes self-transition and transitions to another state. Transition and output probabilities are modified, 

and these modifications of probabilities apply to the spotter model and consist of a new structure. 
Action spotting serves to find meaningful action and is used to detect and recognize the precise action 

by means of the action start and end points. 

Finally, human actions are recognized using the start and end points obtained through the spotter 

model. The evaluation method of the recognition acquires probabilities of each of the action and 

spotter models based on input sequences; the results are then compared. The probabilities of action 

models should be higher than that of the spotter model. Additionally, the highest action is recognized 

among the actions that have the higher probabilities. The process for recognizing meaningful action 

uses the previously modeled models in accordance with the input sequences. Furthermore, the twelve 
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actions in action modeling, which were subdivided for accuracy, are combined as six actions; the 

action is then recognized. 

The following are some assumptions for recognizing human actions in our system: an indoor image 

of human action is employed; depth information is applied; a fixed camera is used; and the action of a 

single object is recognized. 

3.1. Depth-MHI-HOG 

DMH removes the background based on depth information [37]. It then segments the image through 

binarization and a filtering procedure, and it extracts features using MHI and HOG. After the object is 

found by using depth information, MHI is created; features are then extracted using HOG. With DMH, 

calculations are simple and efficient. Only depth information can be easily used because it employs 

silhouettes. Moreover, MHI includes much more information than other features because it is comprised 

of previous information; furthermore, it creates the template. In addition, MHI is often used in action 

recognition because the principle of the algorithm is simple and easy. HOG is employed to express a 

histogram as the number of gradient occurrences in the local region. It is a useful algorithm that is 

often used in object detection. 

3.1.1. Segmentation 

The image segmentation process with depth information is shown in Figure 3. The input image 

consists of the foreground and background that are to be extracted and removed, respectively. The 

background is divided into static and dynamic backgrounds. The dynamic background is shown in an 

outdoor environment, whereas an indoor environment has a predominantly static background. 

(a) (b) (c) 

(d) (e) (f) 

Figure 3. Color image and segmentation process images: (a) color image; (b) background 

image; (c) depth image; (d) difference image; (e) weighted binary image; and (f) median 

filter image. 
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Because our system recognizes human actions based on indoor images, such as the one shown in 

Figure 3c, a simple and easy algorithm is used. Background and foreground are efficiently separated 

using only depth information, such as in Figure 3b,c. In a depth image more than in a color image, the 

background and foreground can be easily segmented from depth information. For example, the length 

of clothes may change according to the season, and clothes come in a variety of colors. For these 

reasons, segmentation by color information is difficult. Further, a comparison of Figure 3a,c shows 

that light occurs in the color image but not in the depth image. 

Typically, the portion of the image with the greatest depth information is the background. However, 

in the case of fluorescent lighting and a coated ground, noise is reflected by light occurs in the input 

image. Thus, we first store background depth image; after the input depth image and background 

image are subtracted, noise is removed by a threshold. Through this process, we identify the 

foreground. It removes consistently occurring noise; moreover, calculation is fast because the simple 

difference of depth information is used. The thresholds that are employed as the background are values 

of the largest and smallest parts. The greatest threshold is typically a background. Moreover, for the 

present purposes, the smallest threshold serves to remove noise, and a certain distance should be 

maintained because action is recognized using the whole body. We therefore separate the background 

by two types of thresholds and identify the foreground as a grayscale image. 

To note, the feature extraction process requires a binary image, and therefore binarization is needed. 

During binarization, unnecessary information is removed as much as possible, while important 

information should be included; unnecessary information, such as noise, can be included in the 

foreground. However, because some noise is included in the foreground image, we have chosen the 

weighted binarization method. A weight value maintains significant information and reduces 

unnecessary information. The filtering process then removes the remaining unnecessary information. 

The formula of weighted binarization is expressed as follows:  

( , , ) [ ( , , ) ] / 255B x y t D x y t= ⋅ σ  (1)

where ( , , )B x y t  is the binary image performed by weighted binarization, ( , , )D x y t  is the foreground 

(grayscale image) obtained by image segmentation, and σ is the weight value. Using this method, 

important information is maintained and unnecessary information can be partially removed. However, 

because some noise is still included, we remove it using a median filter. This filter is known to be 

effective at removing random noise, such as salt noise. It covers the center pixel with a window; the 

center pixel value is then replaced by the median pixel value within the window. For the present 

purpose, the window size in the median filter is 5 × 5 pixels. When applying the filter, a hole 

sometimes occurs in the region of the human. This hole is filled using the region boundary. Finally, we 

extract features with the binary image obtained in this method. 

3.1.2. Feature Extraction 

We extract features based on the binary image obtained from preprocessing. Because human actions 

are not shown in a single image, such as in human detection, facial recognition, or pose recognition, it 

requires an information series from previous images. We therefore create MHI using an information 

series to recognize human action. Importance degree exists in the information. Therefore, both 
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important and unimportant information exist among the previous data. As time passes, the important 

information decreases and is gradually erased; it is not used. However, recently received information 

has a higher degree of importance. 

For example, if a person is walking from left to right, the moving image is gradually received by the 

camera. At this time, the importance of the early information gradually decreases, which can be 

expressed as a decreasing value. On the other hand, a newly produced human image on the right is 

described as a maximum value. Thus, if a person walks or runs, it can be expressed as generating and 

erasing a silhouette in MHI. MHI commonly consumes less time and is suitable for recognizing human 

action appearing at a given moment. It employs the following Equation (2): 

( , , ) 1
( , , )

max(0, ( , , 1) )

if B x y t
H x y t

H x y t otherwise

τ =
=  − − δ

 (2)

where ( , , )H x y t  is the current MHI, ( , , 1)H x y t −  is the previous MHI, ( , , )B x y t  is the current binary 

image, τ is the maximum value of importance degree, and δ  is the decreasing value (reduction 

coefficient) of the importance degree. If the pixel value of the current incoming binary image 
( , , )B x y t  is one, the pixel value of MHI is the maximum value. Otherwise (i.e., the pixel value is zero), 

MHI subtracts the reduction coefficient from the pixel value of the previous MHI; a higher value is 

then selected after comparing the subtraction value and minimum value (zero). Accordingly, the pixel 

value where the action is not shown is zero. The MHI creation is shown in Figure 4. 

 

Figure 4. MHI creation processes for walking action. 

After the MHI creation, features are extracted using HOG. The HOG feature is widely used for 

detecting the object; Dalal and Triggs proposed this method [38]. In addition, the human detection 

algorithm was developed by using HOG in the still image. 

The HOG method can describe the local area within the image (object appearance and shape) and 

distribution of the edge orientation (intensity gradient of the light). This method serves to count 
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occurrences of gradient orientation in the local area; values can vary depending on the spatial 

organization, gradient calculation method, and normalization method. Calculation of this feature 

divides the image into small areas called cells, which are interconnected. It is then created by forming 

the gradient orientation or edge orientation for the pixels within the cells. A combination of these 

histograms represents this feature. 

The HOG feature process first calculates the gradient of the input image. A typical method is to 
apply a one-dimensional discrete differential mask as the horizontal orientation ( [ 1 0 1]XD = − ) and 

vertical orientation ( [ 1 0 1]T
YD = − ).  

Convolution mask of horizontal orientation: ( , , )X XI H x y t D= ∗  (3)

Convolution mask of vertical orientation: ( , , )Y YI H x y t D= ∗  (4)

Size of gradient: 2 2
X YG I I= +  (5)

Orientation of gradient: arctan Y

X

I

I
θ =  (6)

Signed gradient:
0

360 0Signed

α α ≥
α = α + α <

 (7)

Unsigned gradient:
0

180 0Unsigned

α α ≥
α = α + α <

 (8)

When the image is produced, convolution masks of the horizontal and vertical orientations  

(Equations (3) and (4), respectively) are applied to the image, and the orientation and gradient size are 

calculated. Second, histograms of the divided cells are calculated. Each pixel value in the cell is 

calculated as the orientation of the gradient through an advanced gradient calculation. These values are 

spread on orientation histogram bands, which are set as the number of bins. Cells are comprised of 

rectangular shapes in the image. As an expression of the gradient, the histogram bands are evenly 

distributed from 0 to 360 degrees (Equation (7)) or from 0 to 180 degrees (Equation (8)). 

 

Figure 5. Extraction process of MHI-HOG feature vector. 
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MHI is received as the input and the HOG feature is then created. This process is shown in Figure 5. 

In addition, in our system, the number of cells is four (2 × 2) and the number of bins is nine. We 

therefore create a 36-dimensional vector. 

3.2. Action Modeling 

3.2.1. Feature Clustering 

In a clustering method, each vector is grouped as several sets of a feature vector. Among these 

methods, k-means clustering [39] classifies the feature vectors in the cluster of the closest vector.  

his method employs the distance between each of the data represented by the vector 
( 1 2 3[ , , , , ]NX x x x x=  ). The distance measurement employs the Minkowski distance as the 

secondary Euclidean distance. 

This method can consist of steps such as initialization, data cluster estimation, and the center 

renewal of a new cluster. First, the initialization decides the number of clusters ( k ) generated in the 
data set ( 1 2 3[ , , , , ]Nx x x x ) and creates an initial center set ( 1 2 3[ , , , , ]Ky y y y ). The center vector 

of the initial cluster is randomly chosen among the vectors that belong to the data set. Second, the data 
cluster estimation step includes data ( nx ) in the cluster ( iz ) if it is close to the center ( iy ). Eventually, 

the data set is divided (Equation (10)) into the clusters ( 1 2 3{ , , , , }Kz z z z ) by using the Euclidean 

distance (Equation (9)): 

2
( , )n i n id x y x y= −  (9)

{ | ( , ) ( , )} 1, 2,3, ,i n n i n jz x d x y d x y where j K= ≤ =   (10)

Third, each center is updated in the new clusters obtained from the data cluster estimation. The new 

center is calculated as an average value of the data that belongs to each cluster. The convergence of  

this method is performed by the following two conditions. If one of the conditions is satisfied, it  

is converged: 

1 1, 2, 3, ,j i jy y TH where j K≠− ≤ =   (11)

( ) ( 1) 2 1, 2, 3, ,j t j ty y TH where j K−− ≤ =   (12)

Equation (11) is repeated until the distance between the clusters is smaller than the threshold  

value ( 1TH ). When a longer center of the cluster is not changed, Equation (12) is finished; in the case  

of the changed cluster center, it is repeated. A movement of the center point and change of the cluster 

depends on the start point of the cluster and number of the repetition. 

In the dataset, it is difficult to determine the optimal number of clusters. However, the method  

we used to choose the k  value was based on data quantity and the number of subdivided actions. First,  

the k  value should be higher than the number of subdivided actions. Typically, if the k  value is 

increased, the data are subdivided and the performance is good. However, clustering takes a long time. 

Therefore, we gradually increased the k  value and selected the value needed to reach the appropriate 

level. Thus, the k  value was set to 25. 
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An example of this method is shown in Figure 6. The cluster traces for the single action; all actions 

are respectively shown in Figure 6a,b. 

 
(a) 

 
(b) 

Figure 6. Cluster number for (a) a single action; and (b) all actions. 

In this case, the front, right, and left are respectively denoted as F, R, and L. As shown in  

Figure 6a, a periodic trace is indicated if a single action is repeated. Figure 6b lists cluster numbers 

according to time. We create a sequence of human actions, as in Equation (13), through the cluster; the 

sequence is used as the model of observation introduced in the next part. A model number is denoted 

by m  and n  is the number of sequences. Each sequence data is a cluster number that indicates the 

cluster trace of the action: 

1 2 3[ , , , , ]m nS s s s s=   (13)
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3.2.2. Modeling 

We create models to recognize human actions based on HMM [19]. The HMM method has a 

temporal structure and classifies continuous patterns in a statistical manner. It can express action 

through the feature vector and uses observation according to time. We use the feature vector obtained 

from DMH. The feature vector is then changed to one of the cluster numbers using k-means clustering 

because of HMM. It is symbolized and uses an input of HMM. 

HMM chooses the structure that depends on the amount of training data, the model to represent, and 

the recognition target. The left-right (L-R) model has many applications because human action is 

essential for the temporal sequence to be considered. In this model, the state number advances with  

the passing of time or proceeds in an increasing direction. Because the state transfers from left to right,  

it is an L-R model as Figure 7. 

 

Figure 7. Example of the left-right model. 

HMM is expressed by { }, ,A Bλ = π , where A  is the matrix of probability ija  that transfers state 

is  to state js , B is the matrix of probability ( )jb k  that observes a symbol k  in state js , and iπ  is the 

initial probability started in state is . If there are n  number of states ( { }1 2 3, , , , nQ q q q q=  ) and  

m  number of observation symbols ( { }1 2 3, , , , mV v v v v=  ), this can be expressed as follows: 

{ }1| ( | ) 1 ,ij ij t j t iA a a P q S q S where i j n+= = = = ≤ <  (14)

{ }( ) | ( ) ( | ) 1j j t k t jB b k b k P O v q S where k m= = = = ≤ <  (15)

{ }1| ( ) 1i i iP q S where i nπ π π= = = ≤ <  (16)

The n-by-n transition probability is Equation (14), the m-by-n observation probability is  

Equation (15), and the initial probability is Equation (16). The probability of finding the observation 

sequence is ( | )P O λ . Each human action model calculates the optimal λ  to maximize the likelihood 

with respect to the observation sequence using the Baum-Welch algorithm. It is calculated by the 

observation sequence ( { }1 2 3, , , , TO o o o o=  ) and the following equations. 
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1

( ) ( )
( ) ( | ) ( , )

( | )

n
t t

t t i t
j

i i
i P q S O i j

P O =

α β
γ = = = = ξ

λ   (18)

where ( , )t i jξ  is the probability that retains state is  at time t  and state js  at time 1t + . ( )t iγ  is the 

probability that exists in state is  at time t  when model λ  and observation sequence O  are given. 
( )t iα  and ( )t iβ  are forward and backward variables, respectively. This means that the observation 

probability for a partial state when state is  exists at time t  and the action model (Equations (19)–(21)) 

is estimated by using Equations (17) and (18) as follows:  

1( )i iπ = γ  (19)

1

1
1

1

( , )

( )

T

t
t

ij T

t
t

i j
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−

=
−

=

ξ
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


 (20)

1,

1

( )

( )
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t k

T

t
t o v

j T

t
t

i

b k
i

= =

=

γ
=

γ




 (21)

Moreover, the action model is influenced by the number of states. After the structure is chosen, the 

number of states of the model is decided. It is changed by the complexity of the model. We choose the 

number of states depending on the following procedures and Box 1: 

(1) Initialization: The number of states of the model is set to one. 

(2) Training: The model is trained and created using the Baum-Welch algorithm. 

(3) Evaluation: The trained model is evaluated by employing the Viterbi algorithm; the likelihood 

value is then stored. 

(4) Increase and repetition: The number of states is increased until N ; then Steps 2 and 3 are repeated. 

(5) Selection: The stored likelihood values are compared; a model of the maximum likelihood 

value is then selected. 
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Box 1. Action model selection according to the number of states. 

For 1:i N=  
Step 1: Determine { , }i iA B , according to the number of states. 

Step 2: Generate ( , , )i i iM BW A B Seq=  by the Baum-Welch algorithm. 

Step 3: Calculate and store ( , )i iL VTB M Seq=  by the Viterbi algorithm. 

End. 

Step 4: Find the index of the maximizing likelihood [ , ] max i
i

idx val L= . 

Step 5: Select idxM  about the index.  

Here, N  is the maximum number of states, iA  is the transition probability, iB  is the output 

probability, Seq  is the human action sequence, and iM  is the action model. In addition, iL  is the 

likelihood, val  is the maximum value, idx  is the index of the maximum value, idxM  is the action 

model for the index of the maximum value, BW  is the Baum-Welch function, and VTB  is the Viterbi  

function [18]. 

3.3. Action Spotting 

3.3.1. Spotter Modeling 

The spotter model [40–42] is required for automatically dividing actions to be recognized from all 

other actions. We divide meaningful and meaningless actions. The spotter model is used to extract a 

meaningful action that appears while we continuously observe actions; it identifies the start and end 

points for recognizing action. That is, it serves as an indicator of start and end points of action and as a 

criterion of recognition. 

However, there is a limit to expressing meaningless action because of the wide range of actions. In 

pattern spotting, the core model for known patterns and a garbage model for unknown patterns are 

commonly defined. At this time, the garbage model is trained by using unknown data of a finite set. 

However, because meaningless action patterns cannot be defined in action spotting, a garbage model 

that expresses meaningless patterns through training cannot be used. Therefore, we apply the states of 

the trained action model by employing implicitly separated attributes; moreover, we introduce a new 

model to determine the degree of matching results in the action model. We implicitly separate the 

attributes so that the states and transitions implicitly express order and sub patterns of action patterns, 

respectively, in the trained HMM. In addition, we construct another model that can be matched with a 

new pattern created by changing the combined ordering of action sub patterns through the attributes; 

this is the spotter model. 

The structure of this model is formed by implicitly separating the attributes with ergodic forms 

because the model should express all actions, including the core action. The ergodic model is a fully 

connected model that can be reached by a single transition from each state to all other states. It is 

useful for constructing close matches for all combination results. 

To simplify the model, we introduce the null state and null transition, which respectively mean that 

the observation symbol is not handled and the transition probability is not calculated. Accordingly, the 
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process of creating the spotter model is outlined in Figure 8b and in the following procedures and  

Box 2. 

(1) Output probabilities: Output probabilities of all action models are inserted as output 

probabilities of all states between the null (start and end) states included in the model. 

(2) Transition probabilities from the start to index state: These probabilities are uniformly divided 

according to the number of states. 

(3) Self-transition probabilities in index states: Self-transition probabilities of action models  

are used. 

(4) Transition probabilities from the index to end state: It uses values to subtract the self-transition 

probability from the total probability (one minus self-transition). 

(5) Transition probability from the end to start state. It is immediately transferred on account of  

the null state. 

 
(a) (b) 

Figure 8. Ergodic model structure of HMM: (a) fully connected structure; (b) simply 

connected structure. 

Box 2. Spotter model creation process. 

Step 1: Designate sS and eS  as the null state { , }s eS S Null=  and set the spotter state 

as { , , }s i eS S S S= . 

Step 2: Copy the output probability of the action model into the index state ( ) ( )iB S B M= . 

Step 3: Equally determine the transition probability of iS  from sS according to the number of 

states of all action models 
1

si
M

a
N

= . 

Step 4: Duplicate the self-transition probability of action model _ii M iia a= . 

Step 5: Create the transition probability of eS  from iS by subtracting the self-transition 

probability from the whole probability 1ie iia a= − . 

Step 6: Directly transfer eS  to sS ; 1esa = . 

Here, { , , }s i eS S S S=  is the spotter state (start, index, and end states), M  denotes the action model, 
( )iB S  is the output probability of the index state, ( )B M  is the output probability of the action model, 

and sia  is the transition probability from the start state to the index state. In addition, MN  is the total 

number of states in the action model, iia  is the self-transition probability of the spotter model, _M iia  is 
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the self-transition probability of the action model, iea  is the transition probability from the index state 

to the end state, and esa  is the transition probability from the end state to the start state. 

3.3.2. Start and End Point Detection 

We detect start and end points [40] based on the spotter model obtained from the above method.  

It does not include meaningless action when recognizing action and it affects recognition accuracy. 

This method is performed using evaluation values of all (action and spotter) models after obtaining 

action data through the DMH features and k-means clustering. 

First, the likelihood is calculated by using each action data as input in the models; then, the 

likelihood of the action and spotter models is compared. If the likelihood of the spotter model is higher 

than that of the action model, it is determined that an action has not begun. In the opposite case 

(Equation (22)), our system observes whether the action continuously proceeds; action may have 

begun and would comprise the precondition:  

( | ) ( | )Action SpotterP X P Xλ > λ  (22)

If the likelihood of the action model is continuously higher than that of the spotter model,  

it is considered an action and the end time is awaited. However, if the taking of insufficient time is 

determined as noise, the start point is again identified. We use this method for detecting start and end 

points because the likelihood of the action model is higher than that of the spotter model in the case of 

the beginning of meaningful action. In this part, the spotter model is the criteria for finding start  

and end points; it can be described as a threshold. We detect start and end points through the  

following procedures and Box 3: 

(1) Precondition: The likelihood of the action model is higher than that of the spotter model, as 

expressed in Equation (22). 

(2) Removal and repetition: If Step 1 is repeated for insufficient time, the first point is removed and 

Step 1 is then repeated. 

(3) Start point detection: If Step 1 is repeated for sufficient time, the first point is determined to be 

the start point. 

(4) End point detection: The last point is determined to be the end point if the likelihood of  

the spotter model is less than that of the action model and overlapping points do not exist. 

(5) Repetition: Action is recognized by these points and models; then, Steps 1 through 4 are repeated. 

Box 3. Start and end point detection process. 

For 1:t T=  

Step 1: Find a point ( t ) that satisfies the precondition. 

Step 2: Remove the point ( t ) that is repeated for insufficient time. 

Step 3: Determine the start point that is repeated for sufficient time. 

Step 4: Decide the end point that satisfies the condition of Step 4. 

Step 5: Recognize the action through the corresponding sequence from start to end points; 

then, repeat Steps 1 through 4. 

End.  
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In this case, t  is the current time or point and T  denotes total time. We detect start and end points 

using this method. An example of start and end point detection using this method is shown in Figure 9. 

 
(a) 

 
(b) 

Figure 9. Start and end point detection for (a) R Bend; and (b) F Sit. 

If the spotting method is not used, the problem seen in Figure 10 occurs. In this experiment, we do 

not use the spotting method and add 10 negative actions. Figure 10 represents the Bend action 

experiment. The transition before and after the meaningful action (Bend: 40–63 times, 142–170 times) 

is similar to another action (Sit: 33–39 times, 64–71 times, 134–141 times, 171–178 times). 

Misrecognition occurs because of this similarity. Furthermore, because this system adds more models, 

additional time was needed compared to the spotter model. This system is also larger than that of the 

spotter model. When these problems are removed, accuracy is increased. Thus, it is necessary to use 

the spotting method to filter meaningless actions. 
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Figure 10. Example of action recognition without the spotting method. 

In addition, there is a limit to expressing meaningless action because of the wide range of actions. 

However, a wide range of meaningless actions may be included because the use of the spotter model as 

described above means that the remainder subtracted by meaningful actions is considered. We 

recognize action using the action models and spotter model obtained by these methods. The start and 

end points are detected and actions are recognized through the comparison of action models. 

3.4. Action Recognition 

The process of action recognition is shown in Figure 11. It is based on action models and the spotter 

model. First, start and end points are detected by all action models and the spotter model after action 

data is continuously received. The action is then evaluated and recognized using the detected start and 

end points. Additionally, we analyze the twelve subdivided models by considering the direction of 

some actions for improving accuracy. We then again combine the subdivided models during 

recognition. As a result, six actions are recognized using this method. 

We create the spotter model to recognize meaningful action, as shown in Figure 11. We then detect 

the start and end points based on this model. From these points, the input sequence is evaluated using 

the action models and spotter model. During recognition, the spotter model is used as the threshold, 

similar to the start and end points. An example of start and end points detection and action recognition 

among continuous image frames is shown in Figure 12. 

The input of symbol sequence Y  is created by using the start and end points and probability for 
each of the action models ( iλ ); this is represented as follows: 

1 1
1 1

( | ) ( ) ( ) ( )
N N

i t ij j t t
i j

P Y i a b y j+ +
= =

λ = α β  (23)

It is evident that the model provides the likelihood and maximum value. When start and end frames 

are compared, the likelihood of the action model to be recognized is gradually higher than that of other 

models; this is shown in the experimental results. At the end of the frame, the model that has the 

highest likelihood is determined to be the recognition result. 
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Figure 11. The proposed method for human action recognition. 

 

Figure 12. Action recognition for start and end points of image frames. 

4. Experimental Results 

4.1. Experimental Environment 

In our evaluation, depth information of 640 × 480 pixel resolution was received at 30 fps using IR 

projector and IR camera sensor, and distance of the sensors was 7.5 cm. The field of view of camera 

was vertically 43 degrees and horizontally 57 degrees. These sensors extract depth information using a 

method that reads the infrared pattern based on triangulation and disparity is used for acquiring the 

depth information. The computer had an Intel Core i5-3570 3.4 GHz processor and Windows 7 

operating system. The distance between the camera and subject was approximately 4 to 5 m. 

Actions were divided into the categories of Bend, Hand, Kick, Run, Walk, and Sit. The Bend,  

Hand, and Kick actions were subdivided according to the direction of the actions; these are shown in 

Table 1. Accordingly, the total number of actions was twelve. However, these actions were again 

combined into six types in the action recognition process. 
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Table 1. Images and subdivision of actions.  

Action Subdivision Images Action Subdivision Images 

Bend 

F Bend 

Sit 

F Sit 

L Bend L Sit 

R Bend R Sit 

Hand 

L Hand 

Kick 

L Kick 

R Hand R Kick 

Walk Walk Run Run 

Twelve types of continuous single actions were evaluated using approximately 3000 to 5000 image 

frames. Additionally, various continuously performed actions were evaluated using approximately 

2000 image frames. In the action model learning process, input image frames for each action were 

converted to observation sequences; the models then learned by these sequences. 

Table 1 depicts the subdivided images used in the experiment; for improved comprehension, color 

images were used. In the action modeling process, the twelve subdivided actions were modeled,  

and six actions were recognized by their combination in the recognition process. This method was used 

to improve recognition accuracy. 

4.2. Segmentation 

To locate the target, we segmented the foreground and background. As shown in Figure 13, we 

detected human action through five procedures. Figure 13a–c depicts the segmentation, which 

demonstrated good results. 
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(a) (b) (c) 

 
  (d) (e)   

Figure 13. Example of handing action detection process: (a) depth image; (b) difference 

image; (c) median filter image; (d) MHI image; (e) detection image.  

Because depth information was used, we eliminated issues caused by variously colored clothing on 

the subjects. In the case of overlapping colors of background and clothing, it was difficult to accurately 

extract the subjects by a simple subtraction method. This challenge is illustrated in Figure 14. Because 

the subject’s pants appeared similar to the background color, loss of information in the subject’s leg 

region was evident. 

 
(a) 

 
(b) 

Figure 14. Difference of color and depth images in segmentation: (a) color-based 

segmentation; (b) depth-based segmentation. 

When color information was used, we increased the threshold to minimize lighting and light 

reflection; we then detected the subject. If the threshold was lower, considerable noise occurred. 

Therefore, the background model was employed to apply color information. This was relatively slow 

and complex because the background model required a significant calculating and processing. 
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4.3. Feature Extraction 

In our evaluation, features were extracted using DMH. However, the DM and DH methods each  

use MHI and HOG based on depth information. These methods can be compared to DMH as  

described below. 

DM [43] offers the advantage of including previous information. However, it is difficult to 

simultaneously handle and requires many calculations because the received image has a greater 

amount of data than a feature vector. Additionally, its processing speed is slower than that of DMH. 

DH [44], on the other hand, extracts the feature vector for the action image at each moment, and its 

processing speed is faster than that of DMH. However, it includes no previous information; moreover, 

it has less information than DMH. Therefore, if a lot of information is required, DH should be added to 

the other method. DMH offers the advantages of the above two methods. For this reason, it is useful 

and accurately recognizes human action compared to other methods. In terms of processing speed, 

because MHI and HOG are fast, DMH does not notably affect recognition speed. These three methods 

are shown as Figure 15c–e. Figure 15a is a motion image, and Figure 15b is an image obtained by 

using MHI. Figure 15c–e, respectively, are DM, DH, and DMH. DH was obtained as Figure 15a; 

DMH was based on Figure 15b. 

 
   (a) (b)    

 

(c) (d) (e) 

Figure 15. Segmentation images and feature extraction processes: (a) motion image;  

(b) MHI image; (c) DM; (d) DH; (e) DMH. 

4.4. Action Modeling 

When an action model was created, HMM was comprised of the L-R model structure based on an 

action sequence obtained through k-means clustering. In addition, action models were created 

according to the number of states in each of the actions. It depended on the complexity of the action 

and the number of states flexibly increased or decreased. On the other hand, action models created by a 

fixed state showed poor performance. Simple actions may have shown good performance in a small 

number of states; however, if an action used an unnecessarily large number of states, a complex 

structure was formed and affected calculation time. 
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Figure 16a shows fixed action models with the same number of states, while Figure 16b shows 

flexible action models. In the case of fixed action models, the recognition rate was lower than that of 

flexible action models because complex actions are similar to simple actions. Examples of the 

comparison of forms of action models are shown in Figure 17, which indicates the recognition rates of 

Bend and Sit actions.  

 
(a) (b) 

Figure 16. Example structure of fixed and flexible action models: (a) fixed action models; 

(b) flexible action models. 

 

Figure 17. Comparison of fixed and flexible action models. 

The fixed action models had a 90.4% recognition rate (13 errors) for the Bend action and a 91.5% 

recognition rate (15 errors) for the Sit action. On the other hand, the flexible action models produced a 

100% recognition result for two actions. The remaining results are outlined in the recognition 

discussion further below. 
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4.5. Action Spotting 

 
 F Bend L Bend R Bend L Hand R Hand L Kick R Kick Run Walk F Sit L Sit R Sit 

27 − ∞  -0.92 -1.22 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  

35 − ∞  -8.45 -9.81. − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  

40 − ∞  -13.02 -13.64 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  

45 − ∞  -17.6 -17.47 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  

49 − ∞  -21.3 -21.03 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  

(a) 

 
 F Bend L Bend R Bend L Hand R Hand L Kick R Kick Run Walk F Sit L Sit R Sit 

27 -1.534 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  -0.69 -1.17 -1.11 

35 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  -3.466 -6.02 -5.72 

40 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  -5.05 -15.24 14.37 

45 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  -5.29 -24.14 -22.7 

49 − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  − ∞  -9.048 -31.09 -29.29 

(b) 

Figure 18. Example of log-likelihood for (a) R Bend; and (b) F Sit. 
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When a person engages in a continuous action, meaningless actions exist among meaningful ones. 

The spotter model filters meaningless actions and extracts meaningful actions; it is therefore useful for 

recognizing actions. The spotter model was created using HMM-like action models. The likelihood of 

action models representing meaningful action obtained by spotting was higher than that of spotter the 

model. We detected start and end points based on the spotter model and then recognized actions 

through corresponding sequences from start to end points. The following figures and tables show 

examples of the log-likelihood for corresponding sequences from start to end points. 
Here, all log-likelihoods for the twelve actions are shown to explain certain cases; the six actions 

were described in the recognition discussion. In Figure 18, the log-likelihood results are indicated from 

the start point to the point corresponding to time. Similar actions generally had a log-likelihood  

and other actions commonly had negative infinity ( − ∞ ) because there was no correlation. The  

log-likelihood of L Bend was higher than that of R Bend, as shown in Figure 18a at the start (first) 

point; however, it gradually changed over time. As a result, the log-likelihood of R Bend was higher 

than that of L Bend at the end (last) point. As shown in Figure 18b, F Bend appeared to be similar to 

Sit in the early stage; however, the likelihood of F Bend had negative infinity ( − ∞ ) from the middle 

stage. Therefore, there was a correlation between Bend and Sit actions; however, each of the actions 

was predominantly recognized at the end point. 

 

Figure 19. Experimental spotting of continuous action images. 
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Figure 19 is an example of filtering by the spotting method when meaningless action occurred 

between two meaningful actions. We connected images with an interval of four frames because many 

images could not be shown. Figure 19 illustrates a person sitting after walking. 

The meaningless action between the meaningful actions (Walk and Sit) was filtered by the spotting 

method; the numbers spotted by the spotter model are outlined in Table 2. 

Table 2. Spotter model experimental results. 

 F Bend L Bend R Bend L Hand R Hand L Kick R Kick Run Walk F Sit L Sit R Sit Test 

Actual 43 45 47 50 55 84 99 79 48 54 54 68 42 

Spotter 43 45 47 50 55 84 99 79 48 54 54 68 41 

Error 0 0 0 0 0 0 0 0 0 0 0 0 1 

The total number of actions used in this experiment was 768. Compared to the spotter model,  

the proposed model produced a 99.9% success rate. During the evaluation, one error occurred; 

nevertheless, this result can be viewed as successful. We performed the recognition experiment based 

on this result. 

4.6. Action Recognition 

When an image frame was received, segmentation and feature extraction were performed. We then 

created a sequence corresponding to the start and end points detected by the spotting method. In the 

recognition process, the input sequence was applied to the action models; as the result, action was 

recognized according to likelihood. 

In our evaluation, we performed start and end point detection by using the spotter model instead of 

the sliding window. The proposed method was relatively fast and easy to perform, whereas the sliding 

window type was simple for constructing a window; however, window size affected recognition 

accuracy. Moreover, the smaller the window size, the more frequently HMM had to repeat the 

calculation. Therefore, we recognized continuous human action by using the proposed method. The 

recognition results are outlined as Table 3 and Figure 20. 

In addition, we used the benchmarked dataset (WEIZMANN). This dataset is similar to the actions 

used in our experiment; however, it did not include continuous action and depth information. 

Nevertheless, our method showed 98.21% recognition accuracy with this dataset because we used 

action models that change the number of states depending on the complexity of the action. 

Table 3. Confusion matrix for recognition results of all actions. 

 Bend Hand Kick Run Walk Sit 

Bend 144 0 0 0 0 0 

Hand 0 113 0 0 0 0 

Kick 0 11 177 0 0 0 

Run 0 0 0 80 0 0 

Walk 0 0 0 0 53 0 

Sit 3 0 0 0 0 187 
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Figure 20. Recognition rate chart of all actions. 

5. Conclusions 

In this paper, we have proposed methods for recognizing six everyday human actions (Bend, Sit,  

Raise Hand, Kick, Run, and Walk). Focusing on continuous human action recognition and spotting,  

these methods describe feature extraction by using DMH and the flexible action model according to 

complexity of action, and by using the spotter model for filtering meaningless action while spotting 

meaningful action. 

The DMH feature is fast and effective because it includes previous information and easily and 

simply segments background and foreground. The number of states for action models is adjusted by 

complexity of action. Simple actions use a small number of states, while complex actions employ a 

large number of states. Recognition accuracy is increased by using flexible action models. Moreover, 

the spotter model is a simply connected structure. Start and end points are detected by comparing the 

likelihoods of the spotter model and action models. Start and end point detection extracts meaningful 

action and filters meaningless action for accuracy. 

Our experiments showed that the proposed methods provided successful results. However, slight 

improvements are needed, or insufficient parts should be supplemented. In the future, it is necessary  

to add and test various actions to evaluate accurate performance. Therefore, we will use various data 

for subsequent experiments. If the results of these experiments are promising, our methods may be 

applied to important areas, such as surveillance [45], human-robot interactions [43,46], among others. 
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