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Abstract: With the open-loop fiber optic gyro (OFOG) model, output voltage and angular 

velocity can effectively compensate OFOG errors. However, the model cannot reflect the 

characteristics of OFOG errors well when it comes to pretty large dynamic angular 

velocities. This paper puts forward a modeling scheme with OFOG output voltage u  and 

temperature T  as the input variables and angular velocity error ωΔ  as the output variable. 

Firstly, the angular velocity error ωΔ  is extracted from OFOG output signals, and then the 

output voltage u , temperature T  and angular velocity error ωΔ  are used as the learning 

samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear 

mapping model over T, u  and ωΔ  is established and thus ωΔ  can be calculated automatically 

to compensate OFOG errors according to T  and u . The results of the experiments show 

that the established model can be used to compensate the nonlinear OFOG errors. The 

maximum, the minimum and the mean square error of OFOG angular velocity are 

decreased by 97.0% , 97.1%  and 96.5%  relative to their initial values, respectively. 

Compared with the direct modeling of gyro angular velocity, which we researched before, the 

experimental results of the compensating method proposed in this paper are further reduced 

by 1.6% , 1.4%  and 1.2% , respectively, so the performance of this method is better than 

that of the direct modeling for gyro angular velocity. 

OPEN ACCESS



Sensors 2015, 15 4900 

 

 

Keywords: open-loop fiber optic gyro; angular velocity error; RBF neural network 

 

1. Introduction 

Acting as the angular rate sensor, the fiber optic gyro (FOG) is widely applied in navigation and 

weapon systems [1–4]. The nonlinearity of scale factors of the close-loop fiber optic gyro (CFOG) is 

limited using the homodyne detection technology, while the drift of CFOG is the main error which has 

an impact on its performance [5–7]. The open-loop fiber optic gyro (OFOG), with its minimization 

structure and open loop detection scheme, is an inertial measurement sensor with middle or low 

precision. OFOG has many advantages such as small size, low cost and fast response [3,4], leading to a 

wide range of applications in low precision weapons production, navigational systems for ships, 

inertial gyro-stabilized platforms and servo tracking systems [8–11]. Under the comprehensive effects 

of temperature and angular velocity, the OFOG drift is relatively small and the nonlinearity of scale 

factors is the main error that restricts the accuracy of its applications [12,13]. Researchers have worked 

extensively on the modeling and compensation of gyro output [14–18], improving the performance of 

OFOGs to a certain degree. In view of the nonlinear scale factor of OFOG, [13,19] presented the look-up 

table and piecewise compensation methods to compensate the OFOG angular velocity error. In [20,21] an 

OFOG digital demodulation method to reduce the OFOG linearization error was proposed. As for 

OFOG temperature errors, [22] analyzed the temperature error of Andew Corp’s OFOG and tested the 

changed data of OFOG bias in the whole temperature range. Considering the comprehensive effects of 

temperature and angular velocity, [23] took VG951 to establish the gyro output signal model using the 

polynomial fitting method. In view of the gyro temperature model, [24] proposed the linear regression 

algorithm and wavelet network algorithm, which described the temperature characteristics of the gyro 

very well. In [25] the establishment and identification of the nonlinear mixed models of temperature 

and calibration factor for the compensation of OFOG was accomplished. All the works above involved 

direct modeling for gyro angular velocity. When the angular velocity is very large, the models’ 

sensitivity to the angular velocity error is not enough, impacting on the compensation precision of the 

gyro error. To deal with the problem, this paper expands upon the studies in [3], putting forward a 

modeling scheme with OFOG output voltage u  and temperature T  as the input variables and angular 

velocity error ωΔ  as the output variable. Firstly the angular velocity error ωΔ  is extracted from the 

OFOG output signals, and then output voltage u , temperature T  and angular velocity error ωΔ  are 

used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the 

nonlinear mapping model involving T, u  and ωΔ  is established. In this way ωΔ  can be calculated 

automatically to realize the compensation of OFOG errors according to T  and u . The model put 

forward in this paper is validated and tested experimentally, and the results are analyzed in comparison 

with those in [3]. 
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2. The OFOG Angular Velocity Error Model  

2.1. The OFOG Composition 

The OFOG consists of two parts: optical path and the signal processing circuit, which are shown in 

Figure 1. The components of the optical path are source, coupler 2, polarizer, coupler 1, fiber loop and 

phase modulator (PZT). The optical path is used to measure the angular velocity and produce a 

corresponding light-intensity signal. Then the light-intensity signal is detected by the signal processing 

circuit, and is transported into voltage signal corresponding to the angular velocity [26–30]. 

 

Figure 1. The OFOG composition. 

2.2. The OFOG Output Signal  

The output signal of an OFOG contains many harmonics. According to the signal processing circuit 

board, detection of different harmonic components are various [26]. Among these, detection of the first 

harmonic is adopted by OFOG because of its simple circuit, high reliability and easy implementation. Its 

output voltage u  can be expressed as: 

0 sin( ω)d gu u k k= +  (1)

where 0u  is the zero-bias voltage of OFOG corresponding to the constant drift of the gyro, and ω  is 

the input angular velocity of OFOG, dk  is the scale factor of the circuit, gk  is the scale factor of the 

optical part. In the Equation (1), the relationship between the output voltage and angular velocity is 

nonlinear, leading to circuit complexity and bad real-time ability. Generally, Equation (1) is simplified by 
linearization of the sinusoidal function and nominal angular velocity ωc  is obtained [3]: 

0 0 0ω ( ) / ( ) ( ) /c d gu u k k u u K= − ⋅ = −  (2)

where 0 d gK k k= ⋅  is the gyro scale factor calibrated under a certain circumstance before leaving the 

factory, the so-called nominal scale factor (Fizoptika Corporation calibrates it on the basis of 10deg/ s± ). 

As is seen from Equations (1) and (2), there is an angular velocity error ωΔ  between the nominal 
angular velocity ωc  calculated by using 0K  and the true value of angular velocity ωz  [3]: 
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z cω ω ωΔ = −  (3)

Moreover, under the influence of temperature, 0u  and 0K  can also lead to gyro angular velocity 

error. Therefore, under the coactions of angular velocity and temperature, it is hard to conduct 

modeling and compensation of ωΔ  by analytic method precisely due to its complex structure. 

3. The Scheme of Modeling and Compensation of OFOG Angular Velocity Error 

3.1. The Variable Selection for Modeling 

The gyro output voltage u  and temperature T  are the main influencing factors of the gyro angular 

velocity error. Therefore, u and T  are chosen as the input variables for modeling. It is simple and practical 

with clear physical significance to adopt gyro output voltage u  and temperature T  as the input 

variables of the model. 

In this paper, the nonlinearity of scale factor, influenced by angular velocity and temperature, is 
considered as the main error of OFOG. So the scale factor (ω , )zK T  is expressed as a multinomial 

function involving both temperature and angular velocity during the derivation process to realize the 

compensation of gyro angular velocity error using the fixed scale factor [11,24]: 

0(ω , )
zz TK T K k kω=  (4)

where 
z

kω  is the fixed scale factor relative to the angular velocity, and Tk  is the fixed scale factor 

relative to the temperature. After the introduction of the fixed scale factor, the true value of angular 
velocity ωz  is obtained:  

0ω ( ) / (ω , )z zu u K T= −  (5)

That is: 

( ) 0ω , ωz zu K T u= × +  (6)

As is seen from Equations (2), (3) and (5), the angular error ωΔ  can be expressed as: 
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, it is clear that the relative changing rate of OFOG output 

voltage u  corresponding to the angular velocity error ωΔ  is bigger than that corresponding to the real 
angular velocity ωz . The relationship involving u , ωz , ωc  and ωΔ  is shown in Figure 2. The line 1 

denotes the relationship between u  and ωc , and the line 2 denotes the relationship between u  and ωz . 
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Figure 2. The relationship over u , ωz , ωc  and ωΔ . 

It can be found that the relative change rate of the OFOG output voltage u  corresponding to the 
angular velocity error ωΔ  is bigger than that corresponding to the real angular velocity ωz  in Figure 2. 

Therefore, relative to the direct modeling for gyro angular velocity in [3], the angular velocity error 

ωΔ  is chosen as the output of the model to improve its sensitivity, which is helpful to reflect the 

characteristics of ωΔ  because of its greater proportion coefficient between the independent variables 

and the dependent variables. Therefore, ωΔ  is chosen as the output of the model. In addition, this 
paper uses the experimental data to analyze the relative change rate of u, corresponding to ωΔ  and ωz  

respectively, and the specific analysis of the result is shown in Section 4.3, which validates the 

accuracy of the above conclusion. 

3.2. The Choice and Establishment of the Model 

Equation (9) shows the nonlinear relationship over the angular velocity error ωΔ , gyro output 

voltage u  and temperature T: 

ω ( , )f u TΔ =  (9)

Therefore, an effective method is needed to set up the mapping model between the gyro output 

voltage u  and the angular velocity error ωΔ , under the combined effects of temperature T  and 

angular velocity. The neural network method helps to realize the complex nonlinear mapping 

relationship of input and output via studying the learning samples, according to experimental data. The 

RBF neural network, with good its capability and global best solution-approaching performance as 

well as being a fast and easy learned method, does not have the problem of local optima [31–33].  

To realize the estimation and compensation of the angular velocity error ωΔ , according to Equation (9), 

the model of RBF neural network involving the gyro output voltage u , temperature T  and the angular 

velocity error ωΔ  is established through studying experimental data for modeling. As is shown in 

Figure 3, u  and T act as the inputs and ωΔ  as the output in the model of RBF neural network. 
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Figure 3. The model of RBF neural network. 

3.3. The Method of Error Compensation 

The flow of the gyro angular velocity error compensation is shown in Figure 4: (1) the gyro output 

voltage u  and temperature T  are collected; (2) we make use of Equation (2) to calculate the nominal 

angular velocity; (3) the gyro output voltage u  and temperature T  are sent to the RBF neural network, 

which figures out the angular velocity error ωΔ ; (4) Equation (3) is utilized to calculate the angular 
velocity ωz  and estimate the real value of angular velocity precisely. The experimental data collected 

in this article include the output change of OFOG which is caused by changes in drift and scale factor 

and can be expressed as the change of angular velocity error ωΔ . Therefore the model proposed in this 

paper contains the error of the drift and scale factor nonlinearity of OFOG related to temperature, and the 

proposed method corresponding to the model can compensate the error in the whole temperature range. 

( , )u Tu

ωΔcω

z cω ω ω= + Δ

zω
 

Figure 4. The flow of gyro angular velocity error compensation. 

This paper chooses a RBF neutral network model as the modeling method which adopts OFOG 

output voltage u  and temperature T  as the input variables and angular velocity error ωΔ  as the output 

variable. In addition, this paper uses the experimental data for learning, validation and precision 

analysis of RBF neural network model. In order to ensure credibility of the method and conclusion, 

one part of the collected data are used for the RBF neural network training, and the others are utilized 

for model validation. 
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4. Experiments and Results 

4.1. Experimental Scenario 

VG095M, an OFOG produced by the Russian Fizoptika Corporation (Moscow, Russia), is chosen as 

the experimental component. In this paper, further study is done based on the previous researches in [3]. 

The experimental equipment and the data acquisition and processing system are the same as before. 

So, detailed descriptions are omitted here. The photo of experimental setup is shown in Figure 5. 

 

Figure 5. The photo of experimental setup. 

Firstly, the data acquisition scheme is designed for different temperatures and angular velocities. 

Then the experimental data, collected according to the data acquisition scheme, are divided into 

modeling data and verification data. Secondly, the modeling data are used as the learning samples of 

the neural network introduced in Section 3.2. Finally, the verification data are used to verify the error 

compensation method introduced in Section 3.3. 

4.2. Data Acquisition 

First of all, with the turntable controlled by a thermostat, the output voltage of the VGO95M is 

acquired under the influences of different temperatures and angular velocities. Secondly, the nominal 
angular velocity ωc  is calculated using Equation (2). Then Equation (3) is used to extract the angular 

velocity error ωΔ . To establish the model of angular velocity dynamic error of the VG095M, the 

collected data for modeling, namely the gyro output voltage u , temperature T  and the angular 

velocity error ωΔ , are used as the learning samples of the neural network. Finally, experimental data 

different from the modeling data are acquired to verify this model. 
Set the temperature of thermostat to ( 30 10* ) ( 0,1 7,8)i i− + = ℃  respectively. When the 

temperature is stabilized, different ωz  are inputted into the rotary table. The angular velocity 

300deg/ s± , 250deg/ s± , 200deg/ s± , 150deg/ s± , 100deg/ s± , 60deg/ s± , 10deg/ s± , 0deg/ s  are 

for modeling and 280deg/ s± , 180deg/ s± , 120deg/ s± , 40deg/ s± , 20deg/ s± , 15deg/ s± , 

8deg/ s± , 5deg/ s± , 1deg/ s±  are for model verification. The gyro output information is acquired at 

different test points. ωΔ  is extracted from experimental data by solving Equations (2) and (3), which is 

utilized to establish RBF neural network model.  
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4.3. The Analysis of Relative Change Rate 

The output voltage of gyro can be expressed as the function of the angular velocity ωz  according to 

Equation (6) or the angular velocity error ωΔ  according to Equation (8). The mapping relationship  

is similar under different temperatures. The analysis of experimental data in 20 °C is shown in  

Figures 6 and 7, respectively. This article validates the above conclusion through concrete analysis of 

the experimental data. 

 

Figure 6. The relationship between output voltage and angular velocity. 

 

Figure 7. The relationship between output voltage and angular velocity error. 

Figures 6 and 7 shows that the relative changing rate of OFOG output voltage u  corresponding to 

the angular velocity error ωΔ  is faster (almost 20 times) than that corresponding to the real angular 

velocity, so, the angular velocity error ωΔ  is chosen as the output of the model rather than the angular 

velocity to improve the model’s sensitivity. Also it is better to compensate the angular velocity error. 
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4.4. The Analysis of the Angular Velocity Error 

The experimental data acquired in Section 4.2 are processed to analyze the characteristics of the 

angular velocity error. The data for modeling and verification are shown in Figures 8 and 9 

respectively. Figure 8 shows the relationship between the input angular velocity for modeling and the 

angular velocity error with different temperatures. Figure 9 shows the relationship between the input 

angular velocity for verification and the angular velocity error with different temperatures. In Figures 8 

and 9, the curves from top to bottom respectively represent different temperatures from 30 °C to 50 °C. 

 

Figure 8. The angular velocity error of modeling data. 

 

Figure 9. The angular velocity error of model verification data. 
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The Figure 8 shows that the same angular velocity corresponds to different errors with different 

temperatures. Moreover, the relationship among them is nonlinear. The maximum angular velocity error 
is 19.46deg/ s , while the minimum error is 19.53deg/ s−  and the mean square error is 9.34deg/ s . 

The Figure 9 shows that the performance and the rule of the angular velocity error for verification 
or modeling are alike. The maximum angular velocity error of model verification data is 19.47deg/ s , 

while the minimum error is 19.56deg/ s−  and the mean square error is 6.73deg/ s . As is shown in 

Figures 8 and 9, the gyro angular velocity error caused by temperature and input angular velocity are 

coupled. In the whole testing scope, the gyro angular velocity error is an irregular curve, and it is hard 

to express with an analytical formula, whereas the testing data analysis result demonstrates that the 

angular velocity error is highly repeatable and is capable for modeling and compensating the errors by 

establishing a RBF neural network model. 

4.5. The Neutral Network Modeling 

The data collected for modeling, namely the gyro output voltage u , temperature T  and the angular 

velocity error ωΔ , are used as the learning samples of the neural network introduced in Section 3.2. 

Through studying the learning samples, the model of RBF neural network over the gyro output voltage 

u , temperature T  and the angular velocity error ωΔ  is established according to the Equation (9). The 

training error of neural network is selected as 65 10−× , and dispersion coefficient is 0.96. The fitting 

error of training RBF neural network is shown in Figure 10. 

 

Figure 10. The fitting error of RBF neural network model. 

The maximum fitting error is 64.7558 10 deg /s−× , while the minimum fitting error is  

−3.4265 × 10−6 deg/s and the mean square error is 77.5826 10 deg /s−× . Therefore, it’s obvious that the 

RBF neural network model built in the paper reflects the mapping relationship over gyro output voltage, 

temperature and the angular velocity error ωΔ , which can estimate ωΔ  with high precision according to 

gyro output voltage u  and temperature T . 

4.6. The Analysis of the Effect of Error Estimation 

The data for verification are sent to the RBF neural network to figure out the angular velocity error 

ωΔ , which is shown in Figure 11. 
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Figure 11. The angular velocity error of test points. 

The sum of the angular velocity error ωΔ  and the nominal angular velocity ωc  calculated by 

Equation (2) is the estimation of angular velocity. Then, the gyro angular velocity error of test points 

can be calculated by comparing the estimation of angular velocity with the true value of the angular 

velocity, as shown in Figure 12. 

 

Figure 12. The angular velocity error of the verification data after compensation. 

After compensation, the maximum angular velocity error of model verification data is 0.59deg/ s , 

while the minimum error is 0.57deg/ s−  and the mean square error is 0.23deg/ s . The result shows 

that the RBF neural network model established in the paper has good generalization ability, and can 

realize the compensation of gyro errors with high precision in the whole temperature scope of the gyro. 

The maximum, the minimum and the mean square error of gyro angular velocity are decreased by 

97.0% , 97.1%  and 96.5%  relative to their initial values, respectively. In [3] the gyro angular velocity 

was directly taken for modeling using the same data, and the maximum, the minimum and the mean 

square error of gyro angular velocity were also reduced by 95.4% , 95.7%  and 95.3% , respectively, 

after compensation by that model. Also compared with the direct modeling for gyro angular velocity [3], 

the errors of the compensating method proposed in this paper are further reduced by 1.6% , 1.4%  and 

1.2% , respectively. 

5. Conclusions 

According to the characteristics of the OFOG angular velocity error, the signal of the angular 

velocity error ωΔ  is extracted from the OFOG output signal. Meanwhile, the modeling and 

compensation method of the angular velocity error of OFOG, based on a RBF neural network, is 
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proposed. The RBF neural network can be used to directly calculate the angular velocity error. Then the 

angular velocity can be estimated together with the nominal angular velocity. The result of the 

processing experimental data shows that the RBF neural network model built in the paper reflects the 

mapping relationship over output voltage u , temperature T  and the angular velocity error ωΔ , 

rendering the estimation and compensation of the dynamic angular velocity error with high precision, 

high sensitivity and global best approaching performance in the whole temperature scope possible. It is 

clear that the performance of the method proposed in this paper is better than that of the direct 

modeling of gyro angular velocity. 
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