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Abstract: Background: Various asymmetry indices have been proposed to compare the 

spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. 

However, these indices rely on gait measurement systems that are costly and generally require 

manual examination, calibration procedures and the precise placement of sensors/markers on 

the body of the patient. Methods: To overcome these issues, this paper proposes a new 

asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera 

(Microsoft Kinect™) output. This asymmetry index directly uses depth images provided by the 

Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference 

between lower-limb movements during the gait cycle. To evaluate the relevance of this index, 

fifteen healthy subjects were tested on a treadmill walking normally and then via an 

artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait 

movement was simultaneously recorded using a Kinect™ placed in front of the subject and a 

motion capture system. Results: The proposed longitudinal index distinguished asymmetrical 

gait (p < 0.001), while other symmetry indices based on spatiotemporal gait parameters failed 

using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between 

this index measured by Kinect™ and the ground truth of this index measured by motion 

capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, 

easy to use and is a promising development for clinical gait analysis. 
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1. Introduction 

In pathological gait, significant differences in kinematic and kinetic parameters can be observed 

between the left and right human lower extremities [1]. Gait asymmetry can consequently be used to 

identify pathology and track recovery. To do so, various asymmetry indices and ratios have been 

developed [2]. These measurements could provide insight into the efficiency of the treatment of people 

with asymmetric gait, whatever the origin, e.g., cerebral palsy [3], stroke [4], hip arthritis [5] and leg 

length discrepancy [6]. 

As reported in [4], most of these indices rely on a simple comparison between left and right 

variables, such as step length and step duration, joint angles or ground reaction force. However, they 

provide only a unique value for the whole gait cycle without considering the possible evolution of gait 

asymmetry that may occur within the cycle. Moreover, measuring the variation of asymmetry inside 

the gait cycle would allow one to identify when the maximum of asymmetry occurred during the gait cycle. 

Moreover, most of the current indices rely on data provided by sensors or markers that are placed 

on the body, such as optical motion capture [3] or inertial systems [7,8]. These methods require 

expertise for marker/sensor placement, calibration and manual editing of the data, which involves 

recruiting trained staff and requires time for measurement preparation and analysis. Gaitrite [4] or a 

force plate can also be used to measure spatiotemporal parameters in an almost automatic manner. 

However, they fail to give joint coordination information at each time of the gait cycle and could 

underestimate asymmetry due to compensation strategies along the kinematic chain [9]. Carroza et al. [10] 

proposed a method to use 16 video cameras to reconstruct the volume of the subject in order to 

compute the joint orientation. However, this method still requires a calibration stage. To sum-up, an 

index that could estimate gait asymmetry evolution during the gait cycle, without markers or sensors 

on the patient’s body, without calibration and without manual editing does not exist yet. 

Depth cameras have recently been introduced in the public market through the increase of the 

Microsoft Kinect™ sensor usage. It has rapidly been used to measure 3D human motion, as it provides 

a low-cost, markerless and calibrationless system [11]. Paolini proposed a method in [12] that uses the 

Kinect™ to measure foot position on a treadmill, but a marker on each foot is still required. Two 

methods have been introduced to measure spatiotemporal gait parameters without markers (mainly 

step length and duration) using a Kinect™. Stone and Skubic [13] computed the subject’s centroid in 

depth images to deduce the step length and the lower part of the legs to detect gait cycle.  

Clark et al. [11] computed gait parameters thanks to a 3D skeleton fitted to the depth maps [14]. 

However, for both methods, inaccuracies can appear because of possible confusion between the feet 

and the ground during the contact phase due to the Kinect™ noisy output. This leads to inaccurate 

computation of the spatiotemporal gait parameters, which is key information in any asymmetry 

assessment. Moreover, none of them addressed gait asymmetry measurements, especially during the 

step. Furthermore, this use of the skeleton for gait analysis on a treadmill has been evaluated in [15]. 

The hip angle and knee angle measurements were compared with reference motion capture system 
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measurements. The hip angle correlation was lower than 0.3, and the knee angle was mainly less than 

0.8, which could lead to erroneous gait parameter estimation. According to [15], the skeleton 

information would need some improvement in sensitivity before being clinically usable. Moreover, the 

skeleton-fitting algorithm was trained with healthy subjects and could possibly fail to deliver accurate 

information in the case of impaired subjects. 

To overcome these limitations, this paper proposes a new index to assess gait asymmetry inside the 

step, using depth images with no skeleton fitting. This asymmetry index is based on spatial differences 

between the lower limb positions at each instant of the step. It uses information recorded by a depth 

camera Kinect™ placed in front of the subject walking on a treadmill, as shown Figure 1a. 

 

Figure 1. (a) Representation of the experimental set-up featuring the depth camera (1), the 

recording computer (2) and the treadmill (3); (b) representation of the orthographic projection 

operation and the bounding box in red, chosen to isolate the points belonging to the subject;  

(c) the orthographic depth image showing the parts of the body defining the limits of the 

regions of interest used for the registration operation and asymmetry indices’ computation. 

2. Method 

The key concept of the proposed asymmetry index is to compare the spatial position of the left and the 

right legs at comparable times within their respective step cycle (i.e., at the same percentage of time in 

each step cycle).  

Kinect™ sensors are based on depth images that could be processed by the Shotton algorithm [14] 

to segment body parts and estimate joint centers. We assume that this post-processing may lead to less 

accurate results in gait asymmetry measurements compared to the use of raw depth images. A mean 

step cycle model is introduced in this paper in order to obtain a more representative and reliable 

sequence of depth images before asymmetry analysis. The overall process is depicted in Figure 2. The 

details are given in the following sections. 

2.1. Raw Depth Image Preprocessing 

Four stages are needed to process the raw depth images provided by the depth camera before 

computing the asymmetry index, as shown in Figure 2. Let us consider these stages in detail. 
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Figure 2. Representation of the method for measuring asymmetry indices of lower limbs 

during the step cycle. In the red box are the depth image pretreatment operations. In the 

green box are the mean step cycle model construction steps. Finally, in the blue box are the 

different operations to construct the asymmetry indices. 

2.1.1. Transformation from Raw Depth Images to 3D Points  

The depth camera is considered as a pinhole camera with its optical axis intersecting the center of 

the image plane and the focal length 𝑓 = 575.82 px · m−1 given by the manufacturer. Then, horizontal 

(X), vertical (Y) and depth (Z) coordinates of 3D points are reconstructed according to the following 

equations using the depth information z returned for each pixel (x, y), where w and h are the width and 

height of the depth image (in pixels), respectively. 

𝑋 = (𝑥 −
𝑤

2
)

𝑧

𝑓
𝑌 = (𝑦 −

𝑤

2
)

𝑧

𝑓
𝑍 = 𝑧 (1) 



Sensors 2015, 15 4609 

 

2.1.2. Clipping  

Because the subject is above the treadmill, only points located in the 2.5 m × 3 m × 1.5 m  

(height × depth × width) bounding box above the treadmill belt surface (depicted in Figure 1b) are 

associated with the subject and kept for further processing. 

2.1.3. Orthographic Projection  

The depth information returned by the Kinect™ is provided in a projective representation. As 

shown in Equation (1), the lateral and height position of a point in this projective representation 

depend on its depth. Hence, two points in space with identical heights, but different depths will have 

different vertical positions in the projective image. Without projection correction, the same ankle joint 

could be displayed at two different heights, depending on its depth, with a difference of up to  

60 pixels. To ensure that left and right body parts are correctly compared in the following method, 3D 

surfaces are orthographically projected on a plane perpendicular to the optical axis of the depth 

camera, as illustrated in Figure 1b. The spatial resolution of this orthogonal image was set to  

0.5 cm·px−1 which is close to the resolution of the depth camera (Kinect™) when the subject is 2 m 

away from the sensor. The depth value of each pixel was computed using the inverse distance 

interpolation, as described by Shepard [16]. As an output, this preprocessing stage transforms each raw 

projective view in orthographic projections of the 3D surface of the subject (depth images (DI)). 

2.1.4. Lower-Limb Region of Interest and Pelvis Zone 

The asymmetry index presented in this paper focuses on lower-limb movements. This lower-limb 

region is called the leg zone. This leg zone is defined as the volume between the lower leg zone 

parameter at 0.22 H and the upper leg zone parameter at 0.47 H, where H is the height of the subject. 

These parameter value estimations were done posteriorly with our dataset in order to maximize the 

correlation between Kinect™ measurements and ground truth obtained with reference to motion 

capture systems. In the same way, to ensure correct comparison of left and right legs at various times 

in the gait cycles, we need to displace the pelvis location (origin of the kinematic chain) to a unique 

position, i.e., the same distance to the camera. To this end, the pelvis zone is defined by  

a 20-cm square centered on the pelvis, the position of which is estimated at 0.61 H, according to 

anthropometrical tables [17].  

2.2. Mean Step Cycle Model Computation 

The Kinect™ measurements have a random error [18] with a standard deviation up to 1 cm when 

the subject is 2.5 m from the sensor. This error could result in a decreased accuracy of the asymmetry 

estimation. The mean step cycle model (MSCM) aims at helping to decrease the impact of the sensor’s 

noise on the computation of the index. It consists of computing a sequence of mean depth images 

(MDI) representing the most representative (averaged) gait cycle for each subject. This is performed in 

three main stages. 
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2.2.1. Step Cycle Detection  

Firstly, it is necessary to determine the beginning and end moment of each step cycle in order to 

extract a set of step cycles. Traditionally, step cycles are defined as two successive heel strikes of the 

right and left feet. Unfortunately, heel positions are difficult to track in a depth image, because the 

points of the feet could be confused with the treadmill belt. We therefore used the cyclic longitudinal 

distance between the knees to estimate heel strike and identify steps, as described in [19]. 

2.2.2. Assignation of Frame to Mean Depth Image 

Once these events are identified, each step is divided into ten 10%-long intervals. The MSCM is 

also cut into 10 intervals. The i-th MDI of the MSCM is the average image of the DI belonging to the 

i-th interval of all of the recorded steps. Now, consider the details of this averaging process. 

2.2.3. Mean Depth Image Construction  

The objective here is to compute a representative mean depth image MDI(s,i) for each step side s 

(𝑠 ∈ {𝑅, 𝐿} for left and right) and for each interval I (i = 1,...,10) of the step, which corresponds to the 

average of the depth images DI(s,c,i) for all of the recorded steps c (c = 1,...,n). This averaging process 

requires a registering procedure in order to suppress the lateral and longitudinal movements of the 

subject on the treadmill that are not relevant. To this end, we consider each first step DI(s,1,i) for each 

interval i and step side s as a reference depth image.  

Consequently, each DI(s,c,i) can be laterally registered by computing the lateral shift ∆𝑥(𝑠,𝑐,𝑖) that 

maximizes the cross-correlation between DI(s,c,i) and the corresponding reference DI(s,1,i) leg of each 

step c. This process is only applied on the pixels belonging to the leg zones. ∆𝑥(𝑠,𝑐,𝑖) is computed with 

Equation (2), where x and y are, respectively, the lateral and vertical coordinates in the depth image, 

and y lies between 0.22 H and 0.47 H. 

∆𝑥(𝑠,𝑐,𝑖)
= argmax

𝜕𝑥
∑ ∑ 𝐷𝐼(𝑠,𝑐,𝑖)(𝑥 + 𝜕𝑥, 𝑦) ∗ 𝐷𝐼(𝑠,1,𝑖)(𝑥, 𝑦)

𝑦=0.47𝐻

𝑦=0.22𝐻𝑥

 (2) 

The longitudinal registration is done by subtracting the mean depth of the pelvic zone from all of 

the DI(s,c,i). 

MDIs for each step side s and each interval i are computed using the Equation (3). 

𝑀𝐷𝐼(𝑠,𝑖)(𝑥, 𝑦) =
∑ 𝐷𝐼(𝑠,𝑐,𝑖) (𝑥 + ∆𝑥(𝑠,𝑐,𝑖), 𝑦) − ∆𝑧(𝑠,𝑐,𝑖)𝑐=1,...,𝑛

𝑛
 (3) 

where ∆𝑧(𝑠,𝑐,𝑖) is the mean depth of the pelvis for step side s, step c and interval i. The final MSCM is 

consequently composed of 10 MDI for the right step and 10 MDI for the left step, denoted respectively 

MDI(R,i) and MDI(L,i), i = 1,…,10. Finally, in order to allow the horizontal flip, the subject is laterally 

centered. This is done in each MDI with the computation of the center of the subject and the 

application of a lateral translation in order to align the center of the subject with the center  

of the image. 
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2.3. Asymmetry Index Based on the Mean Gait Cycle Model  

The goal of this phase is to compute the index, which quantifies the longitudinal difference between 

the left and the right leg movements within the step. To this end, we use the MSCM as the 

representative of the step of the subject. The analysis of the MSCM begins with the selection of 

corresponding intervals i (i = 1,…,10) in the right and left steps. If the gait is symmetric, we expect leg 

positions of the right step in MDI(R,i) to be similar to those of the left step in MDI(L,i) after being 

horizontally flipped (denoted fMDI(L,i)), for each interval i. In the following, the right step is used  

as a reference, and the left step is compared to this reference. In each MDI(R,i) and fMDI(L,i), the right 

and left legs are identified with a two-class K-means algorithm, as described in Auvinet et al. [19]. We 

will denote leftleg(.) (resp. rightleg(.)) as the function that returns the points belonging to the left leg  

(resp. right leg) in the depth images, which is provided as an input. 

Let us recall that the resulting index aims at assessing gait asymmetry by computing the spatial 

difference between the two legs at a comparable time, at each interval i of the step. It consists of 

computing the positional difference between the corresponding legs in MDI(R,i) and the corresponding 

fMDI(L,i), as shown in Figure 3. These differences are computed for each height y of the leg zone (i.e., 

y between 0.22 H and 0.47 H) and at each interval i of the step (i.e., i = 1,...,10). We propose to 

compute this spatial difference along the longitudinal axis to provide the user with information 

concerning longitudinal asymmetry. This therefore leads to the Ilong (longitudinal asymmetry index). 

Let us consider now the computational details for this index. 

Before computing the longitudinal difference between corresponding legs, it is necessary to 

displace each leg of fMDI(L,i) laterally in order to align them with their corresponding leg of MDI(R,i). 

This lateral difference between the right leg (resp. left leg) of the reference step from MDI(R,i) and the 

corresponding leg of the compared step from fMDI(L,i) is denoted ∆𝑅(𝑖)
𝑙𝑎𝑡  (resp. ∆𝐿(𝑖)

𝑙𝑎𝑡). These lateral 

differences are computed, at each height y of the leg zone and interval i in the step, in order to 

maximize the correlation between corresponding legs:  

∆𝑅(𝑖)
𝑙𝑎𝑡(𝑦) = argmax

𝜕𝑥
∑ rightleg (𝑀𝐷𝐼(𝑅,𝑖)(𝑥, 𝑦)) ∗ rightleg (𝑓𝑀𝐷𝐼(𝐿,𝑖)(𝑥 + 𝜕𝑥, 𝑦))

𝑥

 (4) 

∆𝐿(𝑖)
𝑙𝑎𝑡(𝑦) = argmax

𝜕𝑥
∑ leftleg (𝑀𝐷𝐼(𝑅,𝑖)(𝑥, 𝑦)) ∗ leftleg (𝑓𝑀𝐷𝐼(𝐿,𝑖)(𝑥 + 𝜕𝑥, 𝑦))

𝑥

 
(5) 

Once corresponding legs are laterally aligned, the longitudinal index is obtained by computing the 

mean longitudinal difference between each leg of MDI(R,i) with the corresponding aligned leg of 

fMDI(L,i). This longitudinal difference between the right leg (resp. left leg) of the reference step from 

MDI(R,i) and the corresponding aligned leg of the compared step from fMDI(L,i) is denoted ∆𝑅(𝑖)
𝑙𝑜𝑛𝑔

 (resp. 

∆𝐿(𝑖)
𝑙𝑜𝑛𝑔

). These longitudinal differences are computed at each height y of the leg zone and step interval 

i with Equations (8) and (9). 

∆𝑅(𝑖)
𝑙𝑜𝑛𝑔(𝑦) = mean

𝑥
(𝑟𝑖𝑔ℎ𝑡𝑙𝑒𝑔 (𝑀𝐷𝐼(𝑅,𝑖)(𝑥, 𝑦)) − 𝑟𝑖𝑔ℎ𝑡𝑙𝑒𝑔 (𝑓𝑀𝐷𝐼(𝐿,𝑖)(𝑥 + ∆𝑅(𝑖)

𝑙𝑎𝑡(𝑦), 𝑦))) (8) 

∆𝐿(𝑖)
𝑙𝑜𝑛𝑔(𝑦) = mean

𝑥
(𝑙𝑒𝑓𝑡𝑙𝑒𝑔 (𝑀𝐷𝐼(𝑅,𝑖)(𝑥, 𝑦)) − 𝑙𝑒𝑓𝑡𝑙𝑒𝑔 (𝑓𝑀𝐷𝐼(𝐿,𝑖)(𝑥 + ∆𝐿(𝑖)

𝑙𝑎𝑡(𝑦), 𝑦))) (9) 
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The longitudinal asymmetry index Ilong(i) is given by the average value of these two distances at 

each interval i: 

𝐼𝑙𝑜𝑛𝑔(𝑖) = mean
𝑦

(∆𝑅(𝑖)
𝑙𝑜𝑛𝑔(𝑦) + ∆𝐿(𝑖)

𝑙𝑜𝑛𝑔(𝑦)) (10) 

Thanks to this index for each interval i, it is also possible to compute a unique mean value for the 

whole step: 
𝐼𝑙𝑜𝑛𝑔 = mean

𝑖=1,…,10
𝐼𝑙𝑜𝑛𝑔(𝑖) (11) 

 

Figure 3. (a) Position of the horizontal lines (y) selected in the legs from right step MDI(i) 

and corresponding left step fMDI(i), for lateral and longitudinal asymmetry evaluation;  

(b) representation of these horizontal lines in the transverse plane. Each leg depth curve is 

plotted in red and blue for, respectively, the right and left legs of the right step MDI(i) and 

cyan and magenta for, respectively, the right and left legs of the left step fMDI(i).  

(c) Lateral differences ∆𝑅(𝑖)
𝑙𝑎𝑡(𝑦) and ∆𝐿(𝑖)

𝑙𝑎𝑡(y) are calculated with a lateral inter-correlation 

of corresponding leg depth curves; (d) once the legs of the left step are laterally registered 

on the legs of the right step, the depth differences ∆𝑅(𝑖)
𝑙𝑜𝑛𝑔

(𝑦) and ∆𝐿(𝑖)
𝑙𝑜𝑛𝑔(y) are computed 

by averaging the depth difference between depth curves. 
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2.4. Asymmetry Index Based on Skeleton Information  

As previously mentioned, we assumed in this work that skeleton information based on Shotton’s 

method [14] would not be reliable enough to obtain an accurate asymmetry index. To evaluate this 

assumption, we applied the method described above with the MSCM to skeleton information provided 

by the Kinect™ software. We also applied this method to the skeleton information from the reference 

motion capture system in order to have a ground truth. The computation follows the same scheme as 

previously presented. Firstly, steps are detected with the distance between knees at a constant 

estimated knee height, as described in [19]. Each pose is then associated with one of the 10%-long 

interval i of the step. Secondly, the skeleton in each pose is laterally and longitudinally registered 

thanks to the root joint position, as described above for depth images. Thirdly, poses belonging to the 

same 10%-long step interval i are averaged in order to create a skeleton-based mean gait cycle model. 

Fourthly, spatial leg positions of poses from corresponding 10%-long intervals are compared to the 

same method as that previously described with depth images. The pose of the left step is horizontally 

flipped, and longitudinal differences ∆𝑅(𝑖)
𝑙𝑜𝑛𝑔

(𝑦) and ∆𝐿(𝑖)
𝑙𝑜𝑛𝑔

(𝑦) are evaluated at each height y of the leg 

zone, as shown in Figure 4. 

 

Figure 4. Localization of the longitudinal difference between corresponding legs when 

using skeleton information. 

In this comparison, legs are considered as lines joining two successive joint centers. Linear 

interpolation between hip, knee and ankle joint locations is used to compute intermediate points along 

the segment. Finally, the longitudinal asymmetry indices 𝐼𝑙𝑜𝑛𝑔(𝑖) for each 10%-long interval i are 

computed using Equation (10), and the mean longitudinal asymmetry value for the step 𝐼𝑙𝑜𝑛𝑔  is 

computed using Equation (11). The performance of this index is then compared to the one obtained 

with depth images to evaluate the relevance of our assumption. 

2.5. Experimentation 

We carried out experiments to evaluate the following hypotheses: (1) the longitudinal asymmetry 

index based on depth images should be reliable enough to quantify asymmetrical gait; and  

(2) the longitudinal asymmetry index computed thanks to the skeleton information provided by the 

Kinect™ would lead to significantly less accurate results. Fifteen healthy subjects (12 males,  
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3 females, 25.3 ± 3.6 years old, 172 ± 7 cm height and 69.4 ± 11.6 kg mass) with no reported clinical 

asymmetry or gait impairment participated in this study. The institutional ethical review board 

approved the study. 

Each subject walked on a treadmill (LifeFitness F3). The depth images were recorded with a 

Kinect™ (Microsoft, Redmond, USA) at 30 frames per second with a resolution of 640 × 480 pixels. 

The Kinect™ was placed 2 m in front of the subject, as shown on Figure 1a. The optical axis of the 

camera was parallel to the motion direction of the treadmill belt. 

To evaluate the accuracy of the longitudinal asymmetry index computed with the skeleton 

information, we also captured the motion of the subject with an accurate motion capture system (Vicon, 

Oxford, UK) consisting of 12 infrared cameras capturing motion at 120 Hz. Surface reflective markers 

were placed over standardized anatomical landmarks, as suggested by the International Society of 

Biomechanics [20], enabling us to accurately evaluate joint centers, as described in [21]. We used the 

full body marker set as suggested in [19]. The resulting joint centers could be used to compute the 

longitudinal asymmetry index as described in Section 2.4, but with reliable and accurate input data. 

For each subject, a comfortable speed was selected according to the standard procedure from  

Holtz et al. [22]: the subjects selected their preferred walking speed as the treadmill speed was 

systematically increased. This comfort speed was then used for all trials. The mean comfortable speed 

was 1.03 m·s−1 ± 0.2. 

Each subject performed three trials: one normal gait and two asymmetrical gaits artificially 

generated by alternatively adding a 5 cm-thick sole under the left and the right foot, as classically 

suggested in previous works [6,8]. The choice of a 5.0-cm sole was inspired by Bhave et al. [23], who 

indicated that a minimum leg length discrepancy of 4.9 cm was necessary to generate externally visible 

effects. The duration of a trial after adaptation was set at 6 min with a 2-min adaptation period and a  

4-min period of testing to record a large amount of steps. The analysis was automatically carried out 

on the last 120 gait cycles using the proposed method. 

Spatiotemporal gait parameters, such as step length and duration, were measured following the  

Clark et al. [11] method with both Kinect™ skeleton data and motion capture skeleton data on the last 120 

gait cycles. Step duration and length were used to compute the reference gait symmetry ratios (SRlength and 

SRduration), as suggested by Patterson et al. [4]. This reference value from the motion capture system will be 

used to evaluate the relevance of the index introduced in this paper by assessing the existence of an 

asymmetry and to evaluate SRlength and SRduration computed with the Kinect™ skeleton. 

2.6. Statistical Analysis 

A statistical study was conducted to assess the sensitivity of the methods to detect the  

artificially-introduced asymmetry. The statistical analysis designed by Gouwanda and Senanayake [8] 

was used because of protocol similarities. One-way ANOVA tests were conducted to examine the 

significant difference between normal and asymmetric gaits for each index. This one-way ANOVA 

was applied to each index value for normal, left-deformed and right-deformed gaits for all of the 

subjects. The alpha level was set at 0.01. Tukey-HSD multiple comparison tests were then carried out 

to identify the differences between the experiments when the null hypothesis was rejected. This 



Sensors 2015, 15 4615 

 

statistical test allows evaluation if the studied index is able to distinguish whether the left (respectively 

right) deformed gait is different from the normal gait. 

This statistical test was conducted from the values of Ilong(i) obtained with the three trial conditions 

(normal, left deformation, right deformation) at each step interval i. This is done in order to evaluate 

the sensitivity of these indices to distinguish the left deformed gait (respectively right) from the normal 

gait at this step interval. 

Moreover, this statistical test was also conducted independently using values of SRlength, Ilong and 

SRduration obtained with the three trial conditions in order to evaluate the sensibility of these indices to 

distinguish the left deformed gait (respectively right) from the gait with normal whole step indices. 

3. Results 

The data analysis process worked correctly for all subjects using both our method and the motion 

capture method. However, a subject has been excluded from the result computed with Kinect™ 

skeleton data. For one of the trials of this subject, the results were not reliable and an outlier from the 

others subjects. 

3.1. SRduration and SRlength 

SRlength and SRduration computed with Kinect™ skeleton data and the motion capture skeleton are 

detailed in Table 1. With the Kinect™ skeleton information, no statistical difference exists between 

these indices for gaits with and without a sole under a foot. However, with the motion capture skeleton 

data, both SRlength and SRduration are statistically different (p < 0.001) between gait with a sole under one foot 

and normal gait. These results show that the skeleton information from Kinect™ is not accurate enough to 

allow SRlength and SRduration to identify potential adaptations in gait cycles for such a perturbation. 

Table 1. Results of the symmetry ratios for step duration and for step length (SRlength and 

SRduration), computed with the spatio-temporal step information, as suggested by  

Patterson [4]. The results are reported with the mean value and the standard deviation. 

Significant statistical results are written in bold and marked with * when p < 0.001. SRlength 

and SRduration values close to one indicate perfect symmetry of the gait. 

Index Left Deformed Gait Normal Gait Right Deformed Gait 

Step length symmetry ratio (SRlength) with Kinect™ skeleton 

Left/right SR 0.93 ± 0.11 1.01 ± 0.10 1.10 ± 0.18 

Statistical difference p = 0.12 p = 0.34 

Step duration symmetry ratio (SRduration) with Kinect™ skeleton 

Left/right SR 0.99 ± 0.15 1.07 ± 0.18 1.18 ± 0.14 

Statistical difference p = 0.17 p = 0.49 

Step length symmetry ratio (SRlength) with motion capture skeleton 

Left/right SR 0.87 ± 0.04 1.00 ± 0.04 1.15 ± 0.05 

Statistical difference p < 0.001 * p < 0.001 * 

Step duration symmetry ratio (SRduration) with motion capture skeleton 

Left/right SR 0.93 ± 0.04 1.00 ± 0.02 1.06 ± 0.04 

Statistical difference p < 0.001 * p < 0.001 * 
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3.2. Asymmetry Index Based on a Skeleton Estimated with a Kinect™ 

The results for Ilong(i) computed at 10 intervals (i = 1,…,10) of the step cycle when using skeleton 

data delivered by the Kinect™ software are presented in Figure 5c. There is no statistical difference 

between right-deformed gait and normal gait from 50% to 70% of the step. There is no statistical 

difference between left-deformed gait and normal gait at 50% and 80% and of the step. There is a 

significant difference for Ilong (p < 0.001) between the left-deformed gait (resp. right-deformed) and the 

normal gait, as shown in Table 2. Comparison between the Ilong(i) computed with the Kinect™ 

skeleton and the Ilong(i) computed with accurate motion capture data leads to a correlation coefficient 

of 0.796. The mean value of Ilong was on average 22.5% lower than the reference Ilong computed from 

motion capture for left and right deformation. This means that asymmetry obtained with the Kinect™ 

skeleton tends to underestimate asymmetry computed with more precise data. Moreover, the standard 

deviation of the Ilong computed with this method was on average 44% higher than reference Ilong from 

motion capture data for both the normal and deformed gait. 

Table 2. Total asymmetry index results for the average longitudinal asymmetry index 

(Ilong) computed with different methods for normal, left deformed and right deformed gait. 

The results are reported with the mean value and the standard deviation. Significant 

statistical results are written in bold and marked with * when p < 0.001. An Ilong value 

close to zero indicates perfect symmetry of the gait. 

Index Left Deformed Gait Normal Gait Right Deformed Gait 

Average longitudinal asymmetry index (Ilong) with the proposed method 

Asymmetry index  −50 ± 20 mm 3 ± 15 mm 53 ± 29 mm 

Statistical difference p < 0.001 * p < 0.001 * 

Average longitudinal asymmetry index (Ilong) with motion capture data 

Asymmetry index −57 ± 20 mm 8 ± 17 mm 56 ± 28 mm 

Statistical difference p < 0.001 * p < 0.001 * 

Average longitudinal asymmetry index (Ilong) with Kinect™ skeleton data 

Asymmetry index −38 ± 30 mm −3 ± 25 mm 48 ± 38 mm 

Statistical difference p < 0.001 * p < 0.001 * 

3.3 Asymmetry Index Computed with the Proposed Method Based on Raw Depth Images 

The results for Ilong(i) computed at 10 intervals (i = 1,…,10) of the step cycle based on depth images 

are presented in Figure 5a. At each interval, there is a significant difference (p < 0.001) between the 

left-deformed gait (resp. right-deformed) and the normal gait. There is a significant difference for Ilong 

(p < 0.001) between the left-deformed gait (resp. right-deformed) and the normal gait, as shown in 

Table 2. The correlation between Ilong(i) computed from the depth images with the proposed method 

and the Ilong(i) computed with accurate motion capture data leads to a correlation coefficient of 0.968. 

The mean value of Ilong was on average 9.0% lower than the reference Ilong computed from motion 

capture for left and right deformation. The standard deviations of the Ilong computed with this method 

were on average the same (less than 2.5% of variation) as reference Ilong from the motion capture data 

for both the normal and deformed gait. 
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Figure 5. Representation of mean Ilong(i) computed for each group (normal, left deformed, 

right deformed) from raw depth data with our method (a) from the skeleton computed with 

the motion capture data (b) and from the skeleton computed with the Kinect™ data. The 

colored zones define standard deviation intervals. An Ilong value close to zero indicates 

perfect symmetry of the gait. 

These results tend to validate Hypothesis 1: Ilong was able to distinguish asymmetrical gaits from 

symmetrical ones with a high statistical significance. Furthermore, Ilong(i) computed with our method 

has a better correlation with reference data, a lower underestimation of the asymmetry and a lower 

standard deviation of the results than Ilong(i) computed with the Kinect™ skeleton. Moreover, Ilong(i) 

computed with our method is always statistically different for deformed gait versus normal gait, 

whereas Ilong(i) computed with the Kinect™ skeleton is not statistically different at several intervals of 

the step. Ilong(i) computed with depth images is then significantly more correlated and sensitive than 

the one computed with the Kinect™ skeleton, supporting Hypothesis 2.  

Let us now consider the sensitivity of this asymmetry index to the parameters used in the method. 
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3.4. Sensibility of the Leg Zone Estimation 

A sensibility study was carried-out regarding the parameters used for the proposed method.  

These parameters are mainly the knee height, the lower leg zone limit and the upper leg zone  

limit estimations.  

To this end, we tested various heights for the knee height estimation, ranging from 0.25 H to 0.29 H 

instead of 0.27 H, which is the parameter used to estimate gait events, as described in [19]. Whatever 

the height used, the gait event estimation remained unchanged, which shows the robustness of this 

parameter selection.  

 

Figure 6. Correlation coefficient between the longitudinal asymmetry index computed 

from raw depth information with our method and the reference longitudinal asymmetry 

index computed from motion capture information. The lower leg zone parameter was 

varied from 0.3 H to 0.5 H, and the lower leg zone was varied from 0.1 H to 0.25 H. The 

maximum correlation coefficient is 0.968, as shown for the upper leg zone at 0.47 H and 

the lower leg zone at 0.22 H. 

In the same way, we sampled the upper-leg (resp. lower-leg) zone estimation from 0.30 H to 0.50 H 

(resp. 0.10 H to 0.25 H). The impact on the correlation coefficients between the resulting asymmetry 

index and the reference value from the motion capture is depicted in Figure 6. Rssesults show that 

correlation coefficient ranged from 0.75 to 0.968, with a maximum corresponding to the parameters 

finally selected for the method: 0.22 H for the lower leg zone estimation and 0.47 H for the upper leg 

zone. The correlation coefficient was higher than 0.9 in 85% of the leg zone parameters tested, which 

shows the robustness of the method.  

4. Discussion 

The results show that Ilong is a very promising index to detect asymmetry with depth cameras, such 

as the Kinect™. This index revealed asymmetry globally for the whole step cycle, but also locally for 
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each interval of the step cycle. When estimating spatiotemporal gait parameters with the method 

proposed in Clark et al. [11], we noticed that the feet were sometimes incorrectly located when in 

contact with the treadmill surface, which partly explains the poor results of the SRlength and SRduration 

indices. The indices introduced in this paper are consequently more robust to Kinect™ inaccuracies 

and errors compared to classical approaches. 

The impact of the slope under one foot on SRduration and SRlength was as described in Gurney [6]. The 

step length and duration of the shortened leg computed with motion capture data decreased, as shown 

in Table 1. 

We observed that the longitudinal asymmetry index (Ilong) changed over time during the step cycle, 

with a maximum value during the double support phase and a minimum during the swing phase. This 

is coherent with results reported in the literature by Gouwanda and Senanayake [8]. The Ilong  

variability for normal walking (shaded colored green area in Figure 3a) can be partly explained by the 

slight natural asymmetry of healthy subjects [2,6]. In the future, we plan to better estimate the 

sensitivity of this index for subtler asymmetry by using different sole thicknesses under the feet and 

different modifications. 

The method proposed in this paper relied on two main hypotheses, as shown in Section 2.5. 

Compared to classical symmetry ratios computed using spatio-temporal parameters obtained with the 

Kinect™ skeleton, our approach was able to highlight significant differences between normal and 

deformed gaits, as well as classical symmetry ratios computed from spatio-temporal parameters 

obtained with motion capture. This result supports the first assumption, showing that Ilong and Ilong(i) 

computed with depth images are promising gait asymmetry indices based on a simple Kinect™ placed 

in front of a treadmill. Results for Ilong(i) obtained with the Kinect™ skeleton exhibit less satisfactory 

results, supporting the second assumption. Hence, skeleton estimation inaccuracies lead to less 

satisfactory asymmetry assessment for the same experimental set-up, supporting the motivation to 

develop a method based on depth images instead of the Kinect™ skeleton. Furthermore, the 

correlation coefficient of 0.796 obtained in this study between gait asymmetry measurements using the 

Kinect™ skeleton and motion capture system is close to the correlation coefficient between Kinect™ 

and motion capture measurements obtained in [15]. We principally noticed a problem of segmentation 

of feet. In these cases, parts of the treadmill belt were segmented as belonging to the body. The results 

could then be increased with a better feet segmentation algorithm. Furthermore, it is possible that the 

sole under the feet could have disturbed the algorithm. Finally, one of the issues of the Kinect™ 

skeleton method resides in the need for an open space in front of the subject. Most of the treadmills 

have a console in front, which cause the Shotton method [14] to fail to reconstruct the skeleton from 

Kinect™ data. Pfister et al. [15] tackle this issue by positioning the Kinect™ on the side of the 

treadmill with 45 degrees between the optical axis and the progression axis of the treadmill. 

Furthermore, this could lead to issues for gait asymmetry assessment, as shown by different correlation 

coefficients regarding the side measured in [15], and as specified in [15], this angle could reduce the 

algorithm accuracy. However, the backward view on the treadmill is commonly free. To adapt the 

Shotton method [14], the learning process would have to be carried again in contrast with our method, 

which could be adapted directly by changing the position of the Kinect™ from the front to the back of 

the treadmill. We plan to evaluate this new orientation in future work. 
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The asymmetry index is fully automatic to compute. However, the proposed method relies on two 

main parameters: (1) the number of intervals that were used to decompose the gait cycle (set to  

10 intervals in this paper); and (2) the number of strides used to compute the mean step cycle model 

(set to 120 cycles in this paper). We evaluated the sensitivity of these parameters by tuning the number 

of intervals with values ranging from five to 20, and the number of gait cycles from 60 to 180. We  

did not notice significant changes in the results. We chose 120 gait cycles, which approximately 

corresponds to a 2-min walking test on the treadmill. Some patients may have difficulties in 

maintaining a stable walking pattern, and it would be interesting to evaluate to what extended the 

asymmetry index introduced in this paper could deal with a very small number of steps (down to a 

single step in the extreme cases).  

5. Conclusions 

In this paper, we introduced two new gait asymmetry indices based on positional differences 

between the left and right legs during the gait cycle. They deliver asymmetry information in the two 

main locomotion planes: lateral and longitudinal. Contrary to many other asymmetry indices, they do 

not focus on a unique measuring point (compared to force plates or Gaitrite sensors) and can deliver 

values at different instants during the cycles (compared to SR and other ratios that deliver a unique 

value for the whole cycle). In this paper, we especially focused on another advantage: robustness when 

using inexpensive and noisy sensors, such as a Microsoft Kinect™. We have shown that the 

longitudinal index was able to detect asymmetry caused by a 5 cm sole placed under one shoe, whereas 

classical indices were not so accurate when using similar data. 

This robustness to noisy Kinect™ data is the result of several factors. Firstly, these indices do not 

rely on a unique point, but on surfaces, which are less sensitive to noise. Secondly, they rely on a mean 

step cycle model that consists of averaging surfaces of several gait cycles to decrease the influence of 

noise. In the future, it will be important to evaluate the sensitivity of these indices to the number of 

cycles used in this model. Especially, one could expect to reach an acceptable accuracy even with one 

cycle, enabling the use of these indices for over-ground walking. 

These indices have been tested on depth images, but it could be possible to adapt them for  

marker-based systems, such as an optoelectronic motion capture device. Using this standard type of 

measurement, it would be interesting to compare the performance of this index to previously published 

ones. Moreover it would be necessary to more carefully analyze the sensitivity of these indices for 

other types of asymmetry, especially for actual patients with impaired gaits. 

A treadmill was used in order to have a relatively constant and ideal distance between the sensor 

and the subject and to facilitate the acquisition of several gait cycles. However, treadmill walking is 

substantially different from over-ground walking, although [24] showed that the essential equivalence 

between treadmill and over-ground walking was enough to allow clinical analysis. Nevertheless, it 

might be interesting to extend this work to a walking path by using several Kinects along a walkway 

and by reducing the number of gait cycles used to estimate the MSCM.  

This method focuses on the lower limb movement asymmetry because of its significant contribution 

to gait movement. It would be very interesting in future work to analyze the spatial difference for the 
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upper leg and for the lower leg separately, as well as to adapt the method for the rest of the body in 

order to increase the information assessment of gait asymmetry. 

Furthermore, it could be interesting to analyze the lateral displacement used to align legs in order to 

create a lateral asymmetry index. It could be interesting to design a new protocol to induce asymmetry  

along the lateral axis to evaluate the potential of this index. This index would be interesting  

because lateral gait asymmetry occurs in some pathologies, such as the circumduction movement in 

hemiplegic walking. 

Being able to obtain relevant asymmetry information even when using a simple Kinect™ sensor is a 

real advantage in clinical applications: the method is fully automatic, with no marker, no calibration 

and no manual editing. In addition to screening, it could enable clinicians to perform a follow-up of 

patients after surgery, treatment (such as joint replacement) or to measure recovery after a stroke. The 

resulting system is low cost, and easy to use and is a promising tool for a wide range of applications 

for gait analysis. 
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Abbreviation Table 

Abbreviation Type Name 

DI 2D image 
Orthographic projection of the 3D surface of the 

subject 

MDI 2D image Mean depth image 

fMDI 2D image Horizontally-flipped mean depth image 

MSCM Group of MDI Group of MDI 

n Numeric Number of step cycles 

i Numeric Interval of the step 

∆𝑧 Numeric Longitudinal global displacement 

∆𝑥 Numeric Lateral global displacement 

c Numeric Step cycle number 

s {R,L} Step side 

∆𝑅(𝑖)
𝑙𝑎𝑡 Vector Lateral asymmetry at the right leg 

∆𝐿(𝑖)
𝑙𝑎𝑡 Vector Lateral asymmetry at the left leg 

∆𝑅(𝑖)
𝑙𝑜𝑛𝑔

 Vector Longitudinal asymmetry at the right leg 
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Cont. 

Abbreviation Type Name 

∆𝐿(𝑖)
𝑙𝑜𝑛𝑔

 Vector Longitudinal asymmetry at the left leg 

Ilong(i) Numeric 
Longitudinal asymmetry index value at the instant i 

of the step 

Ilong Numeric 
Mean value of the longitudinal asymmetry index for 

the step 

SRlength Numeric Right step length versus left step length ratio 

SRduration Numeric Right step duration versus left step duration ratio 
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